
Data Structures in Io

Everett Boyer

April 20, 2017

1 Introduction

This paper reports on a Masters project that implements linked lists, bi-
nary trees, and important manipulations of these data structures in the Io
language, which at first glance is unsuited to building data structures. Io
was first created by Raphael Levien in 1989 with the expressed purpose
to create a language with the ”simplest practical programming language
notation possible.” [1] Martin Sandin created the Amalthea compiler for
Io in 2003, based on the description of the Levien Paper in Advanced Pro-
gramming Language Design. [2]. This paper contains a description of the
Io language itself, linked lists and binary trees and their implementation
in Io, the usage of Io as a programmer’s first language, and ends with a
discussion of other avenues of exploration for the Io language.

2 Io

Raphael Levien designed the Io notation with a single mechanism in mind,
”the action”. [1] An invocation is comprised of an operator and parame-
ters. [1] An operator is the name of an action, and parameters can be either
actions, integers or strings. Generally one of these parameters is an action
to indicate the sequence of execution. Levien describes such an action pa-
rameter as something always given as the last parameter or surrounded by
parentheses. [1] Finkel, however, describes the final action parameter as
a continuation, ”which represent the remainder of the computation to be
performed after the called procedure is finished with its other work.” [2]

1



These parameters are described as continuations for the rest of this paper.
Passing a continuation as a parameter is not required, but it is necessary
if the programmer wishes the program to continue processing after per-
forming an action. The continuation indicates the sequence of actions the
program should take.

1 write_int 20;
2 terminate

In this example, the operator write int has two actual parameters:
an integer and a continuation. The continuation parameter terminate is
performed by write int after it finishes printing the number 20. terminate
is a predefined action that takes no parameters and does nothing. Because
terminate does not take any parameters, it invokes no further action, so
the program ends.

It is also possible to define new operators in Io, with new actions as-
signed to them. An example of a newly defined operator and its usage
follows.
1 declare sampleAction: -> X Continuation;
2 write_int X;
3 Continuation.
4
5 sampleAction 2;
6 terminate

The action definition introduces several new conventions. declare,
which is one of Io’s only reserved words, signals the start of an action
definition. sampleAction is the name of the action. Actions are in-
voked with their names and behave as a goto with parameters. In Io, ac-
tions are defined as -><formal parameters>; body. Line 5 invokes
sampleAction with two actual parameters, the integer 2 and the contin-
uation terminate. These actual parameters are bound to the formal pa-
rameters X and Continuation. This action invokes it’s body which con-
sists of an invocation of write int with two additional actual parame-
ters, X that is bound to 2 and Continuation that is bound to terminate.
write int then outputs 2 to standard output, and invokes its second pa-
rameter, which does nothing terminating the program.

The programmer can get the effect of storing data by holding informa-
tion in formal parameters. In this example below and several others, the

2



arrow indicating an action is altered to include a number. + 4 5 -> X;
is the proper syntax, but + 4 5 -1-> is used for ease of reference.

1 + 4 5 -1-> X;
2 write_int X;
3 terminate

The addition operator takes three parameters: two integers and an
action. The action parameter is filled by the anonymous action ->X;
write int X; terminate, which has a single formal parameter X. The
addition action passes 9 as the actual parameter anonymous action #1.
action #1 one binds the actual parameter 9 to the formal parameter X.
The write int invocation then takes the value of X as its first actual pa-
rameter, which it writes to standard output, and then write int invokes
terminate. The syntax of anonymous actions looks intentionally similar
to an assignment statement, so a naive reader can interpret this example
as three independent statements.

Sequencing actions by means of continuations can only be useful if
there is a method to execute some actions and not others, such as con-
ditional statements in traditional imperative languages. Conditionals be-
have much in the same way as other actions, but they take actions as pa-
rameters and only execute a subset of them.

1 = X Y (TrueAction); FalseAction

In this case, the equivalence action takes four parameters: two integers,
an action to perform if they are equal, and an action to perform if not. As
conditionals can terminate recursive loops or create branching paths like
in other languages. The major difference with Io is the lack of boolean
types and syntax. The less than and greater than operators work identi-
cally.

Anonymous actions can act as data containers and actions can provide
values as parameters to their own continuations as shown below. Storing
data in actions acts very similarly to a return statement, however function-
ally what is happening is the continuation, which I call the client, is being
called with an actual parameter provided by the anonymous action’s for-
mal parameter.

3



1 declare addTen: -> X NClient;
2 + X 10 -1-> Y;
3 NClient Y.
4
5 addTen 1 -2-> X;
6 write_int X;
7 terminate

Action #2 takes a formal integer parameter X. The actual parameter is
provided by the AddTen operation, as the final line of its body is to invoke
NClient, which is bound to action #2 with the passing Y as a parameter,
which is provided by + X 10. The above outputs 11 as expected and
terminates.

Io does not enforce typing, though the lack of enforcement may cause
errors to go unnoticed. Strict typing is useful for the programmer when
understanding and debugging code. In the code examples in this paper I
note the types of parameters and actions in an attempt to expand under-
standing. Io’s allowance of action parameters to have similar notation to
non-action parameters can create a lot of confusion, which vigilant not-
ing of types avoids. I denote types by strings such as A:[MyInt:int,
MyString:string, MyAction:[], MyContinuation:C]. The braces
indicate actions, and the strings inside represent formal parameters and
their types. Basic types are ”int” and ”string”, continuations are ”c”.

3 Data Structures

I chose for this paper to focus on linked lists and binary trees, because
they are very simple but still present a challenge to the inexperienced Io
programmer. Other data structures like arrays don’t work as well with Io,
as Io is like other functional programming languages, where arrays and
assignment and general do not fit. They could be implemented, but at
first glance it would be an implementation that was built upon linked lists
and trees, losing the advantages of an array.

4



3.1 Linked Lists

I based my code on the linked-list implementation suggested by Advanced
Programming Language Design. [2] One creates a linked list by initializing
an emptyList as an end node, and then creating the linked list from that
by appending new integers to the beginning of the linked list.

3.1.1 Creation

Linked lists introduce a recursive type: list: [[], int, list] This
notation means that a list is an action that takes two parameters an ac-
tion, and an action that itself takes as parameters an integer and a list.
Creation of linked lists requires two actions: cons, named after the Lisp
constructor, and emptyList, which creates an empty list. I also imple-
ment writeList, because it’s a good early proof of success for linked list
creation.

5



1 // invalidList: []
2 declare invalidList: ->;
3 print_string "Invalid List";
4 terminate.
5
6 // cons: [Number:int, AList:list,
7 // LClient:[list]]
8 // Null: []
9 // NotNull: [int, list]

10 declare cons: -> Number AList LClient;
11 LClient -1-> Null NotNull;
12 NotNull Number MyList.
13
14 // emptyList: [Null:[],NotNull:[int, list]]
15 declare emptyList: -> Null NotNull;
16 Null.
17
18 // writeList: [AList: list, Continuation:c]
19 // Rest: [[], [int, list]] (List)
20 // invalidList: []
21 // First: int
22 // MAX_INT: int
23 declare writeList: -> AList Continuation;
24 AList (invalidList) -2-> First Rest;
25 = First MAX_INT Continuation;
26 print_int First;
27 writeList Rest;
28 Continuation.
29
30 cons 1 emptyList -3-> aList;
31 cons 2 List -4-> aList;
32 writeList aList;
33 terminate.

Lists are represented as an action that takes two formal action param-
eters. Those two actions are: ”what the list does if it is empty” and ”what
the list does if it is not”. Generally in my code the action taken if empty
is an error action, and the action taken if not is an unraveling action that

6



separates an integer from the list. The first line of the writeList ac-
tion, line 24, demonstrates this behavior. If the list is empty the action
invalidList is executed, else the list provides itself as an actual param-
eter to the action #2. An integer list is comprised of an integer followed
by another integer list, so the list provides its current integer as the formal
parameter First and the integer list Rest. If First is equal to MAX INT
the list is empty, and the Continuation is executed. Otherwise, the ac-
tion prints the integer stored in First, and then calls writeList on the
rest of the list. To create a list line 30 invokes the cons action with the for-
mal parameters Number:1 AList:emptyList LClient:action #3.
cons invokes LClient #3 passing it action #1 as an actual parameter. Ac-
tion #3 invokes the NotNull continuation with actual parameters Number
and AList.

EmptyList takes as its two parameters two actions Null and NotNull
and then it does the Null action.

The distinction of Null and NotNull as actions was a very difficult
meaning to parse, as initially these are labeled much like any other formal
parameter. This confusion caused difficulty in programming later actions
because it was difficult to ascertain the end of a list without pseudodata. If
a programmer does not wish to implement pseudodata, than when un-
wrapping a list as in this excerpt AList (invalidList) -> First
Rest; the invalidList actual parameter should be replaced with the
action to perform if the list is null, generally an appropriate continuation.
The action to perform if the list is not null is the anonymous action begin-
ning with -> First Rest;. I use pseudodata because it allows me to
detect if two lists are empty at the same time, instead of just detecting if
the first list is empty. MAX INT is used as pseudodata indicating the end of
the list via another action which I do not cover, called initializeList.

7



3.1.2 Sorted Insertion

1 // insert: [Number:int, myList:list,
2 // LClient:[list]]
3 // List(2,3,4,5)/Rest: list
4 // invalidList: []
5 // First: int
6 // MAX_INT: int
7 declare insert: -> Number List LClient;
8 List (invalidList) -1-> First Rest;
9 < Number First (cons Number List -3-> List5;

10 LClient List5);
11 insert Number Rest -4-> List2;
12 cons First List2 -5-> List3;
13 LClient List3.

The sorted insertion operation takes as formal parameters an integer, a
list, and an action LClient. In this context an LClient is an action that
takes a list as a formal parameter. In line ten, if the list is not empty, insert
invokes action #1 with the components of the list as its parameters. Action
#1’s formal parameters are the integer First and the list Rest. First ac-
tion #1 checks to see if the number to be inserted is less than the integer
First, and if so it inserts the number at the head of the list, and executes
the LClient with the result as a parameter. The MAX INT pseudo-data at
the end of the list ensures that the list cannot be empty. If the number is
not less than the first one insert makes a recursive call to insert the num-
ber into the list Rest. The formal parameter List2 is bound to the output
of the recursive call. Action #4 then invokes the cons action to place the
First integer to top of the List2 and then executes the LClient with
the list as an actual parameter.

8



3.1.3 Strict List Comparison

1 // compareList: [List1: list, List2: list,
2 // List3: list, Path1: [c],
3 // Path2: [c], Path3: [c],
4 // Continuation: c]
5 // Rest(1,2): list
6 // invalidList: []
7 // First(1,2): int
8 // MAX_INT: int
9 declare compareList: -> List1 List2 Path1 Path2 Path3

10 Continuation;
11 List1 (invalidList) -> First1 Rest1;
12 List2 (invalidList) -> First2 Rest2;
13 = First1 First2 (= First1 MAX_INT
14 (path3 Continuation);
15 compareList Rest1 Rest2 Path1
16 Path2 Path3 Continuation);
17 = First2 MAX_INT (Path1 Continuation);
18 = First1 MAX_INT (Path2 Continuation);
19 > First1 First2 (Path1 Continuation);
20 Path2 Continuation.

List comparison compares two integer lists for lexicographic ordering. The
algorithm compares each integer that comprises them one at a time in or-
der. If at any step one list has a larger integer, that list is the larger list. If
one list completes before the other list, the shorter list is the smaller list.
The lists are only equal if both have the same numbers in the same order.

The action compareList takes six formal parameters: two lists, three
actions, and a continuation. The three actions represent the different out-
comes: Path1 if the second list is larger, Path2 if the first list is larger, and
Path3 if they are equivalent. After extracting the First integers of each
list, the action compares them. If the integers are equal then it checks to
see if the integers are equal to the pseudodata, if so it executes the Path3
action with the Continuation as an actual parameter. If the numbers
are not equivalent to the pseudodata, indicating that the lists are equiv-
alent so far, the action recursively calls itself. The action then checks if
either list is complete, indicating that one list is larger than another, and

9



if either is it runs the appropriate path. After these branches it executes
whichever path is appropriate, given that the numbers are unequal. This
action steps through both lists in tandem. The list comparison action is
one of the actions, which requires knowledge if either List has finished
without interrupting the program’s sequence, and in my implementation
requires pseudodata.

3.1.4 mapCar

mapCar gets its name from a Lisp function that executes a function over
each element in a list.
1 // mapCar: myList:[myList:list,
2 // AnAction: [int[int]],
3 // LClient: [list]]
4 // Rest: list
5 // invalidList: []
6 // First/Result: int
7 // MAX_INT: int
8 // New(Rest/List): list
9 declare mapCar: -> List AnAction LClient;

10 List (invalidList) -> First Rest;
11 = First MAX_INT (LClient List);
12 AnAction First -> Result;
13 mapCar Rest Function -> NewRest;
14 Cons Result NewRest -> NewList;
15 LClient NewList.

mapCar’s formal parameters are a list, an action to be performed on
each element in the list, and an action that takes a List as a formal param-
eter. After unwrapping the list and checking pseudodata equality. the ac-
tion is executed on the First integer, with the result being placed on the
list output from the mapCar function on Rest. This list is than provided
as an actual parameter to the LClient action. The AnAction parameter
can be bound to any action with type [int,[int]].

10



3.1.5 map2Car

map2Car is much like mapCar: instead it takes two lists as parameters,
and applies a binary action to each element in tandem, resulting in a list
to be used as a parameter to a LClient.

1 // Map2Car: [List1: list, List2: list,
2 // AnAction: [int, int, [int]],
3 // LClient: [list]]
4 // (’’/New/Result)List(3/4): List
5 // invalidList: []
6 // First(1/2): int
7 // Rest(1/2): list
8 // result: int
9 declare Map2Car: -> List1 List2 AnAction LClient;

10 List1 invalidList -> First1 Rest1;
11 List2 invalidList -> First2 Rest2;
12 = First1 MAX_INT (= First1 First2 (initializeList
13 -> List3; LClient List3);
14 print_string "WARNING: Lists
15 of unequal Length";
16 initializeList -> List4;
17 LClient List4);
18 = First2 MAX_INT (print_string "WARNING:
19 Lists of unequal Length";
20 initializeList -> List4;
21 LClient List4);
22 AnAction First1 First2 -> Result;
23 map2Car Rest1 Rest2 AnAction -> NewList;
24 cons Result NewList -> ResultList;
25 LClient resultList.

map2Car after it unravels the lists checks equality with the pseudodata. If
both lists are empty then it executes the LClient with an empty list to
be filled with the results of its callers. If one list is longer than the other,
map2Car prints a warning to standard output and executes the LClient
with the the list made so far in an attempt to fail gracefully. map2Car then
calls the action on the two elements and then recursively calls itself. The
new list is then constructed and the LClient has the new list as a pa-

11



rameter. An action that works well with map2Car must have type [int,
int, [int]] such as the addition operator +.

3.2 Binary Trees

Binary trees share many similarities with linked lists, however, instead of
having a second action as a formal parameter that only takes two formal
parameters, binary tree’s second formal action parameter takes three for-
mal parameters. One formal parameter represents the value in the node,
the second formal parameter represents left subtree, and the last formal
parameter represents the right subtree. The recursive type of tree is [[],
[int, tree, tree]] with data contained in each node. For ease of
searching, pseudodata marks the leaves, as the pseudodata in the linked
list implementation marks the list’s end.

12



3.2.1 Creation

1 // writeTree: [ATree: tree, Spaces:string,
2 // Continuation:c]
3 // invalidTree: []
4 // Value: int
5 // LeftTree/RightTree: tree
6 // MAX_INT: int
7 // NewSpaces: string
8 declare writeTree: -> ATree Spaces Continuation;
9 ATree invalidTree ->

10 Value LeftTree RightTree;
11 = Value MAX_INT (Continuation);
12 //The carrot operator concatenates strings
13 ˆ " " Spaces -> NewSpaces;
14 writeTree LeftTree NewSpaces;
15 //The print_string_ operator does not print a
16 //newline.
17 print_string_ Spaces;
18 print_int Value;
19 writeTree RightTree NewSpaces;
20 Continuation.
21
22 // consTree: [Number:int, LeftTree:tree,
23 // RightTree: tree,
24 // TClient:[tree]]
25 // Null: []
26 // NotNull: [int,tree,tree]
27 declare consTree: -> Number LeftTree
28 RightTree TClient;
29 TClient -> Null NotNull;
30 NotNull Number LeftTree RightTree.
31
32 // emptyTree: [Null:[],
33 // NotNull:[int, tree, tree]]
34 declare emptyTree: -> Null NotNull;
35 Null.

13



consTree is similar to cons. The emptyTree action creates a tree,
this time the NotNull action parameter is of the type [int, tree, tree]
The consTree action takes two trees as parameters, to act as subtrees, a
number to store in the node, and a continuation that expects a tree. The
writeTree action takes as formal parameters: a tree, a string comprised
of only spaces, and a continuation. in the writeTree the code checks for
the presence of the pseudodata, and then concatenates the given spaces
to create a NewSpaces string. This growing string allows for a visually
helpful tree with a left to right orientation. The NewSpaces string is an
actual parameter in lines 14 and 17 to print the left tree and right tree, with
the action printing the current node in the middle. The program prints the
tree in symmetric order and then executes the continuation

1 consTree 1 EmptyTree EmptyTree -> LeftTree;
2 consTree 3 EmptyTree EmptyTree -> RightTree;
3 consTree 2 LeftTree RightTree -> FinalTree;
4 writeTree FinalTree "";
5 terminate.
6
7 Output:
8 1
9 2

10 3

A difference from the linked-list syntax and the binary-tree syntax is
the new method of unraveling the data structure Tree invalidTree
->First LeftTree RightTree; . The unraveling has more formal
parameters, because of the two subtrees. Pseudodata does not need to
be used to detect when a tree is empty, however in my code pseudodata
marks when tree leaves are detected in multiple trees at the same time,
which is more difficult to implement without pseudodata.

14



3.2.2 Sorted Insertion

1 // insertTree: [Number: int, ATree: tree,
2 // TClient: [tree]]
3 // invalidTree: []
4 // Value: int
5 // (Left/Right)Tree: tree
6 // MAX_INT: int
7 // NewTree: tree
8 declare insertTree: -> Number ATree TClient;
9 ATree invalidTree ->

10 Value LeftTree RightTree;
11 = Value MAX_INT (createTree Number -> NewTree;
12 TClient NewTree);
13 > Number Value (InsertTree Number RightTree ->
14 RightTree; consTree Value
15 LeftTree RightTree -> NewTree;
16 TClient NewTree);
17 insertTree Number LeftTree -> LeftTree;
18 consTree Value LeftTree RightTree -> NewTree;
19 TClient NewTree.

Sorted insertion takes as parameters an integer, a tree, and a tree client.
First, insertTree unravels the tree node and compares the integer Value
with the pseudodata value. If the node equals the pseudodata, the action
creates a new tree to append at this leaf node, and it executes the TClient
with the new tree as an actual parameter. After checking the pseudodata,
insertTree compares the given number with the number in the current
node. If the number to be inserted is greater, a recursive call inserts that
number in the RightTree, recreates the tree with the new right tree, and
executes the TClient with that recreated tree as a parameter. If the num-
ber to be inserted is not greater, it is inserted in the left tree, and the final
tree is recreated with that new tree.

3.2.3 Strict Comparison

The goal of strict comparison is to ascertain if two trees have the same
layout and the same values.

15



1 // compareTreeStrictRecursive: [Tree1:tree,
2 // Tree2:tree,
3 // NClient: [int]]
4 // invalidTree: []
5 // First(1/2): int
6 // (Left/Right)Tree(1/2): tree
7 // MAX_INT: int
8 // Num(1/2): int
9 // result: int

10 declare compareTreeStrictRecursive: -> Tree1 Tree2
11 NClient;
12 Tree1 invalidTree -> First1
13 LeftTree1 RightTree1;
14 Tree2 invalidTree -> First2
15 LeftTree2 RightTree2;
16 = First1 First2 (= First1 MAX_INT
17 (NClient 0);
18 compareTreeStrictRecursive
19 LeftTree1 LeftTree2 -> Num1;
20 compareTreeStrictRecursive
21 RightTree1 RightTree2 -> Num2;
22 + Num1 Num2 -> result;
23 > result 0 (NClient 1);
24 NClient 0);
25 NClient 1.
26
27 // compareTreeStrict: [Tree1:tree, Tree2:tree,
28 // Pathy: [c], Pathn, [c],
29 // Continuation:C
30 // result: int
31 declare compareTreeStrict: -> Tree1 Tree2 Pathy Pathn
32 Continuation;
33 compareTreeStrictRecursive Tree1 Tree2 -> result;
34 = result 0 (Pathy Continuation);
35 Pathn Continuation.

compareTreeStrict does not compare trees in lexicographic ordering,
or compare trees based only on the values of the nodes. A comparison

16



operation that compares trees lexicographically is possible, but the behav-
ior of strict comparison is much easier to define. compareTreeStrict
calls compareTreeStrictRecursive and determines if the value used
on the NClient denote equivalence or not. compareTreeStrict takes
as formal parameters two trees, and three actions: One to be performed if
equivalent, one if not, and a continuation. compareTreeStrictRecursive
unravels to two trees, compares the value, and executes the NClient with
a number based on if the value is equivalent to the pseudodata in one or
both trees, an equal value in both trees or a different value in both trees.

3.2.4 mapCar

1 // mapCarTree: [ATree: tree, AnAction: [int],
2 // TClient: [tree]]
3 // First: int
4 // (Left/Right/NewLeft/NewRight/End)Tree: tree
5 // Result: int
6 declare mapCarTree: -> ATree AnAction TClient;
7 ATree invalidTree -> First
8 LeftTree RightTree;
9 = First MAX_INT (TClient ATree);

10 AnAction First -> Result;
11 mapCarTree LeftTree myAction -> NewLeftTree;
12 mapCarTree RightTree myAction -> NewRightTree;
13 consTree Result NewLeftTree NewRightTree ->
14 EndTree;
15 TClient EndTree.

mapCarTree, named after the Lisp function, takes a tree and an action
and executes TClientwith a parameter of the result of running the action
on each element in the tree. After mapCarTree checks the pseudodata it
runs the action on both the left and right tree, and then the recombined
tree is a parameter for the TClient action.

17



4 Io as a first language for instruction

Upon first seeing and working with Io I would not have suggested it as
a first programming language, because its behavior is so different from
other languages. Io has some advantages in its esoteric behavior, how-
ever. The lack of enforced typing and the spartan notation both create an
easy-to-write language similar to other common first languages such as
Python. The question lies in if those savings in understanding notation
make up for the new time spent in understanding code behavior added
to the time required to move from Io to a more traditional programming
language. It is possible that the additional time spent understanding code
behavior could be desirable because the confusing aspects of Io are mostly
sequencing and odd but consistent notational behaviors, and not purely
notational in nature, allowing programmers to focus on program logic and
not remembering an odd quirk of notation. Let’s look at some code exam-
ples and imagine how difficult it would be to understand them from a
beginner’s viewpoint.

4.1 Hello, World!

1 print_string "Hello, World!";
2 terminate

”Hello, World!” has long been an example of a first program in any
programming language, and it is simple in Io. There is not much here that
can be misunderstood, and the function of this code excerpt is much the
same as any other language; though without the more difficult notation
that some other versions of ”Hello, World!” require.

18



4.2 Action Definition

1 declare: -> Add Num1 Num2 NClient;
2 + Num1 Num2 -> Result;
3 NClient Result.
4
5 add 2 3 -> Result;
6 print_int Result;
7 terminate

Actions, like functions in other languages, are also relatively easy to
code. The inclusion of a reserved word, declare, and the specific nota-
tion isn’t any more difficult than other language’s syntax. It’s also quite a
bit simpler than languages such as Java or C. If we consider predeclared
functions, usage can be confusing; addition, long an easy first step in pro-
gramming, is now obfuscated behind a different syntax with what a per-
son would be accustomed to. 2 + 3 as in many common languages is
something even those who do not think of themselves as coders can parse.
+ 2 3 introduces confusion where beginners may want to only see re-
lief. I recommend renaming the single character operators to be verbs the
programmer would make themselves. ”add 2 3” doesn’t bring to mind the
mathematical notation, and brings a linguistic similarity to Io that would
probably prove helpful to beginners. It also doesn’t make addition or sub-
traction an exception to how actions normally work.

4.3 Loops

1 declare: forLoop Num1 Continuation;
2 print_int Num1;
3 - Num1 1 -> Result;
4 forLoop Result;
5 Continuation.
6
7 forLoop 10;
8 terminate

Loops are another common topic to cover for first-time programmers,
and the first cause of worry specific to Io’s notation. Io, like all functional

19



programming languages, lacks loops, instead relying entirely on recur-
sion. Even if a beginner understands and can parse recursion easily, not
having different methods to create loops restricts the number of tools a
beginning programmer has. Although I am certain any loop could if engi-
neered correctly mimic recursion, and any recursion could if engineered
correctly mimic loops, it is worrisome that a beginner would not have
some of the positive aspects of for and while looping. I think you could
teach programming without them, and for some students that might be a
positive aspect of the course; but that is not true for every student, and
lacking those controls is worrisome.

Another point of confusion would be the lack of returns. The current
logical flow of an action from start to end is relatively easy to parse, but
continuations and clients instead of returns could prove confusing to a
beginner. In other languages, the return looks and acts like an end to a
function. Io instead has continuations that pass results to the rest of the
code. The difference is subtle, but that subtlety adds to confusion when a
beginner is learning.

Arrays are another aspect of programming that is commonly taught
early; they would have to be discarded entirely. I think there are some
positive aspects to teaching linked lists, for example, earlier however. I
imagine students think of arrays being stored like a list of numbers on a
page. Facing a different type of storage early in their education might help
open their eyes to other data structures before they are even introduced,
particularly if arrays aren’t even mentioned in the first place.

I think there are some problems with replacing all newcomer’s lan-
guage with Io as well. Io doesn’t have the support structure that other
languages have, and there isn’t much current evolution from low level Io
to high level Io. If you learn to program with Python; you start with the
same things as every other language, as detailed above. But it is really
easy with Python to go from beginning programs to creating a program
with a user interface to accomplish some task, and many different types of
programs are coded in Python. While I would not want a first program-
ming language to be picked entirely on what is popular, the popularity
of a language influences access to help and future work that can be easily
done with a language. A student pays more attention and is more inter-
ested if they are taught something that they think is immediately useful,
and sadly I don’t think Io has that draw.

20



5 Future Research

Some places that a future student could take Io are implementing other
data structures, while I have done some initial work into ternary and n-ary
trees I am certain there is more work to be accomplished. An interesting
problem to solve would be a softer comparison of trees where instead of
comparing them node by node the action would compare their linked list
equivalents, without transforming them of course. I would also be inter-
ested in seeing a red-black tree in this language or a self balancing tree of
any type.

5.1 Ternary Trees

I have done some initial work on ternary trees. Ternary trees would be
simple to implement if a programmer would just expand emptyTree and
the tree unraveling function to have an extra slot for a third tree and a
second number. However, that isn’t generalizable; at least not beyond
rewriting trees for each n you wished. A ten-ary tree would largely be
unrecognizable for example. So I believe the best way to create a ternary
tree would instead be like two linked lists in each node. The first linked
list would be a collection of numbers and the second would be a collection
of subtrees. The unraveling action would extract those two lists, which
would have a number of values according to the value of n, which would
need to be a parameter to the action the unraveling was taking place in. I
imagine this implementation would allow for dynamic n-ary trees which
do not have obtuse hard to read syntax.

6 Conclusion

The Io programming language has a unique notation that simplifies pro-
gramming notation without over complicating direct understanding of
most of the code written in it. There are some small aspects of the Io
language that are more difficult to understand for beginners such as the
reliance on recursion for loops, and the usage of continuations. Continu-
ations in particular could confuse new programmers who could be uncer-
tain about the mechanics of parameter passing in general, and passing an
actions would only compound that problem.

21



References

[1] Raphael Levien Io: a new programming notation. 1989, SIGPLAN No-
tices, Vol. 24, No. 12.

[2] Raphael Finkel, ”Control Structures,” in Advanced Programming Lan-
guage Design 1st ed. Menlo Park: ADWES, 1996, ch. 2, sec. 3, pp. 50-57

[3] Everett Boyer (2017, April 13) Io Codebase Avail-
able: https://drive.google.com/file/d/
0B7mC3XFGKzdTV1p3VFI1YlpSX3c/view?usp=sharing

[4] Martin Sandin. (2003, Jan. 28) io & amalthea Available: https:
//hackage.haskell.org/package/Ganymede-0.0.0.5/src/
vague%27s%20-%20amalthea.html

22

https://drive.google.com/file/d/0B7mC3XFGKzdTV1p3VFI1YlpSX3c/view?usp=sharing
https://drive.google.com/file/d/0B7mC3XFGKzdTV1p3VFI1YlpSX3c/view?usp=sharing
https://hackage.haskell.org/package/Ganymede-0.0.0.5/src/vague%27s%20-%20amalthea.html
https://hackage.haskell.org/package/Ganymede-0.0.0.5/src/vague%27s%20-%20amalthea.html
https://hackage.haskell.org/package/Ganymede-0.0.0.5/src/vague%27s%20-%20amalthea.html

	Introduction
	Io
	Data Structures
	Linked Lists
	Creation
	Sorted Insertion
	Strict List Comparison
	mapCar
	map2Car

	Binary Trees
	Creation
	Sorted Insertion
	Strict Comparison
	mapCar


	Io as a first language for instruction
	Hello, World!
	Action Definition
	Loops

	Future Research
	Ternary Trees

	Conclusion

