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Abstract: In recent years, there has been a growing interest 
in constructing rich interactive entertainment and training 
experiences. As these experiences have grown in complexity, 
there has been a corresponding growing need for the 
development of robust technologies to shape and modify 
those experiences in reaction to the actions of human 
participants. One popular mechanism for addressing this need 
is through the use of a drama manager. A drama manager is a 
coordinator that tracks narrative progress in the environment 
and directs the roles and/or responses of objects and agents to 
achieve a specific narrative or training goal. In this paper, we 
provide a survey of recent advances in drama management 
technologies for interactive entertainment, and describe a set 
of desiderata for the qualitative analysis of such systems. 
Keywords: interactive narrative, interactive drama, drama 
management, narrative learning, agent coordination, 
desiderata. 
 
1. Introduction 
 
The demand for software systems that support increasingly 
rich and engaging entertainment and training has reached 
new levels. While simple computer games of skill remain 
wildly popular, there is an increasing desire for immersive 
experiences that are more akin to stories. These narrative 
experiences are complex, requiring autonomy for players to 
influence the way in which the experience unfolds but 
necessitating some control to preserve coherence and quality. 
With this increased complexity comes a notable increase in 
the difficulty of authoring consistent experiences. 

Here, we focus on interactive drama, an entertainment 
experience where the player is an active participant in how a 
story unfolds. Players exercise autonomy in their interaction 
by choosing to explore different parts of the environment, 
engaging other players or non-player characters in some way, 
and taking specific actions. The environment (e.g., objects in 
the world, the world itself, or other characters) reacts to the 
behavior of the player. This makes the experience interactive 
and player-driven. On the other hand, authors of these 
experiences design specific situations or plot sequences that 
they hope will occur during play. Thus there is authorial 
intent to create a narrative quality. It is the combination of 
these two features that creates interactive drama. 

There is a natural tension between player autonomy and 
designer intent: preserving designer intent necessitates 

removing player autonomy while ensuring player autonomy 
makes preservation of designer intent difficult. In the earliest 
systems, authors addressed this tension using an exhaustive 
set of local triggers to provide instructions for the game 
world and non-player characters (NPCs); however, this 
approach simply does not scale. Recently, the job of 
mediating this tension has fallen to a more centralized drama 
manager (DM), an omniscient coordinator that directs objects 
and characters in the game world to influence the plot 
progression. An omnipotent micromanaging drama manager  
that prevents any player actions corresponds to the traditional 
notion of drama while no drama manager corresponds to a 
fully autonomous experience. A DM that infrequently takes 
actions to influence—as opposed to modify 
deterministically—the experience corresponds to interactive 
drama. 

Arguably the most famous example of a drama manager is 
that of the Façade drama manager [27] - [30]. In that case, the 
drama manager attempts to construct a narrative experience 
by creating dramatic tension. This is achieved by carefully 
selecting the set of plot events and the order in which they are 
presented in response to the player’s interactions with the 
non-player characters. 

The idea of using a manager to guide dramatic experiences 
was first proposed by Laurel [19]. Since then there have been 
a number of concrete implementations of the idea (see [25] 
for a somewhat dated survey). In this paper, we will survey a 
number of systems, focusing on more recent developments 
and discussing some of their similarities and differences. In 
addition, we hope extend work in this field by providing a 
basis upon which to compare these systems. In particular, we 
describe a number of desiderata we feel are important metrics 
for the qualitative evaluation of these systems, and situate 
each system according to those metrics. 

Although only a few of the systems we have surveyed in 
this paper have explicitly been implemented for a learning 
environment, we believe that many of the approaches to 
managing interactive experiences are well suited to this task. 
In particular, the narrative quality that these systems seek 
corresponds directly with a teacher’s or trainer’s intent for a 
lesson. In implementing these approaches in a concrete 
world, system designers can put the tools in the hands of the 
teachers to dynamically and potentially easily construct 
engaging learning experiences.  



 

It is our hope that this paper serves two purposes: 1) this 
reference will be used by researchers in the narrative learning 
community for pointers to approaches and techniques that 
may be suitable for implementation in their own work; and 2) 
the survey will provide a reference for researchers in 
interactive narrative to understand useful points of departure 
for extending the state of the art.  
 
2. Desiderata 
 
The subject of how best to evaluate a drama manager is a 
topic of some debate in the interactive drama community. 
One concern arises from the need to separate the quality of 
authoring from the quality of authorial tools. If it is found 
that players do not rate their experience more highly when a 
DM is used, it may just be that the author has created a 
deeply satisfying (or unsatisfying) experience and the DM 
cannot significantly change the quality of that experience. 
Alternatively, perhaps a drama manager could improve the 
experience if only the tools available to the author allowed 
her to be more expressive. Another problem arises when we 
try to separate the quality of the authorial experience from the 
quality of the player experience. It is not clear who has the 
highest priority. As we shall see, most systems assume just a 
model of player behavior and leave it at that.  

In addition, there is a choice of perspective between 
system-building and analysis. Generally speaking, system 
builders are concerned with technical issues related to the 
process and problems associated with actual implementations 
of these systems. As such, some of the techniques surveyed 
in this paper are integrally tied to a particular game system. 
On the other hand, analysis is more concerned with looking at 
the features or affordances of a particular approach to drama 
management. These techniques tend to be presented 
independent of a particular game system.  

For our purposes, we focus on analysis. Where it is 
possible, we have tried to separate the approach from the 
particular game system. Further, we assume that the author 
has created a generally pleasing narrative, so we can evaluate 
the drama management systems themselves. Note, however, 
that any analysis remains speculative in that our qualitative 
analysis characterizes the potential of a drama management 
system and the affordances it provides to open new avenues 
for authorship rather than characterizes the degree to which 
authors can actually exploit those affordances.  

First and foremost, it is desirable for the drama manager to 
afford author control as well as player autonomy. These two 
qualities, however, are in service of a greater goal: to create a 
more engaging or believable entertainment/learning/training 
experience. In thinking about what, specifically, such a 
system should provide, there are a number of desiderata that 
come to mind. Beyond that, however, our specific choices for 
desiderata were motivated by three factors: 1) Our 
observations from building systems for managing interactive 
narratives; 2) The motivations discussed by the authors of the 
systems we survey (see [20] for example); and 3) Numerous 
discussions with researchers well versed in game and 
narrative rhetoric. They are: 

• Speed: players should not perceive any delay in game 
action due to decision making by the drama manager.  

• Coordination: NPCs should coordinate to enhance 
the experience of the player characters. 

• Replayability: the game experience should be varied 
but retain high quality, even during repeated play.   

• Authorial Control: a DM should provide a way for 
an author to influence the experience of the player. 

• Player Autonomy: players should not be so 
constrained by the drama manager that they cannot 
pursue their own goals. 

• Ease of Authoring: the burden of authoring high 
quality dramatic experiences should not be increased 
because of the use of a drama manager. 

• Adaptability: a player’s individual characteristics 
should be exploited to better the experience. 

• Soundness: the DM should be amenable to theoretical 
inquiry, allowing one to make verifiable claims about 
the system as a whole, not just about the underlying 
solution technique. 

• Invisibility: the drama manager should not appear 
overly manipulative to the player.   

• Measurabilty: the system should provide affordances 
for measuring author’s satisfaction with the authoring 
process and the set of stories experienced by the 
player as well as the player’s satisfaction. 

It is important to note that some of these desiderata are in 
conflict. For example, player autonomy and authorial control 
are known to be in tension [10] [23] [44]. When 
implementing a particular approach to drama management, a 
trade-off is unavoidable. Of course selecting an approach for 
any particular case is dependent on what is most appropriate 
for the particular application. Thus, in general, no one of the 
desideratum is more important than any other. 

After describing each system, we will situate it in some 
detail with respect to two or three desiderata. In addition, we 
will describe the system briefly for all 10 of the desiderata, 
classifying them into one of three categories: the system is 
well designed with respect to the particular desideratum 
(represented by ●); the designers did not engineer for this 
criterion (represented by ○ ); and the description of an 
approach in terms of a desideratum is highly implementation 
dependent (represented by ◒). We present a table 
summarizing each of the systems in Appendix A.  
 
3. Drama Manager Components  
 
To facilitate clear comparisons, we briefly describe 
components common to all drama management techniques. 
All drama management approaches are based on: a set of plot 
points; a set of drama manager actions that can be taken in 
the game world; a model of player responses to DM actions; 
and a model of the author’s intent. 

Plot points represent significant game events such as 
finding a key to a door or having the player make a 
significant decision. They can have precedence constraints to 
avoid nonsensical situations (e.g., a player entering a locked 
room without having found the key). A story is thus a valid 
sequence of plot points. Note that not all plot points need 
occur to be a valid story.  

Drama manager actions provide a way to steer a story 
toward a “good” sequence of plot points. These actions need 
not have direct concrete implementations in the game world. 
For example, a concrete DM action could be removing an 
object from the game world or causing an NPC to start a 



 

conversation. On the other hand, an action could be 
instructing an NPC to prevent a player character from 
crossing the street. In this case, the details of how to 
concretely accomplish this task in the game world are up to 
the (possibly semi-autonomous) NPCs.1  Regardless of the 
implementation, the DM actions are the tools with which the 
drama manager influences narrative flow. 

In order for the DM to reason about action selection, it 
must have a model of how actions affect the world. In 
particular, if the DM determines that a player is deviating too 
far from a desirable plot sequence, it must know which of the 
many actions available will best guide the player back toward 
a good sequence. Further, it must know enough to balance 
between gentle guidance that may not succeed and more 
heavy-handed actions that will succeed but may be overly 
apparent. For example, if the author intends for the player to 
enter a particular building, the DM would not want to take an 
action to block the entrance, nor would it want to take an 
action that would clearly be herding the player into the 
building. Perhaps the DM would create an event that 
generates sounds from within the building, raising the 
player’s interest in entering.  

Finally, all DM systems must have a model of authorial 
intent. It must be simple to describe and modify, but 
expressive enough so that the DM can choose proper actions.  
 
4. Optimization-Based Systems 
 
The techniques we describe in this section all use an 
optimization-based idiom for obtaining authorial intent. 
Specifically, authorial intent is specified in terms of an 
evaluation function. The drama manager selects from its 
available actions guided by the goal of optimizing this target 
function. Although originally rooted in traditional AI search 
techniques, current systems have borrowed heavily from 
statistical machine learning. This is in distinct contrast to the 
planning-based systems described later. 
 
4.1 Search-Based Drama Management 
 
Search-Based Drama Management (SBDM) is attributable to 
Bates [8] but was studied in greater detail by Weyhrauch 
[52]. SBDM is based on an abstraction of a game into 
significant plot events with precedence constraints encoded in 
a directed acyclic graph (DAG). The edges in the DAG do 
not imply that a particular plot point must occur immediately 
after its parent in the graph, only that if it occurs it must not 
occur before. Plot points are also annotated with information 
about the story such as the location in the story world where 
the plot point occurs or the dramatic tension that the player is 
likely to experience. Any sequence of plot points consistent 
with a topological ordering of the DAG is a valid story. 

Game play in this framework proceeds in an alternating 
fashion with the player triggering plot events and the drama 
manager taking actions in response. The DM actions in this 
framework act on a particular plot point. The DM can: cause, 
deny, temp_deny, reenable, and hint. The cause action causes 
a plot point to occur in the game whereas a deny action 

                                                
1 As such, drama managers are similar to agent coordinators. 
NPCs are agents in a multiagent system communicating with 
a central coordinator to bring about a high level goal. 

prevents a plot point from ever occurring. The temp_deny 
action suspends a plot point from occurring until a reenable 
action is applied to it. The hint action should increase the 
likelihood that a particular plot point will occur. The DM can 
also choose not to act, allowing the player to be the sole 
influence on plot progression. 

Player responses to DM actions are modeled as transitions 
between plot events. A coefficient is associated with each 
plot point. When a DM action hints at a certain plot point, the 
hint action has the effect of multiplying the coefficient 
associated with that plot point by a fixed amount. Then, the 
probability of the player experiencing a plot point is 
calculated by normalizing the coefficients associated with all 
of the plot points that have satisfied precedence constraints.  

Lastly, the author supplies an evaluation function defined 
over a valid sequence of plot points and DM actions. In the 
literature, this evaluation function is defined as a linear 
combination of story features such as activity flow, thought 
flow or manipulativity. The output of this evaluation function 
is a measure of how good the story is in the eyes of the 
author—it does not reflect player preference. 

Weyhrauch uses SAS+, a variant of the expecti-max game-
tree search algorithm, to optimize the evaluation function. A 
tree structure is constructed by alternating levels of plot point 
nodes with DM action nodes. Search alternates maximizing 
nodes at the plot point levels with expectation nodes at the 
DM action levels. There are two variants. The first exploits 
symmetries in the story space to construct a memoization 
table that enables evaluations over complete stories to be 
propagated up from the leaves of the tree to interior nodes. 
The second is a fixed depth search that uses a set of sampled 
complete stories as a heuristic estimate of the value of the 
node at which the search terminates.  

Lamstein & Mateas proposed revising this technique [18], 
and Nelson & Mateas further explored it by attempting to 
reproduce its results [36] [37]. In this work, they uncover the 
difficulty that can arise when authoring a set of actions that 
will appear consistent with the situation in the game. For 
example, suppose one of the plot points occurs when an NPC 
starts a conversation. If the DM takes an action to cause that 
plot point when the particular NPC is not near the player, 
then the outcome could ruin the aesthetic of the story. To 
handle this situation, they add location tags as properties of 
actions. They were able to reproduce Weyhrauch’s results, 
but found that the technique did not scale well.  

Due to the combinatorial complexity of game tree search it 
is unsurprising that this system does not do well in terms of 
its speed; however, the designers took care to mediate this 
difficulty by imposing time limits on search and using 
heuristic evaluation. This system is especially measurable. 
Along with its derivatives described below, this approach to 
drama management provides a basis for characterizing the 
success of the drama manager in meeting the goals of the 
author using the evaluation function. Evaluating this system 
typically includes calculating the frequency of the different 
function evaluations that are realized when the DM is used. 
Evaluation: 
• Speed: ○, the combinatorial complexity of full-depth 

game tree search is intractable. 
• Coordination: ◒ , this is an abstract system and 

coordination is implementation dependent. 



 

• Replayabiliy: ○, the only non-determinism arises from 
random sampling (for the heuristic evaluation) and is not 
principled or controlled. 

• Authorial Control: ◒ , affordance provided by causers 
and deniers gives high degree of control, but is 
implementation dependent. 

• Player Autonomy: ◒ , if sufficient hints are authored 
for DM actions, the player can exercise autonomy. 

• Ease of Authoring: ○ , authoring in the abstract 
narrative domain seems appropriate, but describing 
quality in terms of linear evaluation over features is 
untested as of yet. 

• Adaptability: ○, does not model or adapt model of 
player to inform DM decision making. 

• Soundness: ○, nature of sampling for static evaluation 
does not provide affordance for theoretical investigation. 

• Invisibility: ◒ , the concrete implementation of the 
abstract DM actions will determine invisibility. 

• Measurability: ● , the author’s evaluation function 
provides a solid basis to characterize performance. 

 
4.2 Declarative Optimization-Based Drama 
 
Nelson et al. continue work on SBDM by introducing 
declarative optimization-based drama management (DODM) 
[37] [38]. In this work, the plot point abstraction, DM 
actions, player transition model, and author evaluation 
function are exactly as in SBDM; however, the SAS+ 
sampling search is replaced with a policy obtained by solving 
a Markov Decision Process (MDP). MDPs provide a 
mathematical framework for modeling an online decision 
making problem when the dynamics of the world are 
stochastic [16]. An MDP is specified by a set of states, 
actions, a stochastic transition model encoding dynamics, and 
a reward function. The solution to an MDP is a policy 
dictating the choice of action in every state that will 
maximize the long-term expected reward. In this formulation 
of a drama manager, each of the components corresponds to a 
piece of an MDP specification. The current history of plot 
points and DM actions define state; the DM actions define a 
set of actions; the player model defines a probabilistic 
transition model; and the author’s evaluation function defines 
a reward function. The solution to the MDP represents the 
optimal choice of action for the DM given any history of plot 
points and DM actions.  

Unfortunately, reinforcement learning is susceptible to 
local optima, a phenomenon common to optimization 
techniques. Due to the stochastic nature of the game 
dynamics, it is likely that the computed policy will not be 
optimal. Thus, Self-adversarial Self-cooperative Exploration 
(SASCE) was developed to help find solutions to MDPs that 
best avoid “bad” parts of the state space. The idea behind 
SASCE is to use the current estimate of the state-value 
function that defines the MDP policy to select player 
transitions that are adversarial. In other words, the actual 
player model is not used in learning the SASCE policy. 
Instead a “self-adversarial” player model is substituted that 
forces the DM to learn a policy that optimizes for the worst 
possible player behavior. Results obtained by simulating 
game play against the actual player model indicate that this 

approach helps to reduce the frequency of poorly rated stories 
while increasing the number of moderately rated stories.  

In contrast to SBDM, DODM has an advantage in terms of 
runtime speed because a policy specifying drama manager 
actions for every situation is learned before game play; 
however, it does require significant offline computational 
effort. Like SBDM, it also provides an affordance for 
measurability. Further, reinforcement learning is 
theoretically well-grounded and sound. Experiments suggest 
that DODM improves performance; however this appears to 
come at the cost of replayability. The system finds a narrow 
set of good stores and drives the player towards them. 
Evaluation: 
• Speed: ●, RL-trained policy means action selection is 

simply a lookup, rather than a computation; however, 
offline computation can be quite expensive. 

• Coordination: ◒ , like SBDM, DODM is abstract and 
coordination will be author dependent. 

• Replayabiliy: ○ , deterministic optimization limits 
variety of experience. 

• Authorial Control: ◒ , if authors take advantage of 
cause and deny DM actions. 

• Player Autonomy: ◒ , with the use of the hint DM 
action the author can provide for increased player 
autonomy. 

• Ease of Authoring: ○, authoring abstract narratives 
seems feasible, but it is unclear if authors think in terms 
of story features and a linear combination. 

• Adaptability: ○, one player model is used to describe 
all player types and it is not adapted during game play. 

• Soundness: ●, the MDP formalism provides theoretical 
underpinnings. 

• Invisibility: ◒ , subject to quality of concrete 
implementation of author specified DM actions. 

• Measurability: ● , the author’s linear evaluation 
function provides a solid basis to characterize 
performance. 

 
4.3 TTD-MDPs 
 
Targeted Trajectory Distribution MDPs (TTD-MDPs) are a 
variant of MDPs developed specifically to address the issue 
of replayability [9] – [11] [44] – [46].2  A TTD-MDP is 
defined similarly to an MDP by: a set of trajectories that 
represent sequences of MDP states; a set of actions; a 
stochastic transition model; and a target distribution 
specifying a desired probably for every complete trajectory. 
The solution to a TTD-MDP is a stochastic policy providing 
a distribution over actions in every state such that under 
repeated play the sequence of states will match the target 
distribution as closely as possible. 3    Any finite-length 
                                                
2  The work of van Lent et al. also seeks to address 
replayability using a two level planning system: a strategic or 
deliberative level and a tactical or reactive level [51]. 
Unfortunately, this approach is designed for adversarial 
games and seems ill-suited to plot-driven open world games 
where drama managers are typically used. 
3  Closeness is typically an error measure such as KL-
divergence. 



 

discrete-time MDP can be converted to a TTD-MDP by 
simply encoding the history of MDP states into the TTD-
MDP trajectories. This results in a TTD-MDP where each 
trajectory represents a sequence of states in the underlying 
MDP, optionally including a history of the actions taken.  

The specification of authorial intent is a bit trickier in 
TTD-MDPs. Thus far, there have been two approaches taken: 
converting the DODM-style evaluation function and using a 
set of prototype trajectories. 
Evaluation-based: Roberts et al. present a method for 
converting the author’s evaluation function into a probability 
distribution over stories [45]. Because the evaluation function 
is not typically generative, they present an approach that 
estimates a target distribution. First, a set of stories is 
sampled uniformly—ignoring stories that evaluate too 
poorly—and used to construct a “trajectory tree.” Probability 
mass is assigned by normalizing the evaluation scores across 
all the leaves in the sampled tree. These probabilities are then 
propagated up the tree to produce a probability for partial 
stories. Thus, when the DM selects actions according the 
probabilistic policy that is solved for, it is actually targeting 
stories in proportion to their evaluation quality. 
Prototype-based: Roberts et al. extend TTD-MDPs by 
introducing an alternative authorial idiom based on a pre-
specified set of desirable stories [11] [44] [46]. In this work, 
they replace the conversion process with a mixture of 
Gaussians (MOG) model. Rather than define a function that 
attaches value to a story, the author specifies a set of good 
prototype stories and defines a distance measure between 
stories. Each prototype becomes the centroid of a (possibly 
multivariate) Gaussian distribution. The probability mass that 
represents the “desirability” of a story is assigned by first 
determining its distance from each centroid.  

This approach is amenable to even more authorial 
control. Specifically, each prototype can be treated 
differently, assigning unique (potentially non-uniform) mass 
in the MOG and unique variance along distinct dimensions. 
Thus, the authorial question becomes that of providing a 
small set of desirable stories and indicating a level of 
desirability. Further, the extent of the Gaussian can be 
tweaked to emphasize different aspects of stories. In this 
model, the author can adjust the allowed deviation in any 
direction by adjusting the values in the covariance matrix 
associated with each centroid.  

TTD-MDPs have proven quite good at addressing 
replayability. Unfortunately, there is potentially a cost in the 
ease of authoring. Defining distributions by inferring them 
from an evaluation function is no more difficult—but also no 
easier—than defining an evaluation function in other DODM 
approaches. Providing prototypes may be easier; however, it 
is unclear if authors will find it easy to define game-specific 
distance measures that capture the nuances of their intent. 
Evaluation: 
• Speed: ● , can be solved online with a convex 

optimization technique.  
• Coordination: ◒ , as with SBDM and DODM, 

coordination is dependent on the implementation. 
• Replayabiliy: ●, targeted non-determinism gives the 

author control over variety of experience. 
• Authorial Control: ◒ , subject to the use of cause and 

deny DM actions. 

• Player Autonomy: ◒ , subject to the use of the DM hint 
action. 

• Ease of Authoring: ●, the prototype-distance authoring 
idiom provides an intuitive paradigm for specifying 
authorial intent. 

• Adaptability: ○, the universal player model does not 
adapt to different players to change DM decisions. 

• Soundness: ●, a greedy online solution has been proven 
optimal. 

• Invisibility: ◒ , subject to concrete implementation of 
abstract DM actions. 

• Measurability: ● , in the sampling paradigm, the 
measurements from SBDM and DODM are inherited; in 
the prototype-distance paradigm, divergence from the 
target distribution can be calculated. 

 
5. Planning-Based Architectures 
 
Optimization-based approaches are predominantly derived 
from statistical machine learning methods. In this section, we 
discuss other approaches that have roots in more traditional 
AI planning techniques. 
 
5.1 Interactive Drama Architecture 
 
Magerko & Laird describe a framework called the Interactive 
Drama Architecture (IDA) [20] – [24]. In their system, 
narrative goals are defined by the author at varying degrees 
of detail and the job of the drama manager (called the story 
director) is to ensure that the player’s actions do not threaten 
their realization. For example, suppose the author intends for 
a particular NPC to provide an object to the player near the 
end of the story. If the player meets this particular NPC early 
in the game and chooses to fire a gun at it, the story director 
must intervene to prevent the bullet from killing the NPC. 
IDA uses semi-autonomous SOAR agents [17] that enable 
the directions from the DM to be made at various levels. 
Thus, in this case, the DM could instruct an agent to simply 
“prevent the death” of the NPC and allow the agent to 
determine how. On the other hand, the DM could provide 
specific instructions such as “make the pistol jam.” In either 
case, a successful outcome preserves the author’s goals. 

In this system, plot events are labeled with preconditions 
in the form of logical statements. This approach supports 
dynamic runtime binding. For example, plot events can be 
authored with a variable, x, that appears throughout the story. 
When the player causes the first plot event using x to occur, it 
is bound to a concrete entity in the game world. This ensures 
that all subsequent plot events using that variable preserve 
narrative consistency while minimizing authorial effort. 
This type of runtime adaption is not a feature of the 
optimization-based systems described above. 

Additionally, these logical statements can indicate 
temporal extent: particular plot events can have a range of 
discrete times between which they must occur. Thus, if a 
player is too early or too late in causing a plot event, the DM 
will recognize this as a threat to preconditions and can 
intervene. Interestingly, there is no notion of explicit 
causality in IDA. In other words, the DM cannot cause plot 
events to occur, but can prevent player actions that will 
preclude plot events from occurring. IDA reasons about 



 

potential threats using a predictive player model. Thus, the 
game world is a large unstructured space. But, through 
proactive modification of the game world, the drama manager 
limits the player to the portion that is consistent with the 
author’s narrative intent: the player has complete autonomy 
provided they remain within the scope of narrative intent.  

IDA’s most significant quality is invisibility. One side 
effect of IDA’s approach is a potential increase in the 
player’s perception of autonomy. This characteristic is 
subjective and has not been explicitly measured. Similarly, 
some aspects of ease of authoring also remain unmeasured. 
It is an open question whether the non-expert can easily 
construct predictive player models.4    
Evaluation: 
• Speed: ○, use of a planner that is reliant on online re-

planning can be slow. 
• Coordination: ●, the use of semi-autonomous SOAR 

agents provides an affordance for good coordination if 
authored properly.  

• Replayabiliy: ○, the use of a deterministic planner will 
bring about the same narrative structure repeatedly. 

• Authorial Control: ○, the lack of causality in this 
system makes authorial control very difficult. 

• Player Autonomy: ●, use of DM as a mediator allows 
for sandbox like exploration of the game environment by 
the player. 

• Ease of Authoring: ● and ○, the requirement of an 
accurate predictive player model can be very difficult to 
author whereas the use of runtime variable bindings can 
reduce the specification burden on the author. 

• Adaptability: ○, does not consider player’s goals when 
making action choices, only tries to ensure the narrative 
is consistent with authorial intent. 

• Soundness: ○ , nothing has been proven about this 
system. 

• Invisibility: ●, designed to be proactive and lightweight 
so the player does not perceive any influence by the DM. 

• Measurability: ● , small evaluation of the DM’s 
influence. 

 
5.2 Mimesis 
 
Young et al. have developed the Mimesis system [12] [39] 
[53] [54] [56] [57], a planning system for drama 
management. A fairly complex architecture, Mimesis is 
primarily a run-time behavior generator. Mimesis works at 
multiple levels of abstraction and brings together both the 
procedural representations used by game engines and the 
declarative representations used by AI planning systems. In 
contrast to the architectures described earlier, Mimesis does 
not select the goals to pursue; it develops plans that are 
implemented at various levels of abstraction in the game to 
achieve the goals that are selected for it.  

In contrast to IDA, Mimesis is reactive. Suppose the 
player obtains an object that an NPC needs in order to carry 

                                                
4 In the work described here, the author constructs the model 
by hand. Mott, Lee & Lester have worked on predicting 
player goals by learning probabilistic models [31]. 

out a plan. If the NPC continues with its existing plan, it will 
fail. To account for this, Mimesis will either repair the NPC’s 
plan through re-planning or alter the effects of the player’s 
actions to prevent it from obtaining the object. Note, that 
Mimesis will not predict that a player will take an action to 
threaten a plan; however, it will notice that the outcome of an 
action taken in the world threatens an existing plan.  

As mentioned above, Mimesis constructs plans at multiple 
levels of abstraction. In a functioning system, the request for 
a plan comes from the game engine, in the form of a set of 
goals and actions in the story world. The request is handled 
by the story world planner. This level is implemented using 
DCOPL, a hierarchical refinement planner. The story plan is 
then passed back to the game engine and to a discourse 
planner [55]. The game engine executes the parts of the story 
plan that pertain to characters, objects in the world, and the 
environment in general. The discourse planner constructs a 
complementary plan to control the music, camera angles, and 
other auxiliary aspects of the game experience. The 
combination of the story plan and the discourse plan form a 
coherent narrative plan that when executed by the execution 
manager will achieve the game engine’s requested goals.  

Mimesis is similar in nature to IDA; however, it allows 
more player autonomy. On the other hand, it lacks 
invisibility. The failure mode of this approach can easily 
result in an intervention that is apparent to the player. 
Evaluation: 
• Speed: ○, as with IDA, re-planning is expensive in any 

sizable domain. 
• Coordination: ●, the combination of procedural and 

declarative representation planners enables for a 
coordinated top to bottom experience. 

• Replayabiliy: ○, like most systems, is reliant on the 
player as the only source of non-determinism. 

• Authorial Control: ● , the dual planner approach 
provides an affordance for high authorial control. 

• Player Autonomy: ● , the reactive nature of the 
planning systems allows higher degrees of autonomy. 

• Ease of Authoring: ○, obtaining consistency from two 
unrelated planners can require significant authorial 
effort. 

• Adaptability: ○ , does not model or adapt to the 
player’s specific behaviors. 

• Soundness: ○, lacking in provable qualities. 
• Invisibility: ○ , the combination of the story and 

discourse plans can make for an obvious intervention by 
the DM. 

• Measurability: ○ , there is no affordance for 
measurability in this system. 

 
5.3 Automated Story Director 
 
Riedl et al. have developed narrative mediation, a technique 
where a story is defined by a linear plot progression and by 
player choices [39] [43] [57]. These components induce a 
story structure that is modeled as a partially ordered plan. The 
basic idea is to pre-compute every way the player can violate 
the plan and generate a contingency plan. The collection of 
all contingency plans and the narrative plan form the 



 

narrative mediation tree. To prevent unbounded mediation 
trees, certain player actions are surreptitiously replaced with 
“failures.” This is similar to the “boundary violations” 
discussed by Magerko in the context of IDA. 

The initial narrative plan represents the author’s ideal 
story. In this sense, narrative mediation is similar to 
prototype based TTD-MDPs. It can be proven that this 
method of authoring interactive narrative is equally as 
powerful as creating branching story graphs.  

Riedl & Stern implement this approach for a cultural 
training simulation [40] – [42]. This believable agent 
architecture, known as the Automated Story Director (ASD), 
has two goals: first, it must provide instruction to 
autonomous believable characters that help to shape the 
player’s experience in the neighborhood around the narrative 
training goals; and second, it must monitor the story world to 
detect any inconsistencies that arise as a result of player 
actions and repair the narrative plan accordingly. To 
accomplish this, they modify the “failure” semantics 
discussed above to change the narrative goals of the system 
rather than simply fail. 

This system shares a lot in common with IDA and 
Mimesis. If you consider the spectrum from reactive to 
proactive enclosed by Mimesis on one end and IDA on the 
other, then ASD lives somewhere in the middle. ASD also 
shares some similarities with the beat-based drama manager 
of Mateas & Stern (see Section 6.2); however, in contrast to 
beat-based systems where non-determinism and loosely 
specified authorial goals provide distinct player autonomy 
appropriate for narrative situations, this system uses a 
planning based approach to “recover” authorial goals when 
player actions change the narrative flow. The ASD approach 
is well suited to training or learning environments where 
player autonomy is intended to support exploratory learning 
rather than improve the quality of the entertainment 
experience.  

ASD is theoretically sound. To our knowledge, this is the 
only system for which theoretical properties explicitly 
pertaining to narrative rhetoric (as opposed to mathematical 
properties of the solution) have been proven. Additionally, 
the handling of player autonomy is laudable, because 
contingencies for achieving authorial goals are modus 
operandi. On the other hand, the only source of replayability 
comes from player choices.  

In addition to ASD, the Mimesis system also performs 
narrative mediation. Whereas ASD uses a completely pre-
specified narrative mediation approach where all contingency 
plans are computed in advance, Mimesis accomplishes this 
through a complicated caching and speculative re-planning 
scheme. The Mimesis approach requires that all characters in 
the game (including the human player) obtain permission 
from the mediator before executing their actions. Thus, rather 
than fully determining all contingency plans, Mimesis can 
cache those most relevant to the current narrative plan and 
construct new ones as player actions move the narrative 
toward parts of the story space not as heavily represented by 
mediation plans in the cache.  
Evaluation: 
• Speed: ●, pre-computation of the narrative mediation 

tree results in solid online performance (except in 
catastrophic cases where re-planning is required); 
however, offline computation can be significant.  

• Coordination: ◒ , dependent on the implementation. 
• Replayabiliy: ○, the player is the sole source of non-

determinism. 
• Authorial Control: ●, the mediation tree enables the 

system to ensure the author’s goals are met.  
• Player Autonomy: ●, the use of the mediation tree 

enables the system to react when players threaten the 
narrative path, giving a sense of autonomy. 

• Ease of Authoring: ○ , authoring in STRIPS-like 
planning domain requires competence in AI techniques. 

• Adaptability: ○ , does not model or adapt to the 
player’s specific behaviors. 

• Soundness: ● , things have been proven about the 
representational power of the mediation tree. 

• Invisibility: ◒ , is dependent on the “repairs” the author 
provides. 

• Measurability: ○ , no affordance is provided for 
measurability. 

 
5.4 Dilemma-based Narratives 
 
Barber and Kudenko [6] [7] have developed a system based 
on the notion that “drama is conflict”. It dynamically 
generates dilemma-based interactive narratives. The 
narratives are potentially infinite in length and adapt to both 
the evolving relationships between the characters and to the 
player's behavior. To induce dramatic tension in the 
narratives, the player is coerced into making decisions based 
on clichéd dilemmas found in typical modern soap operas. 
These dilemmas are woven together using an overarching 
story line. 

The system has three components: a knowledge base for 
characters, actions, dilemmas, and the environment; a model 
of the player's behavior and preferences; and a narrative 
planning system. The narrative environment is defined by the 
knowledge base. Specifically, the characters themselves are 
defined by attributes such as relationships with other 
characters and principles such as kindness toward others. 
Through the use of dilemmas, the characters are often forced 
to choose between conflicting principles such as greed and 
loyalty. In addition, the actions available to characters are 
specified in advance as part of the knowledge base. 

The authors have identified five basic dilemma types that 
can ground out in any number of domain specific ways: 
betrayal, sacrifice, greater good, take down, and favor. In the 
betrayal case, the character must choose whether to take an 
action that increases their utility while decreasing the utility 
of a friend. The converse is the sacrifice case. Similarly, there 
is the greater good case where the character has to choose 
whether to take an action that will increase the utility an 
enemy as well as their own. The converse is the take down 
case. In the favor case, the character must choose whether to 
take an action that is personally neutral, but increases the 
utility of another character. Each domain specific dilemma is 
annotated with preconditions as well as utility changes for the 
characters involved. The specific characters involved may be 
determined at runtime.  

To construct the narrative, the system selects among the 
set of available dilemmas based on an appropriateness 
estimate as well as the frequency with which each particular 



 

type of dilemma has been employed already. Appropriateness 
is determined mostly by the ongoing modeling of the player's 
behavior under specific dilemma types. Using this model, the 
system estimates how the player would act in a particular 
dilemma and then estimates how difficult the dilemma will 
be for the player. The dilemma that will be most difficult is 
most likely to be selected. Given a selection, a story world 
planner constructs a plan to satisfy the preconditions of the 
dilemma. Upon realization of those preconditions, the player 
is forced to decide the outcome of the dilemma. The system 
then reacts and selects the next dilemma to present to the 
player. In addition to player dilemmas, the system can create 
“character dilemmas” between two NPCs. These are used to 
help set the stage for the player dilemmas. 

This system is notable for its adaptability in modeling the 
player and using that model to select among dilemmas. 
Additionally, the use of the planner to bring about dilemmas 
in a manner that forces coordination of NPCs is laudable. 
Unfortunately, this power brings about an increased 
authorial burden. 
Evaluation: 
• Speed: ○, online planning approach can be slow in any 

sizable domain. 
• Coordination: ●, is designed to coordinate NPCs to 

bring about dilemmas for player characters. 
• Replayabiliy: ● , the system dynamically creates 

narratives both independently of the player as well as in 
response to their actions. 

• Authorial Control: ●, domain engineering allows for 
high degree of authorial control over dilemma types, 
frequencies, and applicability. 

• Player Autonomy: ●, player is free to avoid dilemmas 
and act in whatever manner they feel like. 

• Ease of Authoring: ○ , requires STRIPS-like 
specification of the domain and character specific 
information which necessitates AI competence.  

• Adaptability: ●, models players and chooses dilemmas 
for them by trying to maximize their expected utility. 

• Soundness: ○, there is no affordance for theoretical 
inquiry. 

• Invisibility: ●, although this system forces players to 
make decisions, the “soap opera” genera for which is it 
designed obfuscates the work of the narrative generator. 

• Measurability: ●, can measure influence of the DM on 
the modeled player utility value. 

 
 
6. Non-Planning and Non-Optimization Systems 
 
In this section, we evaluate a number of approaches to drama 
management that are neither optimization-based nor 
planning-based. The technical approaches underlying these 
systems vary greatly, ranging from probabilistic graphical 
models to case-based reasoning. 
 
6.1 U-Director 
 
Mott & Lester developed U-Director, a narrative planning 
infrastructure that is designed to deal with the uncertainty in 
narrative environments induced by player autonomy [34]. 

Their goal is to develop a system that satisfies what they call 
narrative rationality, defined as reasoning in a principled 
manner about narrative objectives, story world state, and user 
state in the face of uncertainty to maximize narrative utility. 

The “director agent” ensures plot progress and narrative 
consistency using dynamic decision networks (DDNs). DDNs 
are a generalization of Bayesian networks that include utility 
and choice nodes as well as time-varying attributes. The 
network is constructed using a level of abstraction similar to 
that of SBDM, DODM, and TTD-MDPs where DM actions 
are abstract directions that can have any number of concrete 
implementations in the game world. 

They define a narrative decision cycle that is characterized 
by three levels of a dynamic decision network: the current 
game state (characterized by a decision node); the game state 
after the director’s action has been taken (characterized by a 
chance node); and the game state after the player’s reaction 
(characterized by a utility node). The utility nodes represent 
authorial intent in much the same way that the evaluation 
function does for SBDM and DODM. Each of these levels of 
the network contains nodes that represent details about the 
game and the players. The decision network contains nodes 
for the player’s goals and beliefs (or knowledge gained about 
the salient facts of the story through interaction) as well as 
experiential state (or degree the player has been manipulated 
by the DM and how engaged they are in driving the plot). To 
actually make a decision, the director updates the narrative 
state according to the structure of the network in each of the 
three time slices associated with the current decision cycle. 
With the network updated, the director can perform action 
selection by analyzing each action’s influence on the utility 
node in the third time slice.  

In their tests, they have a network with 200 chance nodes, 
400 causal links, and 7,000 conditional probabilities as well 
as a separate network of 50 nodes to express narrative utility 
preferences. It seems unlikely that the non-expert will find 
this easy to author; however, this approach is theoretically 
well-grounded in the body of work on dynamic decision 
networks and so is quite sound. 
Evaluation: 
• Speed: ○, inference in Bayesian networks can be slow 

(albeit more efficient that modeling the complete joint). 
• Coordination: ◒ , is dependent on the concrete 

implementation. 
• Replayabiliy: ○, non-determinism is modeled in the 

system, but not leveraged in DM decision making to 
target a variety of experiences. 

• Authorial Control: ◒ , it is dependent on the style of 
actions the author provides. 

• Player Autonomy: ◒ , it is dependent on the style of 
actions the author provides. 

• Ease of Authoring: ○, dynamic decision networks are a 
fairly advanced machine learning technique and require 
specific knowledge of probabilistic graphical models. 

• Adaptability: ●, the explicit modeling and adaption of 
player relationships, experience, and utility influence 
decision making. 

• Soundness: ● , relies on the theories behind 
probabilistic graphical models.  



 

• Invisibility: ◒ , is dependent on the specific 
implementation. 

• Measurability: ● , the use of utility nodes in the 
decision networks enables claims to be made about 
performance.  

 
6.2 Beat-Based DM 
 
Mateas & Stern define a narrative to be a sequence of events 
that induce “changes in values.” These values are properties 
of individuals or relationships such as love, hope, or anger. 
They define a beat as the “smallest unit of value change” and 
a scene as a “large-scale story event” [26]. Computationally, 
a scene in an interactive narrative is defined by a number of 
annotations: a set of preconditions; the values that are 
changed during the scene; a large collection of beats to effect 
the desired change in values; and a temporal description of 
how the values should be changed during the scene. Thus, an 
interactive narrative is defined by a set of scene definitions. 

With scenes as the basic building blocks, Mateas & Stern 
develop a beat-based drama manager and implement it in 
their interactive fiction Façade [27] – [30]. The drama 
manager is provided with a desired global plot arc that 
defines a shape for the change of the dramatic variables. The 
DM first determines the set of scene definitions that have 
satisfied preconditions and selects the one that matches the 
current position of the global plot arc as closely as possible. 
Then, the DM maintains a bag of beats associated with the 
current scene and reactively applies them until it realizes the 
desired value changes for the scene. Note that the change on 
dramatic values by a particular beat is a function of the beat’s 
characteristics and the human player’s participation. Thus, 
beats define an expectation over value change. 

This authorial idiom is unique among all of the drama 
management systems surveyed in this paper. Due to the level 
of granularity required to author beats and their interactions, 
a beat-based drama manager seems ideally suited to the 
small-world variety of dramas like Façade; however, the 
freedom of replayability and authorial control may come at 
the price of ease of authoring, at least for large systems. 
Evaluation: 
• Speed: ●, the simple search through bags of beats is all 

that is required for DM decision making. 
• Coordination: ● , is specifically designed so beats 

affect coordination between the two NPCs in the 
narrative environment. 

• Replayabiliy: ●, random selection of beats that meet 
the current requirements enables variety of experience 
(although it is not as controllable as one might hope). 

• Authorial Control: ●, the highly detailed specification 
of value change associated with beats and scenes enables 
a high degree of authorial control. 

• Player Autonomy: ●, the player-interaction determines 
the value changes so it will further affect the DM’s 
choice of appropriate beats. 

• Ease of Authoring: ○, the level of detail required of 
annotations can present a significant authorial burden. 

• Adaptability: ○, no model of the player is maintained 
during episodes, this system relies on the author’s 
description of player behavior. 

• Soundness: ○, there is no affordance for theoretical 
inquiry of this system. 

• Invisibility: ◒ , this is highly author dependent.  
• Measurability: ○, the effect of the beat based DM 

cannot be quantified. 
 
6.3 OPIATE 
 
Fairclough implements a narrative story generation system 
called OPIATE. OPIATE uses a story director to drive 
narrative events in an open environment where the story is 
generated in real-time in response to the changing game 
environment and the player’s actions [14]. The story director 
has a “world view” about the state of the game, using that to 
construct plans to achieve dramatic goals. It uses a case-
based planner that is endowed with a plan library created 
using expert knowledge of skeletal plot structures and how 
they fit into the story world. 

The cased-based planner uses its dramatic goals and plan 
library to synthesize plot-based and character-based stories. 
A  k-nearest neighbor algorithm is used for case retrieval that 
additionally provides a “suitability” score for each of the 
retrieved cases—the most suitable case is the sub-plot that 
should be enacted given the current state of the story world 
and the current state of the characters (including their 
attitudes toward each other and the player). A “suitability 
threshold” is used to determine if the best case should be used 
or cases should be combined to create a new case to be 
enacted by the story director. The suitability score can be 
decomposed to provide an individual score for each 
“function” in the case. Thus, case combination is simply a 
matter of finding the highest scored set of functions and 
combining them to form a new case. Once a case is selected, 
a “casting” approach is used where the abstract instructions 
of the case are assigned to specific characters based on 
defined roles. For example, if the role of “hero” is embodied 
by the player, then the NPC that opposes the player the most 
will be cast as the “villain.” Thus, as the relationships 
between the characters change throughout the dramatic 
experience, the cases that are retrieved change based on the 
suitability of the casting of the characters based on their 
relationships. This is similar to the work of Mateas & Stern 
on beat-based drama management where the scenes that are 
selected by the DM are chosen based on their fit to the 
dramatic values that represent the characters and their 
relationships.  

There is notable authorial effort required to construct a 
case-base for the OPIATE system. On the other hand, its 
unique approach to dynamically casting non-player 
characters into different roles based on evolving relationships 
encourages replayability and provides a unique form of 
coordination. 
Evaluation: 
• Speed: ○, the choice of representation and size of case 

library can cause the CBR system to perform slowly. 
• Coordination: ●, narrative decisions specify roles for 

each NPC to play in the environment. 
• Replayabiliy: ○ , as the case-library evolves, the 

choices made by the DM will first become more varied 
and then become more static once a sizable enough case-
library has been developed.  



 

• Authorial Control: ●, the casting approach taken gives 
a high degree of control to the author allowing for 
specific narrative events to be forced to occur.  

• Player Autonomy: ● , the player controls their 
relationships with other NPCs which influences the 
evolution of the game. 

• Ease of Authoring: ○ , requires notable effort to 
annotate sub-plots with relationship information as well 
as to develop a large enough case-library. 

• Adaptability: ●, the choices of the system are made 
based on the player’s evolving relationship with the 
NPCs. 

• Soundness: ○, the system provides no affordance for 
theoretical inquiry. 

• Invisibility: ◒ , this is dependent on the specific set of 
sub-plots authored, but seems that the task of authoring 
for invisibility can be accomplished easily. 

• Measurability: ○, no affordance for measurability is 
provided by this system. 

 
6.4 Player Preferences 

 
Sharma et al. have taken an approach to drama management 
that explicitly includes a model of player preference in the 
DM’s decision making [47]. Drawing a distinction between 
player preference models and player action models, they 
identify one criticism of many other methods: drama 
management techniques overwhelmingly use artificial models 
of player behavior that do not explicitly represent the player’s 
preferences or goals. 

This approach is based on a simplification of the SAS+ 
algorithm that nonetheless extends it by combining the 
author’s evaluation of a story and the player’s preference for 
that story. They employ a case-based reasoning (CBR) 
system to determine player preferences by comparing their 
behavior to the behavior of earlier players. Preferences are 
elicited through a series of evaluation questions after an 
episode of game play. The weights on the player preference 
term and the author evaluation term in the heuristic function 
are adjusted depending on the “confidence” of the system that 
it has an accurate model of player preferences. Thus, if the 
system is able to confidently identify the current player as 
having a particular preference, it will guide her toward the 
types of the stories she enjoys; otherwise, it will attempt to 
preserve author intent. 

Several issues arise. First, the author’s evaluation function 
must be defined over partial stories. Nelson & Mateas have 
previously discussed the difficulties in authoring evaluation 
functions that are well defined in this manner [36] [37]. 
Second, the particular choice of questions used for elicitation 
can be a cause for concern especially when the user is not 
completely sure of what she wants. Finally, it is unclear if the 
distinction between player preference models and player 
action models is necessary: explicitly modeling player 
preference may not provide increased representational power 
over implicitly modeling player preferences through the 
detailed modeling of their actions.  

In any case, this system makes explicit the trade-off 
between player autonomy and authorial control. Further, 
the case-based approach is well-suited for online adaption. 

Of course, as with all learning techniques, CBR may require 
many examples to be effective, so extracting a player model 
may be difficult in practice. Insofar as this is difficult, the 
system reverts to SBDM. Insofar as it is possible, the system 
cedes authorial control. 
Evaluation: 
• Speed: ○, reliance on expectimax search and a growing 

case library can cause speed issues. 
• Coordination: ◒ , this is dependent on the concrete 

implementation. 
• Replayabiliy: ○, like OPIATE, as the case-base grows, 

the system’s choices will stagnate and begin to rely 
heavily on the player for non-determinism. 

• Authorial Control: ○, the system will maximize for the 
player rather than the author if at all possible. 

• Player Autonomy: ◒ , this is dependent on the concrete 
implementation. 

• Ease of Authoring: ◒ , like SBDM and DODM, 
authoring an abstract narrative seems easy but it’s 
unclear if the evaluation function is feasible.  

• Adaptability: ●, designed to improve decision making 
in favor of the player’s satisfaction. 

• Soundness: ○, no affordance provided for theoretical 
inquiry. 

• Invisibility: ◒ , is dependent on the specific concrete 
implementation. 

• Measurability: ●, player satisfaction can be measured 
through observation. 

 
6.5 PaSSAGE 
 
Thue et al. present the Player-Specific Stories via 
Automatically Generated Events (PaSSAGE) system [49] 
[50]. This system uses a three level hierarchy for defining a 
narrative similar to the idea of Mateas and Stern's narrative 
sequencing: the event sequence level where the components 
of the story are selected; the structure level where the details 
concerning the time and place of story events are determined; 
and lastly the behavior level where the actions of individual 
characters are determined. While each level of the 
specification is performed ahead of time by the game author, 
the library of available specifications is refined during game 
play to fit the individual player's characteristics. 

The PaSSAGE system models the players style of play in 
the game, refining its estimates as the narrative unfolds. The 
authors classify players according to five player types: 
fighters who prefer combat; power gamers who prefer 
gaining riches and items; tacticians who prefer thinking 
creatively; storytellers who prefer complex plots; and method 
actors who prefer dramatic actions. Based on the observation 
of the player's behavior in the game and annotations of plot 
events provided by the author, the system expresses its belief 
that the current player is of a specific type in the form of a 
weight vector. For example, if the system observes the player 
starting or joining an existing fight, it will increase the weight 
associated with the fighter player type. 

Thus, similar to Barber and Kudenko's dilemma system, 
PaSSAGE manages the narrative experience by selecting 
among the set of story events that is most appealing to the 
currently estimated player weight values. Each event has a set 



 

of associated branches annotated with weights describing the 
appeal to each of the different player types. To determine the 
event and branch that is most appropriate, the inner-product 
is taken between the player weights and the author's weight 
annotations. The geometric interpretation of the inner-product 
is related to the cosine of the angle between the vectors. 
Thus, the more similar the vectors are, the higher the value of 
the inner-product will be.  

This system excels in speed due to the simplicity of inner-
product calculations. Additionally, the extensive use and 
refinement of a player model earns it high marks in the 
adaptability category; however, the exhaustive set of 
annotations required for the system to take advantage of this 
modeling results in significant authorial burden. 
Evaluation: 
• Speed: ● , the DM decision making process is 

determined by the calculation of an inner product 
between two small vectors. 

• Coordination: ◒ , is based on the concrete 
implementation. 

• Replayabiliy: ○, is dependent on the player as the sole 
source of non-determinism. 

• Authorial Control: ●, with concrete scripting and rich 
annotations this system provides significant authorial 
control. 

• Player Autonomy: ●, constructs narratives in response 
to player’s decisions in the environment.  

• Ease of Authoring: ○, requires exhaustive and rich 
annotations of many sub-plots. 

• Adaptability: ●, maintains a model of player types 
based on observed game behavior and selects narrative 
events that fit well with specific player types. 

• Soundness: ○, no affordance for theoretical inquiry is 
provided. 

• Invisibility: ●, since the system generates rather than 
adapts narratives, it will be tough for players to identify 
the role of the DM. 

• Measurability: ○, no affordance for measurement is 
provided. 

 
7. Coordination Outside of Interactive Drama 
 
Although we mainly discuss these drama management 
systems in terms of interactive entertainment, we feel that 
efforts in applying such techniques in other domains are 
instructive. In this section, we briefly mention narrative-
based learning and game balancing. 
 
7.1 Narrative-Based Learning 
 
There has been growing interest in the use of games for 
instructional purposes. In educational and training 
environments, the teacher or trainer plays the role that the 
author plays in entertainment settings. Thus, the task of 
dynamically constructing engaging learning experiences in 
games is similar to the task of ensuring authorial intent in 
interactive narrative environments. Mott et al. have 
developed a multi-level planning architecture for narrative-
based learning environments [31] – [33]. Ultimately, the goal 
of their system is twofold. First, the system must support the 

hypothesis-generation-testing cycles that are the foundation 
of exploratory learning. Second, the system must provide 
appropriate levels of motivation and engagement for the 
learner to succeed. 

Their system uses two hierarchical task network (HTN) 
planners that operate at two levels of abstraction. The tutorial 
planner constructs plans that reflect the educational goals of 
the teacher. On the other hand, the narrative planner 
determines how best to carry out the tutorial plans at the 
concrete game level. Tutorial plans constrain the plan space 
of the narrative plans. 

Mott et al. describe their HTN-based system as providing 
an intuitive and easy authorial idiom; however, their 
deterministic planning approach reduces replayability. 

In addition to the work of Mott et al., Riedl, et al. have 
also applied their work on ASD to training scenarios (see 
Section 5.3 for the discussion of that work). 
Evaluation: 
• Speed: ○, as noted throughout this paper, planning is 

slow in any sizable domain. 
• Coordination: ◒ , it is unclear if NPC agents make 

sense in this domain and is therefore author dependent. 
• Replayabiliy: ○, the use of deterministic HTN planners 

requires that the player be the source of non-
determinism. 

• Authorial Control: ●, is designed to guide players to a 
specific authorial goal. 

• Player Autonomy: ●, designed to support exploratory 
learning. 

• Ease of Authoring: ●, the designers of this system 
describe it as providing and intuitive and easy authorial 
idiom. 

• Adaptability: ○ , no model of player goals or 
preferences are included in the system. 

• Soundness: ○, no affordance is provided for theoretical 
inquiry. 

• Invisibility: ◒ , is dependent on the set of actions 
provided to the DM. 

• Measurability: ○, no affordance is provided to measure 
educational goals of the teacher (or author). 

 
7.2 Game Balancing 
 
At a high level, drama management shares something in 
common with dynamic game balancing. That is, both game 
balancing agents and drama managers are tasked with making 
changes to the game world that will affect the player’s 
experience. As discussed throughout this paper, the drama 
manager is generally designed to ensure authorial intent; 
however, a game balancing agent tries to modify the game 
world to ensure maximal enjoyment by the player. In that 
sense, the work on player preference modeling, dilemma-
based narratives, and PaSSAGE each have elements in 
common with game balancing approaches as well as drama 
management approaches. 

A frequently discussed example of game balancing is that 
of a first person action game. The more frequently the game 
is played, the more skilled the player will become at the 
combinations of button presses and timing required to master 
the game. As the player’s skill level increases, it is likely the 



 

game will become less challenging and potentially cause the 
player to lose interest; however, if the game’s difficulty is 
adjusted to keep the the player from mastering it, the player 
may also loose interest due to feeling like they are not 
improving. Traditionally, games have a static balancing 
component in the form of level selection (e.g. easy, medium, 
hard, or expert). Recent AI research applied to game 
balancing has given rise to the field of dynamic game 
balancing where the traditional “discrete” balancing through 
explicit player selection is replaced with intelligent game 
adaption and replayability across game episodes. 

Our treatment of dynamic game balancing is brief due to 
space limitations; however, it is a rich area that supports a 
number of approaches, including reinforcement learning [1] – 
[5]; parameter manipulation [15]; dynamic scripting [48]; and 
genetic algorithms [13]. 
 
8. Discussion 
 
We have surveyed a variety of systems for drama 
management in interactive drama. We have proposed a 
number of desiderata, including speed, coordination, 
replayability, authorial control, player autonomy, ease of 
authoring, adaptability, soundness, invisibility, and 
measurabilty. 

The systems we have explored each have strengths; 
however, they all share common weaknesses. The approaches 
to drama management explored here have been focused on 
developing systems that provide some level of fidelity to the 
author’s intent given a model of that intent; however, there is 
little evidence to suggest that any of the models proposed 
here are transparent to the typical author, who will 
presumably be an expert in narrative, but not in optimization, 
planning or any specific AI technique.  

Recall that we have assumed that our hypothetical authors 
have created a pleasing narrative; however, it is unclear 
whether enforcing that author’s narrative yields the most 
satisfying game play. Even if we can reasonably assume this 
problem away, it still remains to demonstrate that we have 
created systems that allow even highly motivated authors to 
express such narratives.  

As such, we propose that future work focus on the 
technical details of developing new frameworks for ensuring 
authorial intent and the user and ethnographic studies 
necessary to understand whether we have provided the 
authorial tools that allow designers to use of our frameworks. 
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A. Appendix 
 
In this appendix, we present a table summarizing the qualitative analysis provided in the text above. It is intended for use a 
reference to guide the reader interested only in a few of the systems surveyed that exhibit the properties they are interested in. 
For ease, the order of presentation of the systems is the same order as in the body of the text. 
 
 speed coord replay control autonomy ease adapt sound invisible measure 
SBDM ○ ◒ ○ ◒ ◒ ○ ○ ○ ◒ ● 

DODM ● ◒ ○ ◒ ◒ ○ ○ ● ◒ ● 

TTD-MDPs ● ◒ ● ◒ ◒ ● ○ ● ◒ ● 

IDA ○ ● ○ ○ ● ●/○ ○ ○ ● ● 

Mimesis ○ ● ○ ● ● ○ ○ ○ ○ ○ 

ASD ● ◒ ○ ● ● ○ ○ ● ◒ ○ 

Dilemmas ○ ● ● ● ● ○ ● ○ ● ● 

U-Director ○ ◒ ○ ◒ ◒ ○ ● ● ◒ ● 

Beat-based ● ● ● ● ● ○ ○ ○ ◒ ○ 

OPIATE ○ ● ○ ● ● ○ ● ○ ◒ ○ 
Preference 
Modeling ○ ◒ ○ ○ ◒ ◒ ● ○ ◒ ● 

PaSSAGE ● ◒ ○ ● ● ○ ● ○ ● ○ 
Narrative 
Learning ○ ◒ ○ ● ● ● ○ ○ ◒ ○ 
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