
Towards a Theory of Interestingness

V.W. Marek

Computer Science Department

University of Kentucky

Lexington, KY 40506.

marek@cs.uky.edu

V.S. Subrahmanian

Department of Computer Science

University of Maryland

College Park, MD 29742

vs@cs.umd.edu

Abstract

There are a wide variety of applications that either require or assume the existence
of some underlying definition of “interestingness.” However, interests vary from user to
user, from situation to situation, and from one time to another. This diversity of interests
cannot be captured through a single definition. In this paper, we propose a framework called
Full Interestingness Programs (FIPs) that form a subclass of the Hybrid Knowledge Base
Paradigm of Lu, Nerode and Subrahmanian. FIPs may be built “on top” of any query
language whatsoever. Using FIPs, interests may be easily expressed and captured, and used
on an application-specific basis using an application-independent FIP-evaluator. In this
paper, we provide a formal semantics for FIPs, as well as techniques for processing requests
(queries) to FIPs.

University of Maryland Technical Report CS-TR-3817 and

UMIACS-TR-97-57, July 25, 1997.

1

1 Introduction

There are a wide variety of applications that either require or assume the existence of some
underlying definition of “interestingness.” For example, data mining and knowledge discovery
tools [5, 12, 13] seek to find “interesting” phenomena lurking in a body of data – yet, by and
large, there are no principled definitions of interestingness. Similarly, in the so-called intelligent
agent systems [10, 11, 17], agents supposedly identify “interesting” items. For example, an
e-mail filtering agent usually tries to identify e-mails that its owner might find “interesting.”
Likewise, in situations where an intelligent server is shipping data to multiple clients, the server
may only wish to ship that part of the data that it deems interesting to the relevant client.

All the above examples use an underlying notion of “interestingness.” The “intuitive” notion
of interestingness must exhibit some common properties across the above applications. However,
these common properties have proved rather hard to pin down. The reason for this is that
different users find different things interesting. Even worse, the same user may find something
interesting under one set of circumstances, but not under another set of differences. Furthermore,
interests may (and usually do) change with time. Last, but not least, users associate different
degrees of interests with various topics or phenomena. Thus, we believe that any attempt to
legislate a definition of interestingness is doomed to failure.

What we propose in this paper is a single theoretical framework within which users may
specify their interests. This framework is rich enough to capture all the desiderata described
above. As the framework is application independent, an implementation of the framework may
be used across the board for a variety of applications. In other words, one does not need to
reinvent the wheel each time a new notion of interestingness comes along. Rather, one can merely
articulate this new notion of interestingness within the existing framework, and be guaranteed
that the framework will support a range of user requests based on this notion.

Examples of scenarios that our framework supports include the following:

Scenario 1 We are interested in all Shoe salesmen whose daily sales exceed the average shoe
salesman’s sales by 50% or more.

Scenario 2 We are interested in all salesmen making sales with maximal value, provided that
these sales exceed $ 1000.00 per day.

Scenario 3 We are interested in identifying extremal weather conditions, but only those that
affect us (i.e. we may have no interest in identifying storms in Antarctica in Jan 1999, if
we have no plans of being there).

Scenario 4 We are interested in identifying groups G1 of American citizens whose average
credit card bills significantly exceed that of the average American citizen.

Scenario 5 We are interested in identifying subgroups of G1 whose average credit card bills
are significantly below the average credit card bill of members of G1.

Scenario 6 : We are interested in broker’s b transactions on date d, providing that on date
d− 1, b received from client c at least $10,000.00.

2

Scenario 7 : We are interested in broker’s b transactions on date d, providing that on date
d − 1, b received from client c at least $10,000.00. Moreover, if we are interested in b’s
transaction on date d and b traded on d in commodity x then we are interested in the price
of d on the date d+ 1.

Scenario 8 : We are interested in broker’s b transactions on date d, providing that on date d−1,
b received from client c at least $10,000.00. We are interested in broker’s b transactions
on date d, providing that on date d− 1, b received from client c1 at least $5,000.00.

Scenario 9 : We are interested with the degree k in broker’s b transactions on date d, providing
that on date d − 1, b received from client c at least $10,000.00. We are interested with a
degree 2k in broker’s b transactions on date d, providing that on date d − 1, b received
from client c1 at least $5,000.00.

The framework we use is a very small subset of Hybrid Knowledge Bases [22] which in turn builds
upon work on Constraint Logic Programming [14]. Our aim is to find a compact, but powerful
language within which interests may be expressed because the more specialized the language, the
easier it is to implement, and the more efficient are such implementations.

The outline of this paper is now as follows: in Section 2, we will introduce a language called
a “Basic Interestingness Language” within which we can declaratively specify the interests of a
single user at a single point in time, with a single level of interest. We will prove various that
basic interestingness programs (BIPs, for short) possess many elegant properties, the first of
which is that they have a clean logical semantics. We study a sound and complete algorithm
for computing of interestingness of queries. Later, in Section 3, we will extend the syntax of
BIPs to accommodate multiple users, changes in time, and degrees of interest. The resulting
framework, called “Full Interestingness Programs” (FIPs for short) also have a clean declarative
semantics, and several elegant properties. When building an application requiring the use of
interestingness, we need to specify an FIP. Once such an FIP is specified for an application,
users of the application may interact with it through a range of queries. We will provide a query
language for this purpose in Section 4.

2 Basic Interestingness Programs

In this section, we introduce the concept of a basic interestingness program (BIP). A BIP
expresses the interests of a user at a fixed point in time. Intuitively, a BIP specifies that a user
is interested in one or more queries to a database (or a heterogeneous collection of databases).
In other words, given a database query language QL, BIPs specify which queries in QL are of
interest to the user, and which ones are not.

Without loss of generality, we will assume that each query in QL returns as output, a set
of objects of a given type (e.g. a selection operation over a relation R in a relational database
returns a set of tuples obeying the schema of R). If a query returns an atomic object (e.g. an
aggregate query such as COUNT or SUM of AVG), then we will coerce this object into a set with no
loss of generality. Examples of query language that fit into this framework include the relational
algebra and calculus and SQL[16], temporal query languages like TSQL[26], logic programming

3

languages [19], heterogeneous database query languages [22, 1, 20, 2], image query languages
such as PSQL[25], and multimedia query languages such as VideoSQL[24].

We will assume that QL has an associated implemented equivalence relation ∼. There are
many possible candidates for query equivalence, and our framework can work with any of these.
Some examples of such equivalence relations include:

• Syntactic Equivalence: q1, q2 are syntactically equivalent iff they are identical.

• Renaming Equivalence: q1, q2 are renaming-equivalent iff they are renamings of each other.

• D-equivalence: Given a database instance D, q1, q2 are D-equivalent if they return the
same answer when evaluated over database instance D.

• Semantic Equivalence: q1, q2 are semantically equivalent if for every database instance D,
it is the case that q1, q2 are D-equivalent.

In most of our examples, we will D-equivalence for illustrative purposes, though it should be
clear that any equivalence relation on queries fits into our framework.

In addition, we will assume that given any query language QL, it is possible to create a new
Boolean Query Language BQL. Queries in BQL are built “on top” of queries in QL and are
defined as follows:

1. If q1, q2 ∈ QL and o is an object of the same type as the output type of q, then o ∈ q,
q1 ⊆ q2,and q1 = q2 are Boolean queries.

2. If b1, b2 are Boolean queries, then so are b1 ∧ b2, b1 ∨ b2 and ¬B1. We will use the letter
b (possibly with indices) to range over the queries of the language BQL.

The framework in this paper will assume that a query language QL has been arbitrarily chosen
but is fixed. Hence, BQL is also fixed. We will assume that implementations exist for QL
and BQL. This is certainly reasonable as all the query languages we expect to work with are
in fact implemented. Figure 1 shows the relationship between query languages, boolean query
languages, data sources and BIPs/FIPs (to be introduced later) in our architecture.

2.1 Basic Interestingness Programs

We will now define the basic query interestingness language BQIL as follows. First, we will have
an additional metapredicate intr that will be applied to queries of the language QL. Intuitively,
intr(q) will denote the fact that the query q is of interest. The interestingness language over the
language QL consists of interestingness clauses (or clauses for short). Such clauses, C, are of
the following form:

intr(q)←b, intr(q1), . . . , intr(qn). (1)

Here q, q1, . . . , qn are arbitrary queries of QL and b is an arbitrary boolean query, that is a query
of the language BQL. The expression intr(q) is called the head of the clause C. The boolean

4

query language

boolean query
language

Interestingness
Programs

data sources

Figure 1: Interestingness Architecture

query b is called guard of the clause C and the expressions intr(q1), . . . intr(qn) form the body of
C. Notice that interestingness clauses are similar to clauses of constraint logic programming.
However, a major difference is that as the “guard” b is evaluated w.r.t. an underlying database
D, the truth of guards changes with changes in the database D. In contrast, in the case of
constraint logic programs, the constraint domain is always fixed (which is appropriate for the
domain of the real numbers as in CLP(R), but not for a database). In addition, notice that basic
interestingness clauses have a very tightly restricted syntactic form, making them amenable to
efficient query evaluation and update mechanisms (to be described in Section 4) that do not
apply in the case of constraint logic programs.

A (ground) clause C of the form (1) has this intuitive meaning: “Query q is interesting over
D, if the database D satisfies the boolean query b and the queries q1, . . . , qn are interesting over
D.

A basic query interestingness program is a collection P of basic query interestingness clauses.
We will now be interested in providing a meaning for such programs. It should be clear, though,
that a program itself is not sufficient to tell us what queries are important — this depends as
well on the context, the current database. This database is used to test the guards of clauses for
their applicability. Thus we are going to speak about queries that are interesting according to
program P over the database D.

In this paper we will be making an assumption that equivalent queries either are both
interesting or both are not interesting. It is not obvious that this assumption is universally
valid. We will assume that the implementation of the language QL provides a mechanism for
testing equivalence of queries over a given database.

5

The process of finding an instantiation of the guard (boolean query) b in the clause C of the
form (1) must be provided by BQL. It is akin to finding the values of variables which satisfy a
formula (if the boolean queries are formulas of first-order language over the database) or finding
a ground answer substitution (in the case of Horn programs). By executing the instantiation we
may assume that the guard b always takes the boolean values true or false.

Let us look a the scenarios described in our introduction. Scenario 1 can be described using
the basic interestingness language, as

intr(q1)←

where q1 is the following query:
SELECT name
FROM employee
WHERE sales > 1.5 avg (SELECT sales

FROM employee)

The scenario 2 is expressed as
intr(q2)← b2

Here q2 is the query:
SELECT name
FROM employee
WHERE sales = max (SELECT sales

FROM employee)
The boolean query b2 is a Boolean query asserting that the maximum value of the attribute
sales is greater than $1000.00. This may be expressed as:
1000 <

(max (SELECT sales
FROM employee)).

Thus, interestingness of query q1 is qualified by the current state of our database. That is,
if maximal sales are not bigger than $1000.00, the query will not be interesting for us.

Scenario 4 requires specification of “significance level”. Once this is specified, it is formalized
similarly to Scenario 1. Similar effort is needed to specify Scenario 5.

The other scenarios from the introduction may be similarly expressed.

Given a pair 〈P,D〉 we assign to it a collection of queries interesting for D under P as follows

Definition 2.1 intrP,D is the least set V of queries satisfying the the following conditions:

1. V is closed under ∼, that is q ∈ V and q ∼ q′ implies q′ ∈ V

2. whenever a clause C of the form (1) belongs to P , q1, . . . , qn ∈ V and the query b is
evaluated over D as true, then q ∈ V .

The following result shows that for any basic query interestingness program P , and any database
D, intrP,D is well-defined.

6

Proposition 2.1 The set intrP.D is well-defined.

Proof: The set of all queries satisfies both conditions (1) and (2). Now, the intersection of any
family of sets satisfying the conditions (1) and (2) also satisfies these conditions. Thus the least
set satisfying these conditions exists. 2

We will now describe two different ways to describe the set of interesting queries, intrP,D as
a least fixpoint of a monotonic and compact operator. These characterizations are similar to
those of [19] for logic programming. Notice, that in our case we have the universe over which
the guards are tested as one input to the operator.

Thus, let P be a basic interestingness language program, and D a database.

Definition 2.2 The operator TP,D maps the powerset of the set of queries of QL into itself and
is defined as follows. Given a set A ⊆ QL,

TP,D(A) = {q : There is a clause C = intr(q)←b, intr(q′1), . . . , intr(q′n) in P such that

q1, . . . qn ∈ A, q1 ∼ q
′
1, . . . qn ∼ q

′
n and b is true in D}

The iterations of TP,D are defined as follows:

T 0
P,D = ∅

T i+1
P,D = TP,D(T i

P,D)

Tω
P,D =

⋃

i<ω

T i
P,D

TP,D is said to be monotonic iff A ⊆ A′ → TP,D(A) ⊆ TP,D(A′). An operator T is said to be
compact if it preserves unions of increasing families of sets, that is if T (

⋃
nXn) =

⋃
n T (Xn) for

every increasing family 〈Xn〉n∈ω〉.

We have the following

Proposition 2.2 Let P be a basic query interestingness program, and let D be a database. Then
TP,D is a compact and monotonic operator in QL. Thus TP,D possesses a least fixpoint FP,D,
reachable in at most ω steps.

Operator TP,D and its least fixpoint can be used to characterize intrP.D.

Proposition 2.3 The set intrP,D coincides with {intr(q) : q ∈ FP,D}.

Proof: It is easy to see that the set {intr(q) : q ∈ FP,D} satisfies conditions (1) and (2) above and
hence intrP,D ⊆ {intr(q) : q ∈ FP,D}. On the other hand it is immediate that TP.D({q : intr(q) ∈
intrP,D}) ⊆ {q : intr(q) ∈ intrP,D}. Consequently, {q : intr(q) ∈ intrP,D} is a prefixpoint of TP,D.
Thus the least fixpoint of TP,D is included in {q : intr(q) ∈ intrP,D}. 2

Next, we show another characterization of the set intrP,D.

7

Definition 2.3 Let P be a basic query interestingness program and P be a database. The reduct
of P by D, PD is the program in which clauses have no guards, and which is obtained in the
following two steps:

1. For every clause C of the form (1), if the guard b of C is false in D, eliminate C altogether.

2. In the remaining clauses, eliminate the guards from the body.

Assign the following operator TP
D (acting on subsets of QL) to the program PD:

TP
D (A) = {q : There is a clause C = intr(q)←intr(q′1), . . . , intr(q′n) in PD such that

there exist q1, . . . qn ∈ A, q1 ∼ q
′
1, . . . qn ∼ q

′
n }

We then have the following proposition.

Proposition 2.4 Let P be a basic query interestingness program, and D a database. Then TP
D

is a compact and monotonic operator in QL. Thus TP
D possesses a least fixpoint GP,D. That

fixpoint is reachable in at most ω steps.

The fixpoint GP,D provides another characterization of intrP,D.

Proposition 2.5 The set intrP,D coincides with {intr(q) : q ∈ GP,D}.

In principle, the equivalence relation ∼ may have infinite equivalence classes. That is, given
a query q there may be infinitely many queries q′ equivalent to q. This may seem, at the first
glance, make the use of the set intrP,D awkward. If the language QL provides a fast mechanism
for testing equivalence of queries, we can avoid the problem of infinite sets of interesting queries
by restricting our attention to their bases.

Definition 2.4 A basis for the set intrP,D is any set B satisfying these conditions:

1. B ⊆ intrP,D

2. whenever q ∈ intrP,D then there is q′ ∈ B such that q ∼ q′.

We then have the following program

Proposition 2.6 Let P be a finite basic query interestingness program and D be a database.
Then a basis for intrP,D can be found in time polynomial in P with respect to an oracle OD that
provides the answers for equivalence of queries over D.

Proof: By Proposition 2.3, the set of interesting queries can be computed as the least fixpoint
of the operator SPD

.

First, observe that the program PD can be computed in time linear in the number of clauses
in P (thus linear in the size of P) as follows. Namely, we inspect the clauses of P and in each

8

of these clauses, C, ask if the guard b of C is true under D. If this is the case, the clause is C is
kept, and the guard b is eliminated. Otherwise the entire clause C is eliminated.

Once the program PD is computed we use a modified algorithm of computing the least model
of a Horn program ([8]). Roughly, that algorithm works as follows: to each atom we attach the
list of clauses of which it is the head, and for each atom, we set up the list of clauses to whose
bodies that atom belong. Moreover, with each clause we associate a counter counting the atoms
in the body that still need to be proven. Originally, this counter gets the value equal to the
number of atoms in the body. An atom is proven when it is a head of a clause with the associated
counter value equal to 0. Once an atom is proven, we lower the counter values associated with
all clauses that have that atom in the body. Dowling and Gallier prove that this algorithm
computes the least model of a Horn program in linear time. Notice that the algorithm of [8]
requires modification because when we reduce a list of atoms in the body of a clause because
one of these atoms have been proven, we may need to consult the oracle OD. Indeed, we may
have just proven that intr(q) holds, but the body of some clause contains intr(q′) and q′ ∼ q.
This is the reason why the modified algorithm is no longer linear, but only quadratic in the size
of the program P . Yet, it is easy to see that this algorithm correctly computes a least model of
PD. 2

The procedure implied by the proof of Proposition 2.6 will be denoted by Base and will be
used in Section 2.4.

2.2 Basic Interestingness Programs with Integrity Constraints

We will now discuss the concept of interestingness in the presence of integrity constraints. First,
we will assume that the integrity constraints that we consider are boolean queries. That is the
set of integrity constraints IC consists of boolean queries that are supposed to be true.

Notice that there is always a semantic consequence operation associated with any set of
integrity constraints of this sort. Namely

IC |= c if for every D whenever all constraints in IC are true, then also c is true

Given a program P and a set, IC, of integrity constraints, we can reduce the program P in the
manner similar to that used to reduce P by a database D. Namely

1. If C is a clause in P and IC does not entail the guard b of C then eliminate C altogether.

2. In the remaining clauses eliminate guards.

The resulting program is denoted by PIC . The following fact is proven in a manner similar to
Proposition 2.5.

Proposition 2.7 Let IC be a set of integrity constraints, and let PIC be the reduct of P de-
scribed above. Then for every query q that belongs to the least fixpoint of the operator associated
with PIC , for every database D satisfying all the constraints in IC, intr(q) ∈ intrP,D.

9

Thus, with a set, IC, of integrity constraints, we can associate its P -companion, that is, the set
of interestingness atoms that P implies whenever IC are true. That is, given P and a database
D satisfying IC, the atoms in P -companion of IC are always interesting. The operator assigning
to IC its P -companion is monotonic. That is, the larger IC is, the bigger its P -companion.

2.3 Properties of Basic Interestingness Programs

Definition 2.5 An interestingness clause c is called simple if it is of the form

intr(q)←b

where b is a boolean query and q is a query of QL.

Proposition 2.8 For every interestingness program P there is an interestingness program P ′

such that:

1. P ′ consists of simple clauses

2. For every database D, intrP,D = intrP ′,D.

Proof: We describe an unfolding procedure that allows us to get P ′. The program P ′ is con-
structed as the union of programs Qn. Q0 is defined as the part of P consisting of simple
clauses. Assume Qn is already defined. For every clause intr(q)←b, intr(q′1), . . . , intr(q′m) of P
and for every choice of clauses in Qn, intr(q′′1)←b1, . . . intr(q′′m)←bm, form this clause C:

intr(q)←b ∧ b1 . . . ∧ bm ∧ q
′
1 = q′′1 ∧ . . . ∧ q

′
m = q′′m.

and put C in Qm+1. The resulting program P ′ =
⋃

n∈ω Qn has the desired property. 2

The construction used above is, essentially, that of [9].

We will now be investigating the preservation properties for interestingness programs.

First, let us notice that increasing the program (but preserving the database) always increases
the collection of interesting queries. That is, the operator that assigns to the pair 〈P,D〉, the
set intrP,D is monotone in the first argument. Formally we have the following:

Proposition 2.9 Let P1, P2 be two basic interestingness programs and D a database. If P1 ⊆ P2

then intrP1,D ⊆ intrP2,D.

The operation intr is not, in general, monotonic in the second argument. That is a larger
database does not necessarily yield more interesting queries. Nevertheless, some interesting (no
pun intended !) properties still can be proved.

Let D1,D2 be two databases. We say that the the transition from D1 to D2 preserves
constraints of the program P , if for every clause of the form (1), whenever c is true in D1, then
c is also true in D2.

10

Lemma 2.1 If P is a basic interestingness program, and the transition from D1 to D2 preserves
constraints of P , then intrP,D1

⊆ intrP,D2
.

Lemma 2.2 If P is a basic interestingness program, and the transition from D1 to D∈ preserves
constraints of P , then every basis of intrP,D1

extends to a basis of intrP,D2
.

Fortunately, there are classes of programs for which inclusion is a transition that preserves
constraints. Specifically, assume that the query language QL is a first order many-sorted lan-
guage of predicate calculus over a fixed set of constants. The following property, due essentially
to Tarski, (see Chang and Keisler [6])

Lemma 2.3 The positive sentences of QL are preserved upwards. That is, if c is a positive
sentence of QL, D1 ⊆ D2, and D1 |= c then also D2 |= c.

Lemma 2.3 implies the following property of interestingness programs.

Proposition 2.10 Let P be a program such that all its constraints are positive. Then whenever
D1 ⊆ D2, then intrP,D1

⊆ intrP,D2
.

When all constraints are negative, the opposite inclusion holds. Specifically, we have

Proposition 2.11 Let P be a program such that all its constraints are negative. Then whenever
D1 ⊆ D2, then intrP,D2

⊆ intrP,D1
.

The use of boolean constraints and the fact that the database may change implies that an
interestingness program really encodes a whole collection of programs, namely, for each database
D the program PD is encoded in P .

We conclude this section with remarks on the difference with modal formalisms. Although
on the first glance it may seem that the metapredicate intr acts like a modality, the similarity is
purely superficial. First, there is a difference of types. Whereas the formulas ϕ and 2ϕ are of
the same type (i.e. formulas), q and intr(q) are not, in general, of the same type. Specifically, q
is not a formula and intr(q) is a formula. However, even if we allow for queries to be formulas,
there is no reason that any modal axiom could represent user’s interests. In fact, it is immediate
that in this case usual modal axioms do not make sense. For instance, adopting the modal
scheme K (cf. Chellas[7]) would imply that tautologies are interesting, which certainly is not
the case!

2.4 Processing Queries to Propositional BIPs

In this section we will investigate several algorithms for testing and computing interestingness
with respect to BIPs that contain no variables. Later, in Section 4, we will extend this to the
first order case.

First of all, let us describe basic questions related to interestingness. The main questions are

11

1. Given an interestingness program P , a database D and a query q, is query q interesting?
That is, does intr(q) belong to intrP,D?

2. Find a basis for intrP,D

3. Under appropriate restrictions, can we find such basis in an incremental fashion?

We describe a modification of the basic backward chaining algorithm to process interesting-
ness queries. It is a straightforward modification of resolution for Horn programs. However, it
is important to note that these modifications are in fact needed.

An interestingness goal is a finite list

G = [intr(q1), . . . intr(qn)]

Given a clause
C = intr(q)←b, intr(q′1), . . . , intr(q′m)

we say that C can be used for expansion of G at i over D if

• D |= b

• q ∼ qi

The result of an expansion is then

[intr(q1), . . . intr(qi−1), intr(q′1), . . . , intr(q′m), intr(qi+1), . . . intr(qn)]

With this definition, we define the refutation of an interestingness atom intr(p) in an usual
fashion, namely as a sequence of lists starting at [intr(p)] and ending with an empty list, and
each next list is an expansion of the previous one by a clause that can be used. We now have
the following proposition:

Proposition 2.12 The set {intr(p) : [intr(P)] possesses a refutation} coincides with intrP,D.

Proposition 2.12 is proved by a version of the usual argument showing that the least model of a
Horn program coincides with the set of atoms for which resolution refutation exists. It is quite
clear the the construction given above can easily be transformed into an algorithm.

We will now formulate a result that implies an algorithm for incremental computation of
interestingness queries for a class of programs.

Recall, that we say that a boolean query b is preserved under the transition from database
D1 to database D2 if D1 |= b implies that D2 |= b.

When the boolean queries serving as constraints in interestingness clauses of program P are
preserved under the transition form D1 to D2 then we have the following incremental algorithm
for computation of intrP,D2

.

12

Definition 2.6 1. Given a set X of queries of the language QL, and an interestingness
clause C of the form (1),

intr(q)←b, intr(q1), . . . , intr(qn).

an input reduct of C by X , ir(C,X) is nil if q ∈ X and the clause

intr(q)←b, intr(qr1
), . . . , intr(qrm

).

where qr1
, . . . , qrm

are all queries in the body of C that do not belong to X , if q /∈ X .

2. ir(P,X) = {ir(C,X) : C ∈ P}.

The notion of input reduct by X has the following meaning. Once the interestingness of
queries from X has been established, we do not need to reestablish them again, and we can
use the fact that those are computed as interesting in our further computations. Moreover, the
clauses that have an occurrence of a query from X in the head can be safely eliminated. It
is easy to devise a procedure for reduction of clauses by a set of queries. We will denote this
procedure by Reduce and use it below.

The following result forms a basis for an algorithm for an incremental computation of inter-
estingness of queries provided that all the constraints of clauses in P are preserved under the
transition.

Theorem 2.1 Let D1, D2 be two databases, P is an interestingness program and for all clauses
C of P , the constraint in C is preserved under the transition form D1 to D2. then

intrP,D2
= intrP,D1

∪ intrir(P,intrP,D1
),D2

.

Theorem 2.1 says that if all the constraints of clauses are preserved under the transition from
D1 to D2 then we can compute the set of interesting queries incrementally, as follows. First, we
compute the set of interesting queries over D1 with respect to P . Then we reduce the program
P by the set thus computed. Subsequently, we compute the set of interesting queries over the
reduced program (and D2). These sets are necessarily disjoint by our construction. The union
of the two computed sets is the set of interesting queries over D2.

Notice that if we precompiled the set intrP,D1
then we are getting precisely a technique for

incremental computation of the set intrP,D2
.

Procedure Base computes a basis for the set of interesting queries from a given interestingness
program P and a database D. Procedure Base was entailed by the Proposition 2.6. We will also
assume that we have a procedure to test ∼ (cf line (3) of Figure 2).

3 Extended Interestingness Programs

In the preceding section, we introduced the concept of a basic query interestingness program.
Basic query interestingness programs allowed a single user to specify a single level of interest at
a single point in time.

13

Algorithm for testing if, given an interestingness program P , database D, and

a query q, q is interesting.

Input: a finite interestingness program P , a database D and a query q.
Output: The decision if q is interesting.

call procedure Base(B)
for q′ ∈ B
if q′ ∼ q
return true
rof

return false

Figure 2: Algorithm for testing if q belongs to intrP,D

Algorithm for incremental computation of intrP,· providing the constraints are

preserved under the transition form D1 to D2.

Input: a finite interestingness program P , and two databases D1 and D2 such that all the con-
straints of clauses in C are preserved under the transition.
Output: A basis B′′ for intrP,D2

call procedure Base(P,D1, B)
call procedure Reduce(P,B, P ′)
call procedure Base(P ′,D2, B

′)
B′′ := B ∪B′

return B′′.

Figure 3: Algorithm for incremental computation of a basis for intrP,D2
providing the constraints

are preserved under the transition from D1 to D2.

14

However, as already mentioned in Section 1, different users may have different interests.
Even a single user may have different interests at different points in time. Last, but not least,
a single user may have multiple levels of interest, and may ascribe different levels of interest to
different phenomena. In this section, we will enhance the language of basic query interestingness
so that such desiderata may be expressed.

3.1 Adding Users and Time

Suppose U is a finite set of user names. Let T denote the set of all natural numbers (time
points). First, we define a ternary interestingness predicate, intr3 that (informally) takes three
arguments:

• The first argument is a query;

• The second argument is a user;

• The third argument is a time point.

Intuitively, the ground atom, intr3(q, u, t) may be read as: “User u is interested in query q at
time t.”

Returning to the motivating examples in the Introductory section of this paper, the reader
will note that the formalization of Scenario 2 requires the ability to specifically refer to/denote
users. Similarly, scenarios 6, 7, and 8 involved time. In each of those, our interest is predicated
on the evaluation of queries in temporal databases. In scenario 6, the interestingness of a certain
query on a date d is dependent on the state of the (temporal) database on the previous date.
In scenario 8, the interest in two different queries depended on the state of the database on
a different date. Scenario 7 was different from scenario 8 in that interestingness of a query
depended not only on the state of the database, but also on the fact that another query was
already interesting.

Formally, we assume we have 2 sets of variables – a set VU of variables ranging over U , and a
set VT of variables ranging over T . In addition, FT is a finite set of function symbols (each with
an associated arity). Without any loss of generality, we will assume that each of the function
symbols in FT has a pre-interpreted meaning.

We are now ready to define U-terms and T -terms.

Definition 3.1 U-terms and T -terms are defined as follows:

• A U-term is a member of U ∪ VU .

• A T -term is inductively defined as follows:

– Every member of T ∪ VT is a T -term.

– If τ1, . . . , τm are T -terms, and f is an m-ary function symbol in FT , then f(τ1, . . . , τm)
is a T -term.

15

For example, if John is a user, then “john” is a U-term. If U is a variable ranging over users,
then U is a U-term. Similarly, 5, T and (+(T, 5)) are all U-terms.

Definition 3.2 Suppose intr(q) is an interestingness atom, and ν is a U-term, and τ is a T -
term. Then intr3(q, ν, τ) is an intr3-atom.

In order to present some examples of intr3-atoms, we present two simple SQL queries q1, q2 below
which will later be used to construct some interestingness atoms:

q1 q2
SELECT name, salary SELECT name, salary
FROM employee FROM employee
WHERE salary > 100,000 AND WHERE title = secretary AND

expenses > salary. salary > 100,000

Based on the above two SQL queries, we may now construct some intr3-atoms:

• intr3(q1,mr auditor, 5)
This interestingness atom says that a user, called Mr. Auditor, is interested at time 5,
in all people (and their salaries) who make over 100K and whose expenses are very high.
He may suspect that such people are mis-using their expense accounts.

• intr3(q2,mr auditor, 5)
This interestingness atom says that a user, called Mr. Auditor, is interested at time 5,
in all secretaries who make an exorbitant salary. Again, there may be reasons for him to
suspect something inappropriate.

Definition 3.3 If b is a Boolean query in QL and intr3(q0, ν0, τ0), . . . , intr3(qm, νm, τm) are
intr3-atoms, then

intr3(q0, ν0, τ0) ← b, intr3(q1, ν1, τ1), . . . , intr3(qm, νm, τm) (2)

is called an extended interestingness clause. An extended interestingness program (EIP) is a
finite set of extended interestingness clauses.

Returning to the preceding example, we may easily construct the following extended interest-
ingness clauses. First, we construct the following query q3(T):

SELECT E1.Name
FROM employee E1, E2
WHERE E1.Time=T AND E1.Name=E2.Name AND

E2.Time=(T-6) AND E2.Title=E1.Title AND
E2.Title = secretary AND E1.Salary > 100,000AND
E2.Salary < 40,000.

16

u

i

1

2

3

infinity

vi

(a) (b)

Figure 4: Two example interestingness lattices

Let q4(T) be the same query as the one above except that the first line replaces “E1.Name”
by “E1.boss.” Then the following is an extended interestingness clause:

intr3(q4(T),mr auditor, T) ← q3(T).

This extended interestingness clause says that Mr. Auditor is interested in finding the names of
all bosses whose secretaries jumped from relatively low salaries (below 40K) to very high salaries
(over 100K) in less than 6 months. It is very important for the reader to note that the variable
T ranging over time points occurs both in the head of this clause as well as in the body, i.e. it
occurs in both intr3(q4,mr auditor, T) and in the query q3.

3.2 Adding Levels of Interest

Suppose (IL,⊑) is a complete lattice whose elements denote levels of interest. Examples of
such complete lattices include both qualitative and quantitative levels of interest. Here are some
example interestingness lattices:

• The set of all real numbers between 0 and 1 (inclusive), ordered by the usual ≤ ordering.
In this lattice, 0 denotes absolute lack of interest, while 1 denotes complete interest. 0.6
for instance denotes a greater level of interest than 0.5.

• Figure 4(a) shows another interestingness lattice with three levels of interest u (uninter-
ested), i (interested), and vi (very interested).

• Figure 4(b) shows another interestingness lattice consisting of the positive integers, to-
gether with the symbol “infinity” which denotes maximal interest.

In any application requiring the use of interestingness, we assume that the application devel-
oper will pick an interestingness lattice (IL,⊑). S/he may pick any complete lattice whatsoever.

17

Given an interestingness lattice (IL,⊑), we associate a set VIL of interestingness variables , and
a set FIL of interpreted function symbols (each having an associated arity). We may now define
interestingness terms.

Definition 3.4 (IL,⊑)-terms are defined as follows:

• Any member of VIL ∪ IL is an (IL,⊑)-term.

• If ξ1, . . . , ξm are (IL,⊑)-terms and f is an m-ary function symbol in FIL, then f(ξ1, . . . , ξm)
is an (IL,⊑)-term.

Definition 3.5 If intr3(q, ν, τ) is an intr3-atom, and ξ is an (IL,⊑)-term, then intr3(q, ν, τ) : ξ
is an annotated interestingness atom.

Intuitively, if intr3(q, ν, τ) : ξ is variable free, then this annotated interestingness atom may be
read as saying: “At time τ , user ν is interested in query q with at least level ξ of interest.

We show below, a few simple annotated interestingness atoms using the [0, 1] lattice of reals.

• intr3(q1,mr auditor, 5) : 0.8
This annotated interestingness atom says that a user, called Mr. Auditor, is interested,
with degree of interest 0.8, at time 5, in all people (and their salaries) who make over 100K
and whose expenses are very high.

• intr3(q2,mr auditor, 5) : 0.6
This annotated interestingness atom says that a user, called Mr. Auditor, is interested,
with degree 0.6, at time 5, in all secretaries who make an exorbitant salary.

• Notice that Mr. Auditor’s interest in the first annotated interestingness atom above is
higher than his interest in the second.

Definition 3.6 If intr3(q0, ν0, τ0), . . . , intr3(qm, νm, τm) are intr3-atoms, b a boolean query, and
ξ0, . . . , ξm are (IL,⊑)-terms, then

intr3(q0, ν0, τ0) : ξ0 ← b, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qm, νm, τm) : ξm (3)

is called a full interestingness clause. A full interestingness program (FIP) is a finite set of full
interestingness clauses.

To see an example of an FIP that uses our running example, consider the following set of rules:

intr3(q1,mr auditor, T) : 0.5 ← q1.

intr3(q4,mr auditor, T) : 0.7 ← q3.

intr3(q4,mr auditor, T) : min(1, 0.7 +
V

2
) ← q3, intr3(q1,mr auditor, T) : V.

The above FIP may now be informally read as follows:

18

• Mr. Auditor is interested, with degree 0.5, in all employees who make over 100K and who
have high expense accounts.

• Mr. Auditor is interested, with degree 0.7, in all employees who are bosses of secretaries
whose salaries have jumped enormously during the past 6 months.

• Mr. Auditor is interested, with degree min(1, 0.7+ V
2) (which is a higher degree than 0.7),

in all employees who;

– make over 100K and

– who have high expense accounts and

– whose secretaries’ salary has jumped enormously during the past 6 months.

The above situation may arise in an application where an auditor is looking for “patterns” in the
employee database that might point him towards fruitful avenues of investigation. The above
queries are examples of “patterns” that interest the auditor. Based on the results obtained, he
might identify potential problems that are worth further investigation.

3.3 Semantics of FIPs

At this point, we have provided a formal definition of FIPs. In this section, we define the
semantics of FIPs.

Let us use the symbol INT3 to denote the set of all ground intr3-atoms in our language.

Definition 3.7 An interestingness interpretation, II, is a mapping from INT3 to (IL,⊑).

Intuitively, suppose we have an interestingness interpretation II such that

II(intr3(q0, john, 5)) = 0.9.

II(intr3(q0,mary, 5)) = 0.15.

This says that according to interestingness interpretation II, John has a 0.9 level of interest in
query q0 at time 5. In contrast, Mary has level of interest 0.15 in query q0 at time 5. In this
example, of course, we are considering as our interestingness lattice, the unit interval [0, 1] of
reals, under the usual ≤ ordering.

Given two interestingness interpretations II and II′, we may extend the ⊑ ordering on (IL,⊑)
to interestingness interpretations as follows: II⊑II′ iff for all queries q, all users u and all times
t, II(intr3(q, u, t))⊑II′(intr3(q, u, t)). The reader may easily verify that INT3 is a complete lattice
under this ordering.

Based on this intuition, we may now extend the concept of intrP,D introduced in Defini-
tion 2.1, to handle the case of multiple users, time and levels of interest, through the following
definition.

19

Definition 3.8 intr3P,D is the smallest (with respect to the ⊑-ordering) interestingness interpre-
tation II satisfying the the following conditions:

1. II is closed under ∼, that is if q ∼ q′, then II(intr3(q, u, t)) = II(intr3(q′, u, t)) for all users
u and all times t..

2. whenever a clause C of the form (3) belongs to P , and for all 1 ≤ i ≤ n, ξi⊑II(qi) and the
query b is evaluated over D as true, then ξ0⊑II(q0).

The following result shows that for any FIP P , and any database D, intr3P,D is well-defined.

Proposition 3.1 The interesting interpretation intr3P.D is well-defined.

We now extend the fixpoint and model theoretic characterization described in Section 2 to handle
the introduction of users, uncertainty, and time. First, we extend the operation TP,D as follows.

Definition 3.9 The operator T3P,D maps INT3 to INT3 and is defined as follows. Given an in-
terestingness interpretation II, and an interestingness atom intr3(q, u, t): T3P,D(II)(intr3(q, u, t)) =
⊔{ξ0 | There is a clause C = intr3(q0, u0, t0) : ξ0 ← b, intr3(q1, u1, t1) : ξ1 & . . .& intr3(qn, un, tn) :
ξn in P such that for all 1 ≤ i ≤ n. there exists a query q′i ∼ qi such that ξi⊑II(intr3(q′i, ui, ti))
and b is true in D}.

The following result extends the result in Proposition 3.2 to the case of FIPs.

Proposition 3.2 Let P be a FIP, and D a database. Then T3P,D is a monotonic operator in
QL. Thus TP,D possesses a least fixpoint F3P,D. Furthermore, if either our lattice (IL,⊑) is
finite, or if P contains no lattice functions (i.e. FIL = ∅), then TP,D is compact, and hence,its
least fixpoint F3P,D may be reached in ω steps.

Just as the operator TP,D and its least fixpoint were used to characterize the set intrP.D, we may
use the extended operator, T3P,D’s least fixpoint to characterize the interestingness interpreta-
tion intr3P,D.

Proposition 3.3 The interesting interpretation intr3P,D coincides with F3P,D.

We may likewise extend the concept of reduct of a basic query interestingness program to an
analogous notion for FIPs as follows. Note that the definition of reduct provided earlier (Defi-
nition 2.3) does not take the interestingness atoms into account (i.e. it only considers guards),
and hence, we can apply the same definition of reduct given earlier to FIPs as well. If P is
a FIP, then as before, we use the notation P3D to denote the FIP obtained by applying the
transformation in Definition 2.3 to P .

It is now easy to see that we may define an operator, TP3
D which maps interestingness

interpretations to interestingness interpretations, as follows: TP3
D (II)(intr3(q, u, t)) = ⊔{ξ0 |

20

There is a clause C = intr3(q0, u0, t0) : ξ0 ← intr3(q1, u1, t1) : ξ1 & . . .& intr3(qn, un, tn) : ξn in
P3D such that for all 1 ≤ i ≤ n. there exists a query q′i ∼ qi such that ξi⊑intr3(q′i, ui, ti)}.

We then have the following result:

Proposition 3.4 Let P be an FIP, and D a database. Then TP3
D is a monotonic operator.

Thus TP3
D possesses a least fixpoint G3P,D. Furthermore, if either our lattice (IL,⊑) is finite,

or if P contains no lattice functions (i.e. FIL = ∅), then TP3
D is compact, and hence,its least

fixpoint G3P,D may be reached in ω steps.

The fixpoint G3P,D provides another characterization of intr3P,D.

Proposition 3.5 The interestingness interpretation intr3P,D coincides with {intr(q) : q ∈ G3P,D}.

3.4 A Model-Theoretic Characterization of FIPs

In the preceding sections, we have already provided some alternative definitions of the semantics
of FIPs. In this section, we provide a model-theoretic definition of the semantics of a FIP.

Definition 3.10 Suppose II is an interestingness interpretation. We define a satisfaction rela-
tion, denoted |=, between interestingness interpretations and annotated structures as follows:

• II |= intr3(q, ν, τ) : ξ where intr3(q, ν, τ) : ξ is ground iff ξ ⊑ II(intr3(q, ν, tau).

• II |= (F &G) iff II |= F and II |= G.

• II |= (F ∨ G) iff II |= F or II |= G.

• II |= (F 〈b,G) iff either II |= F or the boolean query b is false or II 6|= G.

• II |= (∀x)F iff for every object a in the domain over which variable x ranges, II |= F [x/a].
(Here F [x/a] denotes the simultaneous replacement of all free occurrences of x in F by a.

• II |= (∃x)F iff there is some object a in the domain over which variable x ranges such that
II |= F [x/a].

Given a set S of formulas of the above sort, we say that II satisfies S iff II |= ψ for all ψ ∈ S.

Definition 3.11 Suppose P is a FIP, D is a database, q is a query in QL, u is a user, and t
is a time point. Define the level of interest, LI(q, u, t) as follows:

LI(q, u, t) = ⊓{II(intr3(q, u, t)) | there exists an interestingness interpretation II

such that II |= FP}.

21

The following important theorem tells us that all the concepts we have used to characterize the
semantics of a FIP coincide.

Theorem 3.1 Suppose P is a FIP, D is a database, q is a query in QL, u is a user, and t is
a time point. Then the following quantities are all equal:

• LI(q, u, t)

• intr3P,D(q, u, t)

• F3P,D(q, u, t)

• G3P,D(q, u, t)

4 Full-Fledged Query Processing

In Section 2.4, we provided an initial attempt at query processing for propositional BIPs. In this
section, we provide techniques to process queries to first order FIPs, i.e. the earlier restriction to
propositionality is removed and the restriction to BIPs is also removed with FIPs being allowed.
However, throughout this section, we will assume that either our lattice (IL,⊑) is finite, or that

FIP P contains no lattice functions. The rest of this section proceeds under this assumption.

This section will develop algorithms to answer the following questions:

(Elementary Query Processing) Given a query q, a user u, a point t in time, and an in-
terestingness level ξ, check if the user is interested in query q with at least ξ level of
interest.

(Interest Materialization) Given a user u, a point t in time, and an interestingness level ξ,
find all queries q that user u is interested at time t with interest ξ or higher.

In the rest of this section, we will develop algorithms to solve each of the above problems.

4.1 Elementary Query Processing

Suppose we have a scenario where there are multiple agents, and agent A has just determined
(for whatever reason) that it is going to evaluate query q. It wants to know which other agents
have a “significant” interest in query q. To determine this, it sets a significance level by selecting
a lattice value ξ from the interestingness lattice (IL,⊑). When considering a single user u, and
time t (now), it then evaluates the query intr3(q, u, t) : ξ against the FIP P that specifies interests
of different users/agents u.

To handle such queries, we introduce the concept of a lattice constraint. Given an inter-
estingness lattice (IL,⊑), as well as accompanying notion of (IL,⊑)-terms introduced earlier,
(IL,⊑)-constraints are defined inductively as follows:

22

• If ξ1, ξ2 are (IL,⊑)-terms, then ξ1⊑ξ2 is an (IL,⊑)-constraint.

• If I1, I2 are (IL,⊑)-constraints, then so is (I1 & I2.

Note that (IL,⊑)-constraints are Boolean constraints. This is significant, because in that case,
the conjunction of a Boolean query b ∈ BQL with a Boolean-constraint I is still a Boolean query
(albeit one in an expanded version of BQL that allows lattice constraints). We will not go into
the (straightforward) extension, BQL(IL), of BQL to handle (IL,⊑)-constraints, as this is fairly
obvious.

A generalized elementary query is of the form:

← b, I, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qm, νm, τm) : ξm (4)

where I is an lattice constraint. Similarly, a generalized elementary clause is of the form

intr3(q′0, ν
′
0, τ

′
0) : ξ′0 ← b′, I ′, intr3(q′1, ν

′
1, τ

′
1) : ξ′1, . . . , intr3(q′n, ν

′
n, τ

′
n) : ξ′n. (5)

Note that as b, I is still a Boolean query, we may, without loss of generality, continue to think
of generalized elementary clauses as full interestingness clauses over BQL(IL) instead of BQL.
Thus, all the semantical constructs of FIPs continue to apply to sets of generalized elementary
clauses, and we will continue to use them with no loss of generality.

Generalized elementary queries may be processed in the standard way, using a form of
resolution developed by Lu et.al. [22]. However, the procedure of Lu et. al. [22] does need to
be modified in the same respect as the procedure described earlier in Section 2.4.

We say that the generalized elementary clause C having the form given in (5) above can be
used to expand a generalized elementary query having the form shown in (4) iff there exists a
maximally1 general substitution θ and an 1 ≤ i ≤ m such that:

• q′0θ ∼ qiθ and

• ν ′0θ = ν0θ and

• τ ′θ = τθ and

• the constraint ξiθ ⊑ ξ0θ is solvable.

In general, the reader should note that the first condition above causes the unique-ness of “most
general unifiers” to be destroyed, and there may be several “maximally” general substitutions
satisfying the aforesaid conditions.

In this case, the expansion of a query of the form shown in (4) with a clause C having the
form given in (5) above is given by:

(← b, b′, I, ξi ⊑ ξ
′
0, (6)

intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qi−1, νi−1, τi−1) : ξi−1, (7)

intr3(qi+1, νi+1, τi+1) : ξi+1, . . . , intr3(qm, νm, τm) : ξm, (8)

intr3(q′1, ν
′
1, τ

′
1) : ξ′1, . . . , intr3(q′n, ν

′
n, τ

′
n) : ξ′n)θ. (9)

1A substitution θ satisfying the conditions given here is said to be maximal iff for any substitution γ satisfying

these conditions, if γ is more general thanθ, then γ is a variant of θ.

23

A simple FIP-refutation of a generalized interestingness query Q is a sequence (Q1, C1, θ1), . . . ,
(Qk, Ck, θk) where:

• Q1 = Q;

• for i < k, Qi+1 is the expansion of query Qi with respect to clause Ci and maximally
general unifier θi and

• Qk contains no intr3-atoms and

• Qk’s constraint part is solvable.

The following result tells us that if our lattice is a linear chain, then expansions guarantee
completeness.

Theorem 4.1 Suppose (IL,⊑) is a linear chain. Suppose further that P is either free of lattice
annotation functions or that (IL,⊑) is finite. Then simple FIP-refutations are a sound and
complete query processing procedure for generalized interestingness queries.

Unfortunately, as is well known in annotated logic [15, 18, 3, 21], using just expansions is not
adequate to ensure completeness of the resulting simple FIP-refutations when the interestingness
lattice is not linear. This is because two or more derivations using the notion of expansion above
may lead to different levels of interest, and the least upper bound of these levels of interest may
exceed both of them. Thus, levels of interest from different derivations may need to be combined.
There is a standard way to solve this problem [15, 18, 3, 21] which leads to a second rule of
inference called reduction. Reductions may be applied in full interestingness programs in the
following way.

Suppose we consider two generalized interestingness clause C and C’ respectively, given
below:

intr3(q0, ν0, τ0) : ξ0 ← b, I, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qn, νn, τn) : ξn. (10)

intr3(q′0, ν
′
0, τ

′
0) : ξ′0 ← b′, I ′, intr3(q′1, ν

′
1, τ

′
1) : ξ′1, . . . , intr3(q′m, ν

′
m, τ

′
m) : ξ′m. (11)

Clauses C,C ′ are said to be mergeable iff there exists a maximally general substitution θ such
that:

• q0θ ∼ q
′
0θ and

• ν0θ = ν ′0θ and

• τ0θ = τ ′0θ and

• (b, b′, I, I ′)θ is solvable.

24

In this case, the merge of C,C ′ is the clause:

(intr3(q0, ν0, τ0) : ⊔(ξ0, ξ
′
0) ← b, I, b′, I ′ (12)

intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qn, νn, τn) : ξn (13)

intr3(q′1, ν
′
1, τ

′
1) : ξ′1, . . . , intr3(q′m, ν

′
m, τ

′
m) : ξ′m)θ. (14)

A Full FIP-refutation of a generalized interestingness query Q may now be defined as a sequence

(E1, C1, θ1), . . . , (Ek, Ck, θk)

where:

1. E1 = Q and

2. whenever Ei(i ≤ k) is a generalized interestingness query, then there exists a j (j < i),
such that Ej is a generalized interestingness query and Ei is the expansion of Ej with
generalized interestingness clause Cj via maximally general substitution θj and

3. whenever Ei(i ≤ k) is a generalized interestingness clause, then Ei is the result of merging
two clauses in P ∪ {C1, . . . , Ci−1} and

4. Ek is a query containing no intr3-atoms and

5. Ek’s guard component is solvable.

Full FIP refutations guarantee soundness and completeness even when the interestingness lattice,
(IL,⊑), is not a chain. However, this completeness comes at a price – full FIP-refutations are
less efficient than simple FIP-refutations as they must make use of two operations – merging
and expansion – to guarantee completeness.

Theorem 4.2 Suppose P is either free of lattice annotation functions or that (IL,⊑) is finite.
Then simple FIP-refutations are a sound and complete query processing procedure for generalized
interestingness queries.

4.2 Interest Materialization

Interest materialization deals with the following problem: we have a user u, we know the current
time t, and we have set an interestingness threshold ξ, and we want to know what are all the
queries that user u is interested in with over ξ degree of interest. In this section, we will show
how interest materialization may be efficiently processed.

Definition 4.1 Suppose intr3(q0, ν0, τ0) : ξ0 is an interestingness intr3 atom, u is a user, t is a
time point, and ξ is an interestingness level. intr3(q0, ν0, τ0) : ξ0 is said to be compatible with
(u, t, ξ) iff the following conditions hold:

1. The pair (ν0, τ0) and the pair (u, t) is unifiable via some most general unifier θ and

25

2. The lattice constraint, ξθ⊑ξ0θ, is solvable, i.e. there exists an assignment to the variables
in ξθ, ξ0θ that makes the above relation true.

For example, consider the FIP described earlier (and reproduced below for convenience):

intr3(q1,mr auditor, T) : 0.5 ← q1.

intr3(q4,mr auditor, T) : 0.7 ← q3.

intr3(q4,mr auditor, T) : min(1, 0.7 +
V

2
) ← q3, intr3(q1,mr auditor, T) : V.

Suppose we take u =Mr. Auditor, t = 5 and ξ = 0.6. Then the head of the second full
interesting clause in the above set of rules is compatible with (u, t, ξ). The first is not because
the annotated atom, intr3(q1,mr auditor, T) : 0.5 has an annotation, viz. 0.5 which is not
greater than 0.6. The head, intr3(q4,mr auditor, T) : min(1, 0.7 + V

2) of the third rule is also
compatible with (u, t, ξ) because in this case, θ = {T = 5}, and the constraint

0.6⊑min(1, 0.7 +
V

2
)

is certainly solvable (e.g. take V = 1).

Note that the definition of compatibility between an intr3-atom, A : ξ0, and a triple (u, t, ξ)
only verifies, intuitively, whether a clause with A : ξ0 in the head has a chance of contributing
to knowledge about whether user u is interested in some query (to be determined) at time t
with interest level ξ or more. Compatibility does not guarantee that user u is in fact interested
in some query at time t with interest level ξ or more. The following result guarantees that
compatibility is easy to check.

Theorem 4.3 Given an interestingness atom intr3(q0, ν0, τ0) : ξ0, and a triple (u, t, ξ), deter-
mining if intr3(q0, ν0, τ0) : ξ0 is compatible with (u, t, ξ) can be solved in linear time (assuming
existence of an oracle for checking satisfiability of a constraint over the lattice (IL,⊑)).

Note that this theorem tells us clearly that choosing an interestingness lattice and annotation
functions that guarantee “easy” solvability of constraints is critical to the success of compatibil-
ity tests. The more complicated the annotation functions one picks, the harder it is to establish
solvability of (IL,⊑)-constraints, thus making it harder to establish compatibility. As the fol-
lowing definition shows, compatibility testing is a critical part of computing the set of queries a
user is interested in at time t with at least level ξ of interest. Compatibility enables us to prune
the search space efficiently.

One way to compute the set of all queries that user u is interested in at time t with at
least level ξ of interest (with respect to FIP P) is the naive algorithm shown in Figure 5. This
algorithm is naive because it computes the entire least fixpoint, F3P,D of the operator T3P,D,
which includes consideration of many rules (or instances of rules) in P that do not contribute
to information about user u’s interests at time t with level ξ.

26

Naive Algorithm for Interest Materialization.

Input: A finite interestingness program P , a database D, and a user,time, interest level triple
(u, t, ξ).
Output: The set of all queries q such that ξ⊑F3P,Dintr3(q, u, t), i.e. the set of all queries q such
that P |= intr3(q, u, t).

compute F3P,D;
for each atom intr3(q′, u′, t) do

if ξ⊑F3P,D(intr3(q′, u′, t)) then return intr3(q′, u′, t)
endif

endfor

Figure 5: Naive Algorithm for Interest Materialization

The operator Gu,t,ξ
P,D below “specializes” the T3P,D operator, by taking into account, the triple

(u, t, ξ). In other words, this specializes the fixpoint operator to “focus” on the queries that user
u is interested in at time t with at least ξ level of interest.

Definition 4.2 The operator Gu,t,ξ
P,D maps FIPs to FIPs, and is defined as the smallest set of

full interestingness clauses that satisfy the following conditions:

1. Suppose P ′ is an FIP and

intr3(q0, ν0, τ0) : ξ0 ← b, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qm, νm, τm) : ξm (15)

is a clause in P ′. Suppose intr3(q0, ν0, τ0) : ξ0 is compatible with (u, t, ξ) via mgu θ and

← (b, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qm, νm, τm) : ξm)θ (16)

is non-empty. Then:

(intr3(q0, ν0, τ0) : ξ0 ← b, ξ⊑ξ0, intr3(q1, ν1, τ1) : ξ1, . . . , intr3(qm, νm, τm) : ξm)θ (17)

is in Gu,t,ξ
P,D (P ′).

2. If C is a full interestingness clause in Gu,t,ξ
P,D (P ′) of the form (15), and if there exists a

clause C ′ in P ′ of the form intr3(q′, u′, t′) : ξ′ ← b′, Body′ and is such that intr3(q′, u′, t′) : ξ′

is compatible (via mgu θi) with (νi, τi, ξi) for some 1 ≤ i ≤ m, then (intr3(q′, u′, t′) : ξ′ ←

b′, I ′, Body′)θi is in Gu,t,ξ
P,D (P ′) where I ′ is the constraint ξi⊑ξ

′.

3. Nothing else is in Gu,t,ξ
P,D (P ′).

The operator Gu,t,ξ
P,D may easily be computed by the algorithm shown in Figure 6 below.

27

Algorithm to Compute Gu,t,ξ
P,D .

Input: a finite interestingness program P , a database D, a user u, a time t, and a interestingness
level ξ.
Output: Gu,t,ξ

P,D .

change = true;
Todo = { all rules in Gu,t,ξ

P,D due to condition (1) in the definition of Gu,t,ξ
P,D };

Done = {intr3(−, u, t) : ξ};
Todo = ∅;

while change do
{ for each rule r ∈ (Todo) do
NewDone = List of all intr3-atoms in the body of some rule in P that are
not subsumed by an atom in Done;
Todo = Todo ∪ { all rules with heads compatible with an atom in NewDone};
if NewDone = Done then change = false;
}

end-while
Return Todo

Figure 6: Algorithm for Computing Gu,t,ξ
P,D

Intuitively, the iterative application of the loop shown in Figure 6 causes the initial FIP P to
be “fine-tuned” so that it only focuses on rules that have some reasonable chance of contributing
to the derivation of atoms of the form intr3(q, u, t) : ξ′ where ξ⊑ξ′. The following result shows

that the operator GP,D modifies the FIP P in such a way that the set {q |Gu,t,ξ
P,D |= intr3(q, u, t) : ξ}

coincides with the set of all queries that F3P,D says user u is interested in (with at least level
ξ at time t). In other words, “whittling” down the FIP P by the iterative application of the
loop shown in Figure 6 operator leads to no loss of information about the queries that user u is
interested in (with at least level ξ at time t).

Theorem 4.4 The following expressions coincide:

1. The set of all intr3-atoms of the form intr3(⋆, u, t) such that ξ⊑F3P,D(intr3(⋆, u, t)) that

are entailed by Gu,t,ξ
P,D .

2. The set of all intr3-atoms in F3P,D of the form intr3(⋆, u, t) such that ξ⊑F3P,D(intr3(⋆, u, t)).

The above theorem allows us to produce the following improved algorithm (see Figure 7) for
computing interestingness. The algorithm is an improvement on the naive algorithm because
the algorithm only focuses on a “whittled down” version, Q, of the original program P , when
computing the fixpoint F3.

The “improved” algorithm above can now be further improved by computing F3P,D not
as the fixpoint of the operator T3P,D, but by a differential computing method. In differential

28

Improved Algorithm for Interest Materialization.

Input: A finite interestingness program P , a database D, and a user,time, interest level triple
(u, t, ξ).
Output: The set of all queries q such that ξ⊑F3P,D(intr3(q, u, t)), i.e. the set of all queries q
such that P |= intr3(q, u, t) : ξ.

compute Q = Gu,t,ξ
P,D .

compute F3Q,D.
for each atom intr3(q′, u′, t′) do

if u′ = u and t′ = t and ξ⊑F3Q,D(intr3(q′, u′, t′)) then return intr3(q′, u′, t)
endif

endfor

Figure 7: Improved Algorithm for Interest Materialization

computations of an iterative, monotonic procedure, we try to use the “difference” between
successive steps in the computation to speed up the computation. In the case of computing the
least fixpoint, F3Q,D in the algorithm of Figure 7, this may be done as follows. The standard
way of computing F3Q,D is to iteratively apply the operator T3P,D. However, we may wish to
write T3P,D as the following equation:

T3P,D(II)(A) = II(A) ⊔ ∂T3P,D(II)(A) (18)

In this equation, we would like ∂T3P,D to be a new operator that returns only the “changes” to
II that occur as we apply T3P,D to it.

Definition 4.3 The operator ∂T3P,D maps INT3 to INT3 and is defined as follows. Given an in-
terestingness interpretation II, and an interestingness atom intr3(q, u, t): ∂T3P,D(II)(intr3(q, u, t)) =
⊔{ξ0 | There is a clause C = intr3(q0, u0, t0) : ξ0 ← b, intr3(q1, u1, t1) : ξ1 & . . .& intr3(qn, un, tn) :
ξn in P such that for all 1 ≤ i ≤ n. there exists a query q′i ∼ qi such that ξi⊑intr3(q′i, ui, ti) and
b is true in D} and II(intr3(q, u, t)) 6 ⊑µ0}.

The underlined portion of the above definition specifies why the operator ∂T3P,D is different
from the operator T3P,D. It says that the operator ∂T3P,D only “focuses” on clauses that are
not already dependent on its input.

The following result is now immediate.

Proposition 4.1 Equality 18 holds for the above definition of ∂T3P,D.

Based on this property, we may now create an improved differential algorithm to compute F3P,D.
The new differential algorithm is shown in Figure 8.

29

Algorithm to compute F3P,D. Input: a finite interestingness program P , a database D.
Output: F3P,D.

II = λA.⊥. (i.e. II assigns ⊥ to all atoms)
change = true;

while changed do
{

IInew = II ⊔ ∂T3P,D(II);
if IInew = II then changed = false
else II = IInew;
};

Return II;

Figure 8: Differential algorithm for computing F3P,D

5 Related Work

Though there has been extensive work on data mining[5, 12, 13], as well as on intelligent agents
and profiling tools[10, 11, 17], there has been almost no work to date on what “interestingness”
means, and/or what a theory of interestingness should look like. In this paper, we have made a
first attempt to answer this question by proposing the use of a very tightly restricted fragment
of logic to identify interesting queries, and shown that our framework can handle the fact that
in reality, different users have different levels of interest in different things at different points
in time, depending upon the circumstances involved. In other words, our notion of interesting
is expressive enough to address most real-life application needs, yet is “tight” enough that it
is amenable to efficient implementations (such an implementation is currently ongoing, using
the HERMES Heterogeneous Reasoning and Mediator System [28, 1, 20] as the query language
QL).

The initial framework of BIPs proposed in this paper is a very tightly syntactic restricted
fragment of constraint logic programs[14]. However, the readers must note the following points:
first, unlike CLP where truth/falsity in a domain is fixed (e.g. the truth of constraints over the
reals doesn’t change!), in our case, the truth/falsity of constraints changes with time because
databases change with time, and hence Boolean queries over databases potentially return dif-
ferent answers over time. In addition, because different queries may be equivalent over a given
database D, but not over other databases D′, our theory must take ∼-equivalences of queries into
account – something CLP does not need to do. This makes our treatment of fixpoints and query
processing procedures somewhat different from those for CLPs. In particular, though BIPs are
a syntactic fragment of CLPs, their semantics is different from the standard CLP-semantics for
this syntactic fragment.

The final framework of FIPs proposed in this paper similarly reflects a tightly reflected
syntactic fragment of the Hybrid Knowledge Base Paradigm[22]. Again, things are complicated

30

by the fact that different queries may be equivalent over a given database D, but not over other
databases D′, causing the semantics of FIPs to be different from the semantics of HKBs in this
fragment.

6 Conclusions and Future Work

There is now a vast variety of applications that informally use the intrinsic concept of “interest-
ingness.” For example:

• Data mining systems attempt to identify “interesting” patterns;

• Computer security profiling tools attempt to identify “interesting” usage patterns in com-
puter logs and audit files;

• Marketing systems attempt to identify people whose “interests” relate to the product(s)
being marketed;

• Intelligent agents monitoring changing data sources (e.g. e-mail, news) attempt to filter
out “uninteresting” data.

All these applications use some innate concept of interestingness – yet, none of these ap-
plications answer the question: what is interestingness? How can interestingness be efficiently
represented and manipulated computationally?

In this paper, we have argued that:

• Interests vary with users;

• Interests vary over time;

• Interests are relative – users may have a “greater” interest in some things as opposed to
others;

• Interests depend upon what is true in the world or application domain.

As a consequence, any attempt to define a rigid concept of interestingness is doomed to failure
(in our opinion). Rather, a framework is needed within which interestingness may be defined
either by an application developer or by a user.

Based on these observations, we started by proposing the notion of a Basic Interestingness
Program that merely takes the last item into account and provided BIPs with a formal syntax
and semantics. Later, we generalized this to Full Interestingness Programs (FIPs) that capture
all the above desiderata. In addition, we provided FIPs with a formal syntax and semantics, as
well as with efficient computation techniques.

One can naturally extend interestingness programs to take into account other intentional
properties of queries such as awareness or importantness. We argue that this and other important
properties of queries may be treated similarly to the way we handle interestingness.

31

We can add negation, as often done in logic programming, allowing for derivation of interest-
ingness of queries of the lack of interestingness of other queries. This yields a natural extension
of our formalism incorporating the notions such as completion and stability into our approach.
This will be studied in the subsequent papers.

We are currently building Interestingness Servers on top of the HERMES Heterogeneous
Reasoning and Mediator System. HERMES uses a logical query language (which is used in
our implementation for QL) which accesses not just a wide variety of databases (Ingres, Dbase,
Paradox, ObjectStore), but also a wide variety of data structures (flat files, image data, geo-
graphic quadtree data, video data, face databases), as well as a variety of software packages
(such as operations research software, a US Army terrain reasoning and route planning system,
a nonlinear planner, etc.). By picking an implemented, highly expressive query language that
can access heterogeneous and distributed data sources, we hope to maximize the impact of our
Interestingness Servers.

Acknowledgments

This work was supported by the Army Research Office under Grants DAAH-04-95-10174, DAAH-
04-96-10297, and DAAH04-96-1-0398, by ARPA/Rome Labs contract F30602-93-C-0241 (ARPA
Order Nr. A716), by Army Research Laboratory under Cooperative Agreement DAAL01-96-2-
0002 Federated Laboratory ATIRP Consortium, by an NSF Young Investigator award IRI-93-
57756, and by NSF grant IRI-9619233.

References

[1] S. Adali, K.S. Candan, Y. Papakonstantinou and V.S.Subrahmanian. Query Caching and
Optimizing in Distributed Mediator Systems, Proc. 1996 ACM SIGMOD Conf. on Man-
agement of Data, pages 137–148, 1996.

[2] S. Adali and R. Emery. A Uniform Framework For Integrating Knowledge In Heterogeneous
Knowledge Systems, Proc. of the Eleventh International Conference on Data Engineering,
1994.

[3] S. Adali and V.S. Subrahmanian. Amalgamating Knowledge Bases, III: Algorithms, Data
Structures and Query Processing. Journal of Logic Programming, 28:57-100, July 1996.

[4] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 493–574. MIT Press, Cambridge, MA, 1990.

[5] I. Bhandari, E. Colet, J. Parker, Z. Pines, R. Pratap and K. Ramanujam Advanced Scout:
Data Mining and Knowledge Discovery in NBA Data, Data Mining and Knowledge Dis-
covery, 1, 1997.

[6] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amsterdam, 3rd edition,
1990.

32

[7] B.F. Chellas. Modal logic, an introduction. Cambridge University Press, 1980.

[8] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming, 3:267–284, 1984.

[9] T. Eiter, J. Lu, and V.S. Subrahmanian. Computing non-ground representation of stable
models. Logic Programming and Nonmonotonic Reasoning, Springer Lecture Notes in CS
1265. pages 198-217, 1997.

[10] O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet, Communications of the
ACM,37:72–76, 1994.

[11] M.R. Genesereth and S.P. Ketchpel. Software Agents, Communications of the ACM,37:49–
53. 1994.

[12] J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane . DMQL: A data mining query lan-
guage for relational databases, SIGMOD 1996 Workshop on Data Mining and Knowledge
Discovery. 1996.

[13] T. Imielinski. From file mining to database mining, SIGMOD 1996 Workshop on Data
Mining and Knowledge Discovery. 1996.

[14] J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic Pro-
gramming, 19-20:503–581, 1994.

[15] M. Kifer and V.S. Subrahmanian. Theory of Generalized Annotated Logic Programming
and its Applications, Journal of Logic Programming, 12, 4, pages 335–368, 1992.

[16] H. Korth and A. Silberschatz. Database System Concepts, McGraw Hill. 1986.

[17] Y. Lashkari, M. Metral and P. Maes. Collaborative Interface Agents, Proc. AAAI 1994.

[18] S. Leach and J. Lu. Computing Annotated Logic Programs, Proceedings of the 11th Inter-
national Conference on Logic Programming (ed. P. Van Hentenryck), MIT Press, pages
257-271. 1994.

[19] J. Lloyd. Foundations of logic programming. Berlin: Springer-Verlag, 1984.

[20] J. Lu, G. Moerkotte, J. Schue, and V.S. Subrahmanian. Efficient Maintenance of Mate-
rialized Mediated Views, in: Proc. 1995 ACM SIGMOD Conf. on Management of Data,
San Jose, CA, May 1995.

[21] J. Lu, N. Murray and E. Rosenthal. Signed Formulas and Annotated Logics, Proceedings
of the International Symposium on Multiple-Valued Logic, pages 48-53. IEEE Computer
Society Press, 1993,

[22] J. Lu, A. Nerode and V.S. Subrahmanian. Hybrid Knowledge Bases, IEEE Transactions
on Knowledge and Data Engineering, 8:773–785, Oct. 1996.

[23] R. Ng and V.S. Subrahmanian. Stable semantics for probabilistic deductive databases.
Information and Computation, 110:42–83, 1994.

33

[24] E. Oomoto and K. Tanaka. OVID: Design and Implementation of a Video-Object Database
System, IEEE Trans. on Knowledge and Data Engineering, 5:629–643, 1993.

[25] N. Roussopoulos, C. Faloutsos and T. Sellis. An Efficient Pictorial Database System for
PSQL, IEEE Transactions on Software Engineering, 14:639–650, 1988.

[26] R.T. Snodgrass (ed). The TSQL2 Temporal Query Language, Kluwer Academic Press,
1995.

[27] V.S. Subrahmanian. Computational Reasoning with Nonclassical and Paraconsistent Log-
ics. PhD thesis, University of Syracuse, 1989.

[28] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers, R.
Ross and C. Ward. HERMES: A Heterogeneous Reasoning and Mediator System User
Manual, draft, 1997.

34

