
Basic Forward Chaining Construction for Logic

Programs

V.W. Marek1⋆, A. Nerode2⋆⋆, J.B. Remmel3⋆⋆⋆

1 Department of Computer Science, University Kentucky, Lexington, KY 40506–0027.
2 Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853.

3 Department of Mathematics, University of California at San Diego, La Jolla, CA
92903.

1 Introduction and Motivation

One of the problems which motivated this paper is how do we deal with in-
consistent information. For example, suppose that we want to develop an expert
system using logic programming with negation as failure. It may be the case that
the knowledge engineer gathers facts, i.e. clauses of the form p←, rules without
exceptions, i.e. clauses of the form p ← q1, . . . qn, and rules with exception or
rules of thumb, i.e. clauses of the form p← q1, . . . qn,¬r1, . . . ,¬rm, from several
experts. One problem is that the resulting program may be inconsistent in the
sense that the program has no stable model. That is, the experts may not be
consistent. The question then becomes how can we eliminate some of the clauses
so that we can get a consistent program. That is, at a minimum, we would like
to select a subprogram of the original program which has a stable model. Vari-
ous schemes have been proposed in the literature to do this [GS92, KL89]. For
example, we may throw away the rules which came from what we feel are the
most unreliable experts until we get a consistent program. However even in the
case when the knowledge engineer consults only a single expert, the rules that
the knowledge engineer produces may be inconsistent because the rules that he
or she abstracted are not specific enough or simply because the expert did not
give us a consistent set of rules.

The above scenario is one practical reason that we would desire some proce-
dure to construct, for a given program which has no stable model, a maximal
subprogram that does have a stable model. Another practical reason occurs
when we are using a logic program to control a plant in real time, see [KN93a]
for examples. In this case, the program may have a stable model but that stable
model may be very complicated and we do not have enough time to compute the
full stable model. It has been shown [MT91] that the problem of determining
whether a finite propositional logic program has a stable model is NP-complete.
Moreover, the authors have shown [MNR92a] that there are finite predicate logic

⋆ Research partially supported by NSF grant IRI-9400568.
⋆⋆ USARO MURI DAAH-04-96-10341, Center for Foundations of Intelligent Systems

at Cornell University.
⋆⋆⋆ Research partially supported by NSF grant DMS-93064270.

programs which have stable models but which have no stable models which are
hyperarithmetic so that there is no possible hope that one could compute the a
stable model of the program no matter how much time one has. Thus if there
are time problems, one may be satisfied by a procedure which would construct
a subprogram of the original program and a stable model of the subprogram
as long as both the subprogram and stable model of the subprogram can be
computed rapidly, at the very least in polynomial time.

Indeed some see as a general problem with the stable model semantics the
fact that there are many programs which have no stable models. For example, if
we have any program P and p is new statement letter, the program P plus the
clause p ← ¬p has no stable model even if the original program P has a stable
model. Thus a single superfluous clause which may have nothing to do with
the rest of the program may completely destroy the possibility of the program
possessing a stable model. This is one of the reasons that researchers have looked
for alternatives to the stable model semantics such as the well-founded semantics
[VGRS91].

In this paper, we shall present a basic Forward Chaining type construction
which can be applied to any general logic program. The input of the construction
will be any well-ordering of the non-Horn clauses of the program. The construc-
tion will then output a subprogram of the original program and a stable model
of the subprogram. It will be the case that for any stable model M of the original
program P , there will be a suitable ordering of the non-Horn clauses of the pro-
gram so that the subprogram produced by our construction is just P itself and
the stable model of subprogram produced by our construction will be M . Thus
all stable models of the original program will be constructed by our Forward
Chaining construction for suitable orderings. Moreover, we shall show that for
finite propositional logic programs, our construction will run in polynomial time.
That is, we shall prove that our Forward Chaining construction runs in order of
the square of the length of the program.

We shall see that any stable model M of P can be produced via our Forward
Chaining construction for some well-ordering ≺, i.e. every stable model of P is a
stable submodel of P . In the case where our original program P is inconsistent
in the sense that P has no stable models, we can view our Forward Chaining
construction as a way of extracting a maximal consistent subset of clauses C≺ ⊆
P such that the system C≺ has stable model.

2 General logic programs

A definite logic program consists of clauses of the form

a← a1, . . . , am

where a, a1, . . . , am are atoms of some underlying language. We call such clauses
Horn program clauses or simply Horn clauses. The set of atoms occurring in
some clause of P is called the Herbrand base of P , and is denoted by HP . We
will be dealing here with the propositional case only.

A general logic program consists of clauses of the form

C = a← a1, . . . , am,¬b1, . . . ,¬bn. (1)

where a1, . . . , am, b1, . . . , bn are atoms.. Here a1, . . . , an are called the premises
of clause C, b1, . . . , bm are called the constraints of clause C, and a is called the
conclusion of clause C.

Each Horn program can be identified with the a general program in which
every clause has an empty set of constraints.

Definition 1. A subset M ⊆ HP is called a model of P if for all C = a ←
a1, . . . , am¬b1, . . . ,¬bn ∈ P , whenever all the premises a1, . . . , an of C are in M
and all the constraints b1, . . . , bm of C are not in M , then the conclusion a of C
belongs to M .

Given sets M ⊆ HP and I ⊆ HP , an M -deduction of c from I in P is a finite
sequence 〈c1, . . . , ck〉 such that ck = c and for all i ≤ k, each ci either
(1) belongs to I, or (2) is the conclusion of an axiom, or
(3) is the conclusion of a clause C ∈ P such that all the premises of C are
included in {c1, . . . , ci−1} and all constraints of C are in HP \M (see [MT93],
also [RDB89]).
An M -consequence of I is an element of HP occurring in some M -deduction
from I. Let CM (I) be the set of all M -consequences of I in P . Clearly I is a
subset of CM (I). However note that M enters solely as a restraint on the use
of the clauses which may be used in an M -deduction from I. M contributes no
members directly to CM (I), although members of M may turn up in CM (I) by
an application of a clause which happens to have its conclusion in M . For a fixed
M , the operator CM (·) is monotonic. That is, if I ⊆ J , then CS(M) ⊆ CM (J).
Also, CM (CM (I)) = CM (I). However, for fixed I, the operator CM (I) is anti-
monotonic in the argument M . That is if M ′ ⊆M , then CM (I) ⊆ CM ′(I).

We say that M ⊆ HP is grounded in I if M ⊆ CM (I). We say that M ⊆ HP

is a stable model of P over I of I if CM (I) = M .
With each clause C of form (1), we associate a Horn clause of form (2)

C ′ = a← a1, . . . , am (2)

obtained from C by dropping all the constraints. The clause C ′ is called the
projection of clause C. Let M be any subset of HP and let G(M,P) be the
collection of all M -applicable clauses. That is, a clause C belongs to G(M,P) if
all the premises of C belong to M and all constraints of C are outside of M . We
write P |M for the collection of all projections of all clauses from G(M,P). The
projection P |M is a Horn program. Our definition of stable model was different
from but equivalent to that given by Gelfond and Lifschitz in [GL88].

3 The Forward Chaining Construction and Stable

Submodels

Given a general program P , we then let mon(P) denote the set of all Horn
clauses of P and nmon(P) = P \ mon(P). The elements of nmon(P) will be

called nonmonotonic clauses.
Our Forward Chaining construction will take as an input a program P and

a well-ordering ≺ of nmon(P). The principal output of the Forward Chaining
construction will be a subset D≺ of HP . Although such subset is not, necessarily,
a stable model of P , it will be a stable model of A≺ for a subset A≺ ⊆ P .
This subset, A≺, will also be computed out of our construction and will be the
maximal set of clauses of P for which D≺ is a stable model. We thus call D≺ a
stable submodel of P .
The first feature of our construction is that in every stage of our construction
we will close the sets we construct under mon(P). The point is that stable
models are always closed under the operator associated with the Horn part of
the program, and the applicability of a clause from mon(P) is not restricted.
We shall denote by clmon the monotone operator of closure under the clauses in
mon(P). Thus clmon(I) = Tmon(P) ↑ ω(I) is the least set Z of atoms from HP

such that I ⊆ Z and Z is closed under every clause r of mon(P). That is, if
premises of such a clause are all in Z, then its conclusion also belongs to Z. The
second important aspect of our construction is that when we inspect the clauses
of nmon(P) for a possible application, we look at the possible effect of their
application on the applicability of those clauses which were previously applied.
Rules that may invalidate applicability of previously used clauses are not used.
The execution of this idea requires some book-keeping. Our Forward Chain-
ing construction will define two sequences of subsets of HP : 〈D≺

ξ 〉ξ≤|P |+ and

〈R≺
ξ 〉ξ≤|P |+ . D≺

ξ will be the set of elements derived by stage ξ. R≺
ξ will be the

set of elements restrained by stage ξ. Here and below α+ is the least cardinal
greater than α. Thus, if P is countable, then |P |+ is either finite or the first un-
countable ordinal. We shall prove, however, that if |P | is countably infinite, then
the construction actually stops below the first uncountable ordinal and therefore,
for denumerable P , the use of nondenumerable cardinals can be eliminated.
In addition, we shall define two sets of clauses, I≺ (for “inconsistent clauses”) and
A≺ (for “acceptable” clauses). These sets of clauses will depend on previously
defined hierarchies.

3.1 Forward Chaining Construction

Definition 2. Let P be a general program and let ≺ be a well-ordering of
nmon(P). We define two sequences of sets of atoms from HP , 〈Dξ〉 as well
as 〈Rξ〉. The set Dξ is the set of atoms derived by stage ξ and Rξ is the set of
atoms rejected by the stage ξ.

1. D≺
0 = clmon(∅), R≺

0 = ∅;

2. If γ = β + 1 and there is a clause C ∈ nmon(P) such that

prem(C) ⊆ D≺
β , ({c(C)} ∪ cons(C)) ∩D≺

β = ∅

and
clmon(D≺

β ∪ {c(C)}) ∩ (cons(C) ∪R≺
β) = ∅

(we call such clause applicable clause), then let Cγ be the ≺-first applicable
clause and set

D≺
γ = clmon(D≺

β ∪ {c(Cγ)}) R≺
γ = R≺

β ∪ cons(Cγ).

If there is no C such that

prem(C) ⊆ D≺
β , ({c(C)} ∪ cons(C)) ∩D≺

β = ∅

and
clmon(D≺

β ∪ {c(C)}) ∩ (cons(C) ∪R≺
β) = ∅,

then set
D≺

γ = D≺
β and R≺

γ = R≺
β

3. If γ is a limit ordinal, then

D≺
γ =

⋃

ξ<γ

D≺
ξ and R≺

γ =
⋃

ξ<γ

R≺
ξ .

4. Finally let

D≺ = D≺
|P |+ =

⋃

ξ<|P |+

D≺
ξ and R≺ = R≺

|P |+ =
⋃

ξ<|P |+

R≺
ξ .

Sets D≺ and R≺ are sets of atoms derived and rejected during the forward
chaining construction along the well-ordering ≺.

We define the set of inconsistent clauses, I≺, and the set of consistent clauses,
A≺, relative to ordering ≺ as follows:

5. C is inconsistent with ≺ (or simply inconsistent if ≺ is fixed) if prem(C)
∈ D≺, ({c(C)} ∪ cons(C)) ∩D≺ = ∅, but clmon(D≺ ∪ {c(C)}) ∩ (cons(C) ∪
R≺) 6= ∅. I≺ = {C ∈ P : C is inconsistent with ≺};

6. A≺ = P \ I≺

We then say that a subset D ⊆ HP is a stable submodel of P , if there is a
well-ordering ≺ of nmon(P) such that D = D≺.

The following observations should be clear: First, the clause that is used for
construction of D≺

γ+1 from D≺
γ is different from any clause used before in the

construction. Therefore, by cardinality argument, the construction, eventually,
stabilizes.
Next, both hierarchies 〈D≺

ξ 〉 and 〈R≺
ξ 〉 are increasing. Moreover, it is easy to

prove by induction on ξ that D≺
ξ ∩R≺

ξ = ∅. Therefore D≺ ∩R≺ = ∅.

The sets R≺
ξ accumulate the restraints of all clauses applied during the con-

struction. Since D≺ ∩ R≺ = ∅, the applicability of clauses applied during the
construction is preserved at the end. This immediately implies the following re-
sult. First, let Pα = {Cξ : ξ < α}, P ⋆ = {Cα : α < |P |+ and Cα is defined}.
We have

Proposition 3. D≺
ξ is a stable model of Pξ, and Dprec is a stable model of P ⋆.

We now have a result showing that the set D≺ we produced in the Forward
Chaining construction behaves as promised:

Theorem 4. Let P be a general program. Let ≺ be a well-ordering of nmon(P).
Then D≺ is a stable model of A≺. Hence if I≺ = ∅, then D≺ is a stable model
of P .

We define the set of nonmonotonic generating clauses for a set M ⊆ HP ,
NG(M,P).

Definition 5. Let P be a general program. Let M ⊆ HP .

NG(M,P) = {C ∈ nmon(P) : prem(C) ⊆M, cons(C) ∩M = ∅}

Theorem 6. If P is a general program, then every stable model of P is a stable
submodel of P . That is, if M is a stable model of P , then there exists a well-
ordering ≺ of nmon(P) such that D≺ = M . In fact, for every well-ordering ≺
such that NG(M,P) forms an initial segment of ≺, D≺ = M .

While we stated Theorem 4 and Theorem 6 in full generality, we are most
interested in the case when program P is finite or countable. In this case we can
show that to construct stable models via forward chaining, one need consider
orderings of type smaller or equal of order type ω.

Proposition 7. Let P be a program such that |HP | ≤ ω and let M be a stable
model of P . There exists a well-ordering ≺′ of nmon(P) in type ≤ ω such that
D≺′

= M . Moreover the forward Chaining construction stabilizes in at most ω
steps.

We note that Proposition 7 does not hold for all stable submodels. That is, the
sets D≺ which are not stable models may have the property that they can only
be obtained by means of orderings of the length > ω.

Our construction of the set D≺ persists with respect to prolongation of the
well-ordering (providing the Horn part is the same).

Proposition 8. Let P ⊂ P ′ be two sets of clauses such that mon(P) = mon(P ′).
Let ≺′ be a well-ordering of nmon(P ′) and let nmon(P) be an initial segment in
≺′. Finally, let ≺=≺′ |P . Then D≺ ⊆ D≺′

and R≺ ⊆ R≺′

.

4 Complexity of Stable Submodels

4.1 Preliminaries

Let ω denote the set of natural numbers. The canonical index, can(X), of finite
set X = {x1 < . . . < xn} ⊆ ω is defined as 2x1 + . . . + 2xn and the canonical
index of ∅ is defined as 0. Let Dk be the finite set whose canonical index is k,
i.e., can(Dk) = k.

We shall identify a clause r with a triple 〈k, l, ϕ〉 where Dk = prem(r), and
Dl = cons(r), ϕ = c(r). In this way, when HP ⊆ ω we can think about P as a
subset of ω as well. This given, we then say that a program P is recursive if HP

and P are recursive subsets of ω.
Next we shall define various types of recursive trees and Π0

1 classes. Let
[,]:ω×ω → ω be a fixed one-to-one and onto recursive pairing function such that
the projection functions π1 and π2 defined by π1([x, y]) = x and π2([x, y]) = y
are also recursive. Extend our pairing function to code n-tuples for n > 2 by the
usual inductive definition, that is, let [x1, . . . , xn] = [x1, [x2, . . . , xn]] for n ≥ 3.
Let ω<ω be the set of all finite sequences from ω and let 2<ω be the set of all
finite sequences of 0’s and 1’s. Given α = 〈α1, . . . , αn〉 and β = 〈β1, . . . , βk〉 in
ω<ω, write α ⊑ β if α is initial segment of β, i.e. , if n ≤ k and αi = βi for
i ≤ n. In this paper, we identify each finite sequence α = 〈α1, . . . , αn〉 with
its code c(α) = [n, [α1, . . . , αn]] in ω. Let 0 be the code of the empty sequence
∅. When we say that a set S ⊆ ω<ω is recursive, recursively enumerable, etc.,
what we mean is that the set {c(α):α ∈ S} is recursive, recursively enumerable,
etc. Define a tree T to be a nonempty subset of ω<ω such that T is closed
under initial segments. Call a function f :ω → ω an infinite path through T
provided that for all n, 〈f(0), . . . , f(n)〉 ∈ T . Let [T] be the set of all infinite
paths through T . Call a set A of functions a Π0

1 -class if there exists a recursive
predicate R such that A = {f :ω → ω :∀n(R(n, [f(0), . . . , f(n)])}. Call a Π0

1 -
class A recursively bounded if there exists a recursive function g:ω → ω such
that ∀f ∈ A∀n(f(n) ≤ g(n)). It is not difficult to see that if A is a Π0

1 -class,
then A = [T] for some recursive tree T ⊆ ω<ω. Say that a tree T ⊆ ω<ω is highly
recursive if T is a recursive finitely branching tree and also there is a recursive
procedure which, applied to α = 〈α1, . . . , αn〉 in T , produces a canonical index
of the set of immediate successors of α in T . Then if A is a recursively bounded
Π0

1 -class, it is easy to show that A = [T] for some highly recursive tree T ⊆ ω<ω,
see [JS72b]. For any set A ⊆ ω, let A′ = {e: {e}A(e) is defined} be the jump of
A, let 0′ denote the jump of the empty set ∅. We write A ≤T B if A is Turing
reducible to B and A ≡T B if A ≤T B and B ≤T A.

We say that there is an effective, one-to-one degree preserving correspondence
between the set of stable models Stab(P) of a recursive program P and the set
of infinite paths [T] through a recursive tree T if there are indices e1 and e2 of
oracle Turing machines such that
(i) ∀f∈[T]{e1}

gr(f) = Mf ∈ Stab(P),
(ii) ∀

M∈Stab(P){e2}
M = fM ∈ [T], and

(iii) ∀f∈[T]∀M∈Stab(P)
({e1}

gr(f) = M if and only if {e2}
M = f).

where {e}B denotes the function computed by the eth oracle machine with oracle
B. Also, write {e}B = A for a set A if {e}B is a characteristic function of A. For
any function f :ω → ω, gr(f) = {[x, f(x)]:x ∈ ω}. Condition (i) says that the
infinite paths of the tree T uniformly produce stable models via an algorithm
with index e1. Condition (ii) says that stable models of P uniformly produce
infinite paths through T via an algorithm with index e2. Condition (iii) asserts
that if {e1}

gr(f) = Mf , then f is Turing equivalent to Mf . In the sequel we

shall not explicitly construct the indices e1 and e2, but it will be clear that such
indices can be constructed in each case.

4.2 Complexity of the Forward Chaining Construction.

In this section we discuss complexity issues for sets of the form D≺, where P
is a recursive program and ≺ is either some ordering of type ω or some finite
ordering. First of all, recall that every stable model of P can be obtained as D≺

for a suitably chosen ordering ≺. This means that, since the stable models can
be very complex, even if there is only one stable model, we cannot obtain results
on complexity of D≺ without restricting the class of orderings. Our restriction
is related to the fact that in any attempt to implement even a partial construc-
tion of D≺, we cannot go beyond ω. Moreover, ω (and finite ordinals) have the
following property:

Lemma 9. Let P be a program and let ≺ be a well-ordering of nmon(P) of order
type ≤ ω. Then the closure ordinal of the construction of the family 〈D≺

ξ 〉 is at
most ω.

It is easy to see that the property indicated in Lemma 9 does not hold for ordinals
greater than ω.
We shall restrict our attention now to the case when P is recursive and ≺ is a
recursive well-ordering of type ω.

Proposition 10. Let P be a recursive general program. Let ≺ be a recursive
well-ordering of nmon(P) of order type ≤ ω. Finally, let D≺, R≺, I≺, and A≺

be sets of atoms and of clauses defined in Definition 2. Then: D≺ is r.e. in 0′,
R≺ is r.e. in 0′, I≺ is recursive in 0′′, and A≺ is recursive in 0′′.

Corollary 11. If P is a recursive program such that nmon(P) is finite, then for
any ordering ≺ of nmon(P), D≺ is r.e., R≺ is finite, and I≺ is finite and A≺

is recursive. 2

Now let us look at the case of finite P . In our complexity considerations, every
atom a will have the cost ||a||. Next, for a clause r = c← a1, . . . , an,¬b1, . . . ,¬bm

we define ||r|| = (
∑

i≤n ||ai||)+(
∑

i≤m ||bj ||)+ ||c||. Finally, for a set Q of clauses
we define

||Q|| =
∑

r∈Q

||r||.

Theorem 12. Suppose P is a finite general program and ≺ is some well-ordering
of nmon(P). Then D≺, R≺, A≺, and I≺ can be computed in time

O(||mon(P)|| ||nmon(P)||+ ||nmon(P)||2).

5 FC-Normal Programs

In this section we shall define FC-normal programs and state the basic results
about such programs proved in [MNR93b]. We shall see that FC-normal pro-
grams have the property that the Forward Chaining construction always pro-
duces a stable model. In fact for FC-normal programs, one can drop the consis-
tency check in the Forward Chaining construction and it will still always produce
a stable model.

Definition 13. Let P be a program. We say that a subset Con ⊆ P(HP) (where
P(HP) is the power set of HP) is a consistency property over P if:
(1) ∅ ∈ Con, (2) ∀A,B⊆HP

(A ⊆ B & Con(B)⇒ Con(A)),
(3) ∀A⊆HP

(Con(A)⇒ Con(clmon(A))), and
(4) whenever A ⊆ Con has the property that A,B ∈ A → ∃C∈A(A ⊆ C ∧ B ⊆
C), then Con(

⋃
A).

We note that conditions (1),(2), and (4) are Scott’s conditions for information
systems. Condition (3) connects “consistent” sets to the Horn part of the pro-
gram; if A is consistent then adding elements derivable from A via Horn clauses
preserves “consistency”.

Definition 14. Let P be a program and let Con be a consistency property over
P .

1. A clause C = c ← a1, . . . , an,¬b1, . . . ,¬bk ∈ nmon(P) is FC-normal (with
respect to Con) if Con(V ∪ {c}) and not Con(V ∪ {c, bi}) for all i ≤ k
whenever V ⊆ HP is such that Con(V), clmon(V) = V , a1, . . . , an ∈ V , and
c, b1, . . . , bk /∈ V .

2. P is a FC-normal (with respect to Con) program if all r ∈ nmon(P) are
FC-normal with respect to Con.

3. P is FC-normal program if for some consistency property Con ⊆ P(HP), P
is FC-normal with respect to Con.

FC-normal programs have all the desirable properties that are possessed by
normal default theories as defined by Reiter in [Rei80]. In fact, it is shown in
[MNR93b] that when one translates FC-normal programs back into the language
of default logics than one obtains a class of default theories called extended FC-
normal default theories which properly contains all normal default theories. We
next shall state the basic results about FC-normal programs from [MNR93b].

Theorem 15. Let P be a FC-normal program then there exists a stable model
of P .

Theorem 16. Let P be a FC-normal program with respect to consistency prop-
erty Con and let I be a subset of HP such that I ∈ Con. Then there exists a
stable model M of P such that I ⊆M .

In fact all stable models of FC-normal programs can be constructed via a
slightly simplified version of the Forward Chaining construction which we shall
call the Normal Forward Chaining construction. To this end, fix some well-
ordering ≺ of nmon(P). That is, the well-ordering ≺ determines some listing of
the clauses of nmon(P),{rα : α ∈ γ} where γ is some ordinal. Let Θγ be the least
cardinal such that γ ≤ Θγ . In what follows, we shall assume that the ordering
among ordinals is given by ∈. Our normal Forward Chaining construction will
define an increasing sequence of sets {M≺

α }α∈Θγ
. We will then define M≺ =

∪α∈Θγ
M≺

α . In [MNR93b] it is shown that M≺ is always an stable model of P .

The Normal Forward Chaining construction of M≺.

Case 0. Let M≺
0 = clmon(∅).

Case 1. α = η + 1 is a successor ordinal.
Given M≺

η , let ℓ(α) be the least λ ∈ γ such that

rλ = s← a1, . . . , ap,¬b1, . . . ,¬bk

where a1, . . . , ap ∈M≺
η and b1, . . . , bk, s /∈M≺

η . If there is no such ℓ(α), then let
M≺

η+1 = M≺
α = M≺

η . Otherwise, let

M≺
η+1 = M≺

α = clmon(M≺
η ∪ {cln(rℓ(α))}).

Case 2. α is a limit ordinal. Then let M≺
α =

⋃
β∈α M≺

β .
This given, we have the following.

Corollary 17. If P is a FC-normal program and ≺ is any well-ordering of
nmon(p), then

1. M≺ is a stable model of P .

2. (Completeness of the construction). Every stable model of P is of the form
M≺ for a suitably chosen ordering ≺ of nmon(P).

It is quite straightforward to prove by induction that if P is FC-normal
with respect to consistency property Con, then M≺

α ∈ Con for all α and hence
M≺ ∈ Con. Thus the following is an immediate consequence of Theorem 17(2).

Corollary 18. Let P be a FC-normal program with respect to consistency prop-
erty Con, then every stable model of P is in Con.

We should also point out that if we restrict ourselves to countable programs
P , i.e. if HP is countable, then we can restrict ourselves to orderings of order
type ω where ω is the order type of the natural numbers. That is, suppose we
fix some well-ordering ≺ of nmon(P) of order type ω. Thus, the well-ordering
≺ determines some listing of the clauses of nmon(P),{rn : n ∈ ω}. Our normal
Forward Chaining construction can be presented in an even more straightforward
manner in this case. Our construction again will define an increasing sequence
of sets {M≺

n }n∈ω in stages. This given, we will then define M≺ = ∪n∈ωM≺
n . By

the Countable Normal Forward Chaining construction of M≺ we mean Normal
Forward Chaining Construction restricted to orderings of type ω.

Theorem 19. If P is a countable FC-normal program, then:
1. M≺ is a stable model of P if M≺ is constructed via the Countable Normal
Forward Chaining algorithm with respect to ≺, where ≺ is any well-ordering of
nmon(P) of order type ω.
2. Every stable model of P is of the form M≺ for a suitably chosen well-ordering
≺ of nmon(P) of order type ω where P≺ is constructed via the Countable Normal
Forward Chaining algorithm.

FC-normal programs also possess what Reiter terms the “semi-monotonicity”
property.

Theorem 20. Let P1 and P2 be two FC-normal program such that P1 ⊆ P2

but mon(P1) = mon(P2) (that is, P1, P2 have the same Horn part). Assume, in
addition, that both are FC-normal with respect to the same consistency property.
Then for every stable model M1 of P1, there is a stable model M2 of P2 such
that

1. M1 ⊆M2 and

2. NG(M1, P1) ⊆ NG(M2, P2).

FC-normal programs also satisfy the orthogonality of stable models property
with respect to their consistency property.

Theorem 21. Let P be a FC-normal program with respect to a consistency prop-
erty Con. Then if M1 and M2 are two distinct stable models of P , M1 ∪M2 /∈
Con.

We end this section with three more theorems which are analogues of results
that hold for normal default theories.

Theorem 22. Let P be a FC-normal program with respect to a consistency prop-
erty Con. Suppose that clmon{cln(r) : r ∈ nmon(P)} is in Con. Then P has a
unique stable model.

Theorem 23. Suppose P is a FC-normal program and that D ⊆ nmon(P).
Suppose further that M ′

1 and M ′
2 are distinct stable models of D∪mon(P)). Then

P has distinct stable models M1 and M2 such that M ′
1 ⊆M1 and M ′

2 ⊆M2.

References

[ABW87] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowl-
edge. Foundations of Deductive Databases and Logic Programming, pages
89–142, 1987.

[Apt90] K. Apt. Logic programming. Handbook of Theoretical Computer Science,
pages 493–574, 1990.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. Pro-

ceedings of the 5th International Symposium on Logic Programming, pages
1070–1080, 1988.

[GS92] J. Grant and V.S. Subrahmanian. Reasoning about inconsistent knowledge
bases. IEEE Trans. on Knowledge and Data Engineering, to appear.

[JS72b] C.G. Jockusch and R.I. Soare. π
0
1 classes and degrees of theories. Transac-

tions of American Mathematical Society, 173:33–56, 1972.
[KL89] M. Kifer and E. Lozinskii. RI: A logic for reasoning about inconsistency.

TARK IV, pages 253-262, 1989.
[KN93a] W. Kohn and A. Nerode. Models for Hybrid Systems: Automata, Topolo-

gies, Controllability, Observability. In: Hybrid Systems, R.L. Grossman, A.
Nerode, A.P. Ravn, H. Rischel, eds. Springer LN in CS 736, pages 317-356,
1993.

[MNR90] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems I.
Annals of Mathematics and Artificial Intelligence, 1:241–273, 1990.

[MNR92c] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems II.
Annals of Mathematics and Artificial Intelligence, 5:229–263, 1992.

[MNR92a] W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate
logic programs. Proceedings of International Joint Conference and Sympo-

sium on Logic Programming, pages 446–460, Boston, MA, 1992. MIT Press.
[MNR95] W. Marek, A. Nerode, and J. B. Remmel. Complexity of Normal Default

Logic and Related Modes of Nonmonotonic Reasoning, Proceedings of 10th
Annual IEEE Symposium on Logic in Computer Science, pp. 178-187, 1995.

[MNR93b] W. Marek, A. Nerode, and J. B. Remmel. Context for Belief Revision: FC-
Normal Nonmonotonic Rule Systems, Annals of Pure and Applied Logic
67(1994) pp. 269-324.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38:588 – 619, 1991.

[MT93] W. Marek and M. Truszczyński. Nonmonotonic Logic – Context-dependent

reasonings 1993, Springer Verlag.
[Prz87] T. Przymusinski, On the declarative semantics of stratified deductive data-

bases and logic programs, Foundations of Deductive Databases and Logic

Programming, pages 193–216, 1987.
[RDB89] M. Reinfrank, O. Dressler, and G. Brewka. On the relation between truth

maintenance and non-monotonic logics. Proceedings of IJCAI-89, pages
1206–1212.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

[VGRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. Journal of the ACM 38(1991).

This article was processed using the LATEX macro package with LLNCS style

