
Complexity of computing with extended propositional
logic programs

V. Wiktor Marek1

Arcot Rajasekar2

Miros law Truszczyński1

Department of Computer Science
University of Kentucky

Lexington, KY 40506–0027
{marek, sekar, mirek}@ms.uky.edu

1 Introduction

In this paper we introduce the notion of an F -program, where F is a collection of formulas,
and study the complexity of computing with F -programs. F -programs can be regarded as a
generalization of standard logic programs. Clauses of F -programs are built of formulas from
F . In particular, formulas from F other than atoms are also allowed. Typical examples of
F are the set of all atoms, the set of all literals, the set of all Horn clauses, the set of all
clauses, the set of all clauses with at most two literals, the set of all clauses with at least
three literals, etc. The notions of minimal and stable models [ABW88, GL88] of a logic
program have natural generalizations to the case of F -programs. The resulting notions are
referred to in the paper as minimal and stable answer sets. We study the complexity of
reasoning involving these notions. In particular, we establish the complexity of determining
the existence of stable and consistent minimal answer sets, and determining the membership
in some (or all) stable (or minimal) answer sets.

When F consists of all atoms, F -programs coincide with standard logic programs. On
the other end of the spectrum, when F is the class of all formulas, the formalism of F -
programs is equivalent to default logic [Rei80] in the sense that under a natural, one-to-one
and onto, interpretation of F -program clauses by defaults there is a correspondence between
stable answer sets and extensions, and between minimal answer sets and minimal sets closed
under default theories. The notion of an F -program allows us to study how the complexity
of the class F affects the complexity of reasoning with stable answer sets as we move from
standard logic programs (F consists of atoms) to default logic (F consists of all formulas).

1This work was partially supported by by National Science Foundation under grant IRI-9012902, National

Science Foundation and the Commonwealth of Kentucky EPSCoR program under grant RII 8610671
2This work was partially supported by National Science Foundation under grant CCR-9110721.

1

The complexity of problems involving stable models of standard logic programs is well
understood [MT91, BF91]. Most of the problems of interest are located on the first level
of the polynomial hierarchy (they are NP- or co-NP-complete). Analogous problems for
extensions in full default logic are on the second level of the hierarchy (they are ΣP

2
- or ΠP

2
-

complete). We show here that, not surprisingly, if there is a polynomial algorithm which,
given a finite set X ⊆ F and a formula ϕ ∈ F determines whether X ⊢ ϕ, then the
complexity of decision problems involving stable answer sets remains on the first level of the
polynomial hierarchy. On the other hand, for several classes F of formulas for which the
satisfiability problem is NP-complete, we show that the complexity of problems involving
stable answer sets goes up and they become ΣP

2
- or ΠP

2
-complete. These results strengthen

the results of Gottlob [Got92] who investigated the complexity of full default logic without
any syntactic restrictions on the class of formulas defaults are built of.

While the complexity of problems involving minimal models of logic programs is well
understood [Got91, CS93] the complexity of reasoning with theories closed under default
theories has not been investigated. In this paper we show that for every nontrivial class F ,
that is, containing at least all atoms of the language, the problem to determine if a formula
follows from some minimal answer set is NP-complete and the problem to determine if a
formula follows from every minimal answer set is co-NP-complete. That is, even in the most
complex case of default logic (when F consists of all formulas) they are not harder than the
corresponding problems in the simplest case of standard logic programs. Not surprisingly,
then, the main difficulty in proving these results lies in showing that they are in NP (co-
NP). All proofs known to us so far rely on the relationship between minimal answer sets and
modal logic S5. Reasoning with minimal answer sets is related to Generalized Closed World
Assumption of Minker [Min82]. We will discuss the details of the relationship later in the
paper.

Recently, both logic programming and default logic have been extended to facilitate
reasoning with nonstandard disjunction [GL90, GLPT91]. We introduce here the class of
disjunctive F -programs and define for them the notions of minimal and stable answer sets.
Under our definitions, F -programs are just special disjunctive F -programs. In addition, if
F consists of atoms, disjunctive F -programs coincide with disjunctive databases [GL90] and
when F is the class of all formulas, disjunctive F -programs are equivalent to disjunctive
default theories [GLPT91]. In this paper we provide several results on the complexity of
reasoning with disjunctive F -programs. A straightforward way of verifying that a subset S
of F is a stable answer set for a disjunctive F -program P requires us to check that S is
a minimal answer set for some positive F -program P ′. So far, no algorithm to accomplish
that task and requiring only polynomially many calls to a propositional satisfiability checking
procedure is known. Despite this, we are able to show that problems involving stable answer
sets for disjunctive F -programs reside on the second level of the polynomial hierarchy. Again,
the technique is to use a relationship between stable answer sets and some modal logic, this
time the nonmonotonic logic S4F [Tru91]. We also show that allowing disjunctions in the
heads of F -program clauses has essentially no effect on the complexity of reasoning with

2

minimal answer sets.

The paper contains several results on the complexity of reasoning with various classes of
programs. But perhaps the most significant result of the work presented here is the apparent
importance of the “modal logic connection” in establishing, as it turns out, nontrivial upper
bounds on the complexity of some of the problems considered.

There are several problems involving stable answer sets whose complexity remains unre-
solved. We list some of them throughout the paper as open problems or conjectures.

2 Preliminaries

By L we denote a fixed language of propositional calculus with infinitely many atoms, and
F always stands for a subset of L such that every atom of L is in F .

In this section we provide definitions of F -programs, disjunctive F -programs, and stable
and minimal answer sets. We leave to the reader a rather straightforward verification that
if F is the class of all atoms in L then F -programs are simply logic programs, and stable
(minimal) answer sets coincide with stable (minimal) models of such programs. Similarly,
disjunctive F -programs reduce to disjunctive databases as defined in [GL90] and stable
answer sets coincide with the notion of answer sets defined there. On the other hand, for
every class F , F -programs (disjunctive F -programs) can be interpreted as default theories
(disjunctive default theories) in such a way that there is a perfect correspondence between
stable (minimal) answer sets and extensions (minimal theories closed under defaults) [MT89,
GL90, GLPT91].

Definition 2.1 An F-rule is any expression of the form

α← β1, . . . , βm,not(γ1), . . . ,not(γn), (1)

where α, βi 1 ≤ i ≤ m, γi, 1 ≤ i ≤ n, are all in F . An F-program is any collection of
F -rules. 2

With an F -program we associate collections of theories closed under propositional con-
sequence. These collections of theories specify the meaning of a program. Suppose that
C is a class of theories closed under propositional consequence assigned to an F -program
P . If a formula belongs to all such theories it could be regarded as a “consequence” of the
program. There is another possibility. Select one theory, say C, from C and regard ϕ as
a “consequence” of P if ϕ belongs to C. For any of these two methods of reasoning on
the basis of F -programs to be of use, one must be able to characterize theories that should
be assigned to a program and, even more importantly, one must have means to compute
them. Theories closed under propositional consequence are infinite. Hence, they cannot be

3

represented explicitly in a computer. Instead, finite representations of these theories have to
be used. A representation of a theory is not unique. Sometimes a specific representation can
be selected. This is for instance the case when F consists of atoms and, as we will shortly
see, for any F in the case of not-free programs.

With this in mind, throughout the paper instead of considering theories closed under
provability we consider subsets of F that generate such theories. We specify these subsets
using a procedural interpretation of F -rules as “nonstandard” inference rules. This approach
is already present in the next definition. Instead of defining the closure under an F -rule for
theories closed under propositional provability, we define this concept for subsets of F .

Definition 2.2 A set S ⊆ F is closed under an F -rule (1) if the following condition is
satisfied:

whenever S ⊢ βi, 1 ≤ i ≤ m, and S 6⊢ γi, 1 ≤ i ≤ n, then α ∈ S. (2)

A set S is closed under an F -program P if S is closed under every F -rule in P . 2

There is a natural preorder relation � on the collection of subsets of F . Namely, for
every S1, S2 ⊆ F , we define S1 � S2 if Cn(S1) ⊆ Cn(S2). We define S1 ≺ S2 if S1 � S2 and
Cn(S1) 6= Cn(S2). Given a collection G of subsets of F , we say that S ∈ G is �-minimal in
G if there is no S ′ ∈ G such that S ′ ≺ S. We say that S is �-least in G if for every S ′ ∈ G,
S � S ′. Since � is not an order, the �-least element may not be unique. However, all such
theories have the same closure under propositional provability.

Proposition 2.1 Let P be an F-program. Then there exists a �-minimal set S ⊆ F closed
under P . If P is an F-program without not, then there exists a �-least set S ⊆ F closed
under P . 2

We will prove a more general version of the first assertion of Proposition 2.3 below. The
second part of the assertion is proved using the standard argument of [vEK76].

Let P be an F -program without not. By LEAST(P) we denote the set of all �-least
sets S ⊆ F closed under P , whose existence is guaranteed by Proposition 2.1. The well-
known method of computing the least Herbrand model of a program in a “bottom-up”
fashion [vEK76] can easily be extended to the case of F -programs. Assume that SATF is a
procedure which, given a finite set X ⊆ F and a formula ϕ ∈ F decides whether X ⊢ ϕ. We
have the following result.

Proposition 2.2 There is a “bottom-up” algorithm which, given a finite F-program P with-
out occurrences of not, computes an element of LEAST(P) and, assuming that each call to
the procedure SATF is counted as 1, performs polynomially many operations. 2

4

Again, the argument of Proposition 2.2 modifies the usual algorithm of finding the least
set of atoms satisfying a Horn program. An argument of Dowling and Gallier [DG84] can be
used here. The number of calls to the procedure SATF is, in fact, linear, when this technique
is adapted.

We will denote the �-least subset of F constructed by the algorithm of Proposition 2.2
by least(P).

Definition 2.3 Let P be an F -program and let S ⊆ F . By the S-reduct of P we mean the
program P S obtained by removing from P each rule

α← β1, . . . , βm,not(γ1), . . . ,not(γn)

such that S ⊢ γi for some i, 1 ≤ i ≤ n, and by removing from the body of every other rule
all terms not(γi). 2

Now, we are ready to define the notions of a stable and minimal answer sets for an
F -program P .

Definition 2.4 Let P be an F -program and let S ⊆ F .

1. If S = least(P S), then S is called a stable answer set for P . By STABLE(P) we denote
the family of all stable answer sets for P .

2. If S is a �-minimal subset of F closed under P , then S is called a minimal answer set
for P . By MIN(P) we denote the family of all minimal answer sets for P . 2

Our definitions can naturally be extended to the case of disjunctive F -programs.

Definition 2.5 A disjunctive F-rule is any expression of the form

α1| . . . |αk ← β1, . . . , βm,not(γ1), . . . ,not(γn), (3)

where α, βi 1 ≤ i ≤ m, γi, 1 ≤ i ≤ n, are all in F . A disjunctive F-program is any collection
of disjunctive F -rules. 2

Intuitively, the operator | is interpreted as an “effective” disjunction (see [GL90, GLPT91]):
if all the premises in the body of a rule are satisfied, then at least one of the formulas in
the head has to be concluded. Two ways of making this intuition precise are given below.
One leads to the notion of a minimal answer set, the other one yields the concept of a stable
answer set.

5

Definition 2.6 A set S ⊆ F is closed under a disjunctive F -rule (3) if the following condi-
tion is satisfied:

whenever S ⊢ βi, 1 ≤ i ≤ m, and S 6⊢ γi, 1 ≤ i ≤ n, then at least one αi ∈ S. (4)

A set S is closed under a disjunctive F -program P if S is closed under every F -rule in P . 2

In the case of disjunctive F -programs without not the �-least sets closed under P need
not exist (consider the program {a|b ←}). However, applying again Zorn Lemma to the
preorder � we obtain the following result.

Proposition 2.3 Let P be a disjunctive F-program. Then there exists a �-minimal set
S ⊆ F closed under P . 2

Proof: Given Z ⊆ F we define:

Cl(Z) = Cn(Z) ∩ F . (5)

Let H = {Z:Cl(Z) = Z}. The elements of H are “saturated” with respect to propositional
consequence restricted to elements of F . Moreover

Cl(Cl(Z)) = Cl(Z) and Cn(Cl(Z)) = Cn(Z).

Thus, Z � Cl(Z) and Cl(Z) � Z.

Our next observation is that if Z is closed under a disjunctive rule C of the form (3) then
so is Cl(Z). Indeed, if Cl(Z) ⊢ βi for for all i, 1 ≤ i ≤ m, and Cl(Z) 6⊢ γi for all i, 1 ≤ i ≤ n
then by (5) Z ⊢ βi for all i, 1 ≤ i ≤ m, and Z 6⊢ γi for for all i, 1 ≤ i ≤ n. Since Z is closed
under C, therefore for some i, 1 ≤ i ≤ k, αi ∈ Z. But Z ⊆ Cl(Z), thus αi ∈ Cl(Z).

The above observation implies that if Z is closed under all the rules in P , then so is
Cl(Z). Let G be the subset of H consisting of sets closed under all clauses of the disjunctive
program P . Clearly G is nonempty, as F itself is closed under all the rules of P .

Next, we will show that there is a minimal element of G. we apply Zorn lemma to the
poset 〈G,⊆〉. To this end, let 〈Zξ〉ξ<η be a descending family of sets from H, all Zξ, ξ < η,
closed under all rules from P . That is:

1. For every ξ, ξ < η implies Zξ ∈ H;

2. For all ξ1, ξ2, ξ1 < ξ2 < η implies that Zξ2 ⊆ Zξ1 ;

3. For every ξ, ξ < η implies that Zξ is closed under all rules in P .

6

We show that the set W =
⋂

ξ<η Zξ is closed under all the rules in P and W belongs to H.

Let C be a rule of the form (3). Assume that for all i, 1 ≤ i ≤ m, W ⊢ βi and that for
all i, 1 ≤ i ≤ n, W 6⊢ γi. If the ordinal η is nonlimit, η = ζ + 1 then W = Zζ and so W is
closed under the rule C. Hence assume that η is a limit ordinal. Clearly W ⊆ Zξ for all ξ,
ξ < η. Therefore for every ξ, ξ < η, Zξ ⊢ βi for all i, 1 ≤ i ≤ m.

Next, if 1 ≤ i ≤ n and W 6⊢ γi then there must be an ordinal ρi, ρi < η such that for
all ξ > ρi, Zξ 6⊢ γi. Indeed, assume that for arbitrarily large ξ below η, Zξ ⊢ γi. Since
Cl(Zξ) = Zξ, γi ∈ Zξ. Since the family 〈Zξ〉ξ<η is descending, γi belongs to Zξ for all ξ < η.
Thus γi ∈ W and so W ⊢ γi – which is not the case.

Now, let ρ = max{ρi: 1 ≤ i ≤ n}. Then the ordinal ρ has the property that for all ξ,
ρ < ξ < η there must be a natural number iξ, 1 ≤ iξ ≤ k such that αiξ ∈ Zξ. Since k is finite,
there must be j0, 1 ≤ j0 ≤ k such that for every ξ, ξ < η, there must exist ζ, ξ < ζ < η such
that αj0 ∈ Zζ . In other words, there must be arbitrarily large ζ below η such that αj0 ∈ Zζ .

Recall now that the family 〈Zξ〉ξ<η is descending. Therefore αj0 belongs to all Zξ for
ξ < η. Hence αj0 belongs to W . Thus W is closed under C. Since C was an arbitrary rule
in P , W is closed under P .

Moreover W itself belong to H. Indeed, consider Cl(W) = Cn(W) ∩ F . We show that
W = Cl(W). Clearly, W ⊆ Cl(W). Next, since W ⊆ Zξ for all ξ, ξ < η, we have

Cl(W) ⊆ Cl(Zξ) = Zξ

Thus Cl(W) is included in all Zξ, ξ < η. Hence Cl(W) ⊆
⋂

ξ<η Zξ = W . This shows that
W ∈ H, and so W ∈ G.

All the above show that every descending well-ordered chain of elements of G can be
bound from below by an element of G. Thus G possesses a minimal element.

Now, let Z be a minimal element of G. We claim that Z is a �-minimal subset of F
closed under all the rules form P . Indeed, assume that S is a subset of F such that S � Z,
S closed under all the rules in P . Then, as shown above, Cl(S) is closed under all the rules
from P . Now, since S � Z, Cn(S) ∩ F ⊆ Cn(Z) ∩ F = Z. Thus Cl(S) ⊆ Z and since
Cl(S) ∈ G, Cl(S) = Z. Therefore Cn(S) = Cn(Z) and, in particular Z � S. 2

Let P be a disjunctive F -program. A set S ⊆ F is called a minimal answer set for P if
S is �-minimal among sets closed under P . By MIN(P) we denote the family of all minimal
answer sets for P .

Definition 2.7 Let P be an F -program and let S ⊆ F . By the S-reduct of P we mean
the program P S obtained by removing from P each rule (3) such that S ⊢ γi for some i,
1 ≤ i ≤ n, and by removing from the body of every other rule all conjuncts not(γi). 2

Finally, we define the notion of a stable answer set for a disjunctive F -program P .

7

Definition 2.8 Let P be a disjunctive F -program and let S ⊆ F . If S ∈ MIN(P S), then S
is called a stable answer set for P . By STABLE(P) we denote the family of all stable answer
sets for the program P . 2

3 Complexity of reasoning with stable answer sets

Several problems considered in this paper are shown to be ΣP
2
- or ΠP

2
-complete. The proofs of

these results use some well-known results providing examples of problems which are complete
in these classes. In particular, let QBF2,∃ denote the class of valid boolean formulas of the
form

∃p1, . . . , pm∀q1, . . . , qnE, (6)

where {p1, . . . , pm} and {q1, . . . , qn} are disjoint sets of propositional variables and E is a
boolean formula built of p1, . . . , pm and q1, . . . , qn. It is well known (see [GJ79]) that given
a formula Φ of the form (6), the problem to decide whether Φ ∈ QBF2,∃ is ΣP

2
-complete.

We will now deal with the following problems:

S1(F) given a finite F -program P , is there a stable answer set for P?

S2(F) given a finite F -program P and a formula ϕ ∈ F , is ϕ a logical consequence of some
stable answer set of P?

S2′(F) given a finite F -program P and a formula ϕ ∈ F , is there a stable answer set for P
which does not imply ϕ?

S3(F) given an F -program P and a formula ϕ ∈ F , is ϕ a logical consequence of every
stable answer set of P?

Theorem 3.1 Assume that F contains all atoms of the language L. If there is a polynomial
time algorithm which, given ϕ ∈ F and a finite set X ⊆ F , decides whether X ⊢ ϕ, then
each of the problems S1(F), S2(F) and S2′(F) is NP-complete and the problem S3(F) is
co-NP-complete.

Proof: Consider the problem S1(F). One can non-deterministically guess a stable answer
set S, compute the reduct P S and use the algorithm in Proposition 2.2 to verify whether
S is a stable answer set for P . Since least(P) for a not-free F -program can be computed
with polynomial number of calls to the procedure SATF (Proposition 2.2), it follows that
the problem S1(F) is in NP. Similar reasoning can be used to show that S2(F) and S2′(F)
are in NP. Since S3(F) is the complement of S2′(F) it follows that S3(F) is co-NP.

The hardness of the result can be seen as follows. Marek and Truszczynski [MT91]
have shown that the completeness of S1(A) is NP-complete when A is the set of atoms in

8

L. Since F always contains the set of all atoms of the propositional language L, the NP-
completeness of the general version of S1(F) follows. Completeness of S2(F) follows from the
completeness of S1(F). Assuming otherwise, if S2(F) is polynomial then a polynomial-time
algorithm can be defined for solving S1(F) based on the algorithm for S2(F), implying that
S1(F) cannot be NP-complete. (Such an algorithm would start by checking for the existance
of an inconsistent stable answer set for P and if no such answer set exists, it would try to
solve the problem of S2(F) for every formula from F occurring in P .) (Such an algorithm
would start by checking for the existance of an inconsistent stable answer set for P and if
no such answer set exists, it would check whether a is a logical consequence of some stable
answer set of P ∪ {a} where a is an atom in F which does not occur in P .) Hence, S2(F) is
NP-complete. Similar argument can be used to show the NP-completeness of S2′(F). Since,
S3(F) is the complement of S2′(F), its co-NP-completeness follows. 2

If F is the class of all formulas, then the formalism of F -programs with stable answer sets
is isomorphic to default logic of Reiter. The complexity of problems involving extensions of
default theories was studied by Gottlob [Got92]. In our terminology, his results state that
the problems S1(F), S2(F), S2′(F) are ΣP

2
-complete and the problem S3(F) is ΠP

2
-complete.

It turns out that the results of Gottlob can be strengthened. They remain true even if we
restrict F to consist of clauses with at most three elements. The proof by Gottlob relies on
a polynomial reduction of the problem QBF1,∃ to S1(F). The default theory constructed
by Gottlob is not built of clauses. Hence, his argument cannot directly be applied to our
problem for F consisting of clauses and additional technical means are needed.

Let ϕ be a formula and let P be a consistent set of literals. Define ϕ(P) recursively, as
follows:

1. If ϕ is a literal then put

ϕ(P) =

{

⊤ if ϕ ∈ P
ϕ if ϕ /∈ P ;

2. If ϕ = ¬ψ, then define ϕ(P) = ¬ψ(P).

3. If ϕ = ψ1 ◦ ψ2, where ◦ stands for a binary boolean connective, then define ϕ(P) =
ψ1(P) ◦ ψ2(P);

We have the following simple property of the formula ϕ(P):

(P0) Let P be a consistent set of literals. For every valuation v such that for every p ∈ P ,
v(p) = 1, v(ϕ) = v(ϕ(P)). In particular, if ϕ ∈ Cn(W) then ϕ(P) ∈ Cn(W ∪ P), for
every theory W .

Let E be any boolean formula built of p1, . . . , pm and q1, . . . , qn (we assume that pi 6= qj,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n). Let E≤ be the set of all subformulas of E. For every ϕ ∈ E≤,
let xϕ be a new atom. We will define now a theory T (E) recursively, as follows.

9

1. If E = r, where r is an atom, then define T (E) = {xE ≡ r};

2. If E = ¬E1, then define T (E) = T (E1) ∪ {xE ≡ ¬xE1
};

3. If E = E1 ◦E2, where ◦ stands for a binary boolean connective, then T (E) = T (E1)∪
T (E2) ∪ {xE ≡ (xE1

◦ xE2
)};

The theory T (E) has several useful properties. They are self-evident and we omit their
proofs.

(P1) T (E) has size (measured as the total length of all formulas in T (E)) which is linear
in the size of E;

(P2) T (E) can be represented by a set of clauses, each consisting of at most three literals,
with a total length of all clauses linear in the size of E (for example, we can replace
formulas of the form xE ≡ ¬xE1

by a pair of clauses (¬xE ∨ ¬xE1
) and (xE ∨ xE1

);

(P3) For every consistent subset P of {p1, . . . , pm¬p1, . . . ,¬pm}, T (E) ∪ P is consistent;

(P4) xE ≡ E ∈ Cn(T (E)).

Theorem 3.2 Let F be any class of formulas containing all clauses consisting of at most
three literals. Then each of the problems S1(F), S2(F) and S2′(F) is ΣP

2
-complete and the

problem S3(F) is ΠP
2
-complete.

Proof: Even if F is the class of all formulas, the problems S1(F), S2(F) and S2′(F) are
in the class ΣP

2
and the problem S3(F) is in the class ΠP

2
(see [Got91]). Hence, the upper

estimates for the complexities of the problems discussed in the assertion of the theorem hold
true.

We will provide arguments for the “hardness” parts now. We will first show that the
problem whether a formula Φ of the form (6) is in QBF2,∃ is polynomially reducible to
the problem S1(F), where F is a class of formulas containing all clauses of at most three
elements.

Let Φ be a formula of the form (6). By (P2) we can assume that T (E) is represented by
a set of clauses of at most three literals each and with the total size linear in the size of E.

For each clause ϕ ∈ T (E) define

Cϕ = (ϕ←).

Next, define an F -program Q by

Q = {Cϕ:ϕ ∈ T (E)} ∪ {pi ← not(¬pi), ¬pi ← not(pi): 1 ≤ i ≤ m} ∪ {⊥ ← not(xE)}.

10

Clearly, the program Q can be constructed in polynomial time. We will prove now that
Φ ∈ QBF2,∃ if and only if Q has a stable answer set.

First, assume that Φ ∈ QBF2,∃. Let P ⊆ {p1, . . . , pm¬p1, . . . ,¬pm} be consistent and
complete and such that E(P) is a tautology.

Consider a set U = T (E) ∪ P . Since (xE ≡ E) ∈ Cn(T (E)) (property (P4)), it follows
(property (P0)) that

(xE ≡ E)(P) = xE ≡ E(P) ∈ Cn(T (E) ∪ P).

Since E(P) is a tautology,
xE ∈ Cn(T (E) ∪ P).

Consequently,
QU = {Cϕ:ϕ ∈ T (E)} ∪ {p←: p ∈ P}.

Hence, U is the least subset of F closed under the rules from QU . Consequently, U is a
stable answer set for Q.

Conversely, assume that U is an stable answer set for the program Q. Assume U is
inconsistent. Then

QU = {Cϕ:ϕ ∈ T (E)}.

Since T (E) is consistent, the least subset of F closed under the clauses in QU is consistent.
Consequently, U is not the least subset of F closed under QU , a contradiction. It follows
that U is consistent. Hence, U ⊢ xE. In addition, by the definition of Q, we have

U = T (E) ∪ P.

for some complete and consistent set P ⊆ {p1, . . . , pm¬p1, . . . ,¬pm}. Hence,

T (E) ∪ P ⊢ xE.

We also have T (E) ⊢ xE ≡ E. Consequently, T (E) ∪ P ⊢ E(P). Assume that E(P) is
not a tautology. Then there is a valuation w of q1, . . . , qn such that w(E(P)) = 0. Since
P ∩Q = ∅, w can be extended to a valuation W ′ of {p1, . . . , pm}∪{q1, . . . , qn}∪{xF :F ∈ E≤

so that w′(T (E) ∪ P) = 1. It follows that T (E) ∪ P 6⊢ E(P), a contradiction. Hence, E(P)
is a tautology. 2

Conjecture 3.3 Assume that it is NP-complete to answer whether the theory {¬ϕ} ∪X is
satisfiable, where ϕ ∈ F and X ⊆ F . Then each of the problems S1(F), S2(F) and S2′(F)
is ΣP

2
-complete and the problem S3(F) is ΠP

2
-complete. 2

11

4 Complexity of reasoning with stable answer sets —

the case of disjunctive F-programs

In this section we investigate the complexity of problems S1(F), S2(F), S2′(F) and S3(F) in
the case of disjunctive F -programs. One might expect that extending the class of programs
will result in higher complexity than in the case when disjunctions are not allowed (Theorem
3.2). As we have seen (Proposition 2.2), in the case of disjunction-free F -programs without
not there is an algorithm, using polynomially many calls to the procedure for checking
propositional provability, that computes an element of LEAST(P). It immediately follows
from this fact that problems S1(F), S2(F), S2′(F) and S3(F) for disjunction-free programs
are on the second level of the polynomial hierarchy. For example, in the case of the problem
S1(F), given a disjunction-free F -program, one first nondeterministically guesses a stable
answer set S, then computes the reduct and finally uses the algorithm of Proposition 2.2
to verify that S is indeed a stable answer set for P . It is easy to see that all these steps
can be accomplished by means of polynomially many calls to the procedure for checking
propositional provability. In the case of disjunctive programs, however, the situation gets
complicated. The problem if S ∈ MIN(P S) does not seem to be in the class ∆P

2
and

the same argument that worked before cannot be adapted easily to the present case. It
turns out, though, that we can prove that the problems S1(F), S2(F), S2′(F) and S3(F)
remain on the second level of the hierarchy if we use the embedding of F -programs in the
nonmonotonic modal logic S4F and the results of [Tru91]. The “hardness” part is now trivial,
as it follows directly from Theorem 3.2 (recall that F -programs form a subclass of disjunctive
F -programs).

The translation mentioned above assigns to a clause C of the form (3) the modal formula

emb(C) = Lβ1 ∧ . . . ∧ Lβm ∧ LM¬γ1 ∧ . . . ∧ LM¬γn ⊃ Lα1 ∨ . . . ∨ Lαk.

Given an F -program P , we define emb(P) = {emb(C):C ∈ P}. Informally, the result of
[Tru91] can be stated as follows.

Theorem 4.1 Let P be a disjunctive F-program. A set S ⊆ F is a stable answer set for P
if and only if the stable theory generated by S is an S4F-expansion for emb(P).

Since it takes polynomial time to construct emb(P), and since the problems involving
S4F-expansions can be shown to be on the second level of the polynomial hierarchy, the
following result follows.

Theorem 4.2 Let F be any class of formulas containing all clauses of at most three literals.
Then problems S1(F), S2(F) and S2′(F), for the case of disjunctive F-programs, are ΣP

2
-

complete and the problem S3(F) for the case of disjunctive F-programs is ΠP
2
-complete. 2

12

It seems likely that the complexity of problems discussed in Theorem 4.2 does not go down
even if we restrict to standard logic programs. That is, we conjecture that the assertion of
Theorem 4.2 remains true even if F consists of the atoms of the language only.

5 Complexity of problems involving minimal answer

sets

In this section we will investigate the complexity of reasoning with minimal answer sets. It
turns out that in this case, allowing disjunctions does not have any effect on the complexity
of reasoning. We study the following problems:

M1(F) given a finite (disjunctive) F -program P , is there a consistent minimal answer set
for P?

M2(F) given a finite (disjunctive) F -program P and a formula ϕ ∈ F , is there a minimal
answer set for P which does not imply ϕ?

M3(F) given a finite (disjunctive) F -program P and a formula ϕ ∈ F , is ϕ a logical
consequence of every minimal answer set of P?

We have here the same situation as in the previous section. That is, proving upper bounds
for the complexity turns out to be more difficult than proving hardness. Again resorting to
a modal logic, in this case the modal logic S5, provides a solution. Given a disjunctive
F -program clause C

α1| . . . |αk ← β1, . . . , βm,not(γ1), . . . ,not(γn), (7)

define
emb′(C) = Lβ1 ∧ . . . Lβm ∧ ¬Lγ1 ∧ . . . ∧ ¬Lγn ⊃ Lα1 ∨ . . . Lαk. (8)

Given an F -program P , define

emb′(P) = {emb(C):C ∈ P}.

We have the following lemma.

Lemma 5.1 Let P be a disjunctive F-program. A set U ⊆ F is a minimal answer set for
P if an only if ST(U) is a ⊑-minimal stable theory containing emb(P).

Proof: U is closed under clauses in P if and only if emb(P) ⊆ ST(U). Hence, the assertion
follows. 2

We will also need the following property of stable theories proved by McDermott [McD82].

13

Lemma 5.2 Let I be a theory in the modal language and let ϕ be a modal formula. We
have I ⊢S5 ϕ if and only if ϕ ∈ T , for every stable theory T containing I. In particular, if ϕ
is modal-free, I ⊢S5 ϕ if and only if ϕ ∈ T for every ⊑-minimal stable theory containing I.

Finally, we will utilize the following complexity result by Ladner [Lad77].

Lemma 5.3 The problem to decide whether for a finite modal theory I and a modal formula
ϕ, I 6⊢S5 ϕ, is NP-complete.

Theorem 5.4 For every class F of formulas from L problems M2(F) and M1(F) are in
the class NP and problem M3(F) is in class co-NP.

Proof: Observe that the formula ⊥ is not implied by some minimal answer set for an F -
program P if and only if P has a consistent answer set (hence, a consistent minimal answer
set). Consequently, problem M1(F) is polynomially reducible to M2(F). Notice also that
the set of YES instances of the problem M3(F) coincides with the set of NO instances of the
problem M2(F). Hence, to prove the assertion, it is enough to show that M2(F) is in NP.

Let ϕ be a formula from F . By Lemmas 5.1 and 5.2, it follows that there is a minimal
answer set U for P such that U 6⊢ ϕ if and only if emb′(P) 6⊢S5 ϕ. Since emb′(P) can be
constructed in polynomial time, it follows from the resutls of Ladner [Lad77] (Lemma 5.3)
that the problem M2(F) is in NP. 2

Theorem 5.5 1. If F is consistent (in particular, if F is the set of all atoms of the
language, the set of all positive clauses, the set of all program Horn clauses) then the
problem M1(F) has always answer YES.

2. If F contains the class of all literals then the problem M1(F) is NP-complete (even for
programs without disjunctions).

3. If F contains the class of all atoms of the language (in particular, if F is the class of
all atoms of the language) then the problem M2(F) is NP-complete and the problem
M3(F) is co-NP-complete (even for programs without disjunctions).

Proof: Assertion (1) follows from Proposition 2.3.

Assertion (2)

To prove assertion (3) it suffices to show NP-completeness of M2(F) in the case when F
is the set of atoms. The problem is in NP by Theorem 5.4. To prove NP-hardness we will
show that the satisfiability problem is polynomially reducible to M2(At). Let C1, . . . , Ck be
a set of clauses, say

Ci = bi
1
∨ . . . ∨ bimi

∨ ¬ci
1
∨ . . . ∨ ¬cini

,

14

where bij, 1 ≤ j ≤ mi, and cij, 1 ≤ j ≤ ni, are atoms.

Let p be a new atom. For i = 1, . . . , k form an At-clause C ′
i

p← ci
1
, . . . , cini

,not(bi
1
), . . . ,not(bimi

).

It is easy to check that there exists a minimal answer set for {C ′
i: i = 1, . . . , k} not implying

p (that is, not containing p) if and only if the set of clauses {C1, . . . , Ck} is satisfiable. 2

Let us compare Theorem 5.5 with the results on the complexity of Generalized Closed
World Assumption or GCWA (see [Min82] for the definition). Let us consider the case when
F consists of the atoms of the language L. In such case the notion of a minimal answer set
coincides with the notion of a minimal model. In addition, an atom is true in a model M
(where a model is represented by a set of atoms) if and only if it is a logical consequence of
M . Consequently, as long as we are interested in the status of atoms, there is no difference
between GCWA and our approach. However, when we ask about literals, the situation
changes. If p is an atom such that p /∈ M , then it is not the case that the literal ¬p is a
logical consequence of M . On the other hand, in GCWA we use M as a representation of
a model. Clearly, since p /∈ M , ¬p is true in the model M . Hence, the two formalisms are
different. In fact, as Theorem 5.5 implies, the consequence operator assigning to a program
the collection of all formulas that are logical consequences of all minimal answer sets for a
program is monotonic, while the consequence operator of GCWA is not. Not surprisingly,
the complexity of GCWA is higher. As proved by Gottlob [Got91], the problem whether a
literal is true in every minimal model of a propositional theory is ΠP

2
-hard.

Finally, let us mention that we were not able to establish the complexity of the following
problem. Given a finite (disjunctive) F -program P and a formula ϕ ∈ F , It is unclear that
it belongs to NP (it is quite likely harder) since to verify that the answer is YES for a given
input instance it is not enough to guess a subset U of F but also to verify that it is a minimal
answer set. is ϕ a logical consequence of some minimal answer set of P?

References

[ABW88] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of deductive databases and logic programming.
Papers from the workshop held in Washington, D.C., August 18–22, 1986, pages
89–142, Palo Alto, CA, 1988. Morgan Kaufmann.

[BF91] N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic pro-
grams. Theoretical Computer Science, 78(1, (Part B)):85–112, 1991.

[CS93] M. Cadoli and M. Schaerf. A survey of complexity results for non-monotonic
logics. Journal of Logic Programming, 17(2-4):127–160, 1993.

15

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiabil-
ity of propositional Horn formulae. Journal of Logic Programming, 1(3):267–284,
1984.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W.H. Freeman and Co., San Francisco, Calif., 1979.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Proceed-
ings of the 5th International Conference on Logic Programming, pages 1070–1080.
MIT Press, 1988.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren
and P. Szeredi, editors, Logic programming (Jerusalem, 1990), MIT Press Series
in Logic Programming, pages 579–597, Cambridge, MA, 1990. MIT Press.

[GLPT91] M. Gelfond, V. Lifschitz, H. Przymusińska, and M. Truszczyński. Disjunctive
defaults. In Principles of knowledge representation and reasoning (Cambridge,
MA, 1991), Morgan Kaufmann Series in Representation and Reasoning, pages
230–237, San Mateo, CA, 1991. Morgan Kaufmann.

[Got91] G. Gottlob. Propositional circumscription and extended closed world reasoning
are πp

2-complete. Technical Report CD-TR91/20, Institut für Informationssys-
teme, Technische Universität Wien, 1991.

[Got92] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):397–425, 1992.

[Lad77] R. E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[McD82] D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories. Journal
of the ACM, 29(1):33–57, 1982.

[Min82] J. Minker. On indefinite databases and the closed world assumption. In 6th
conference on automated deduction (New York, 1982), volume 138 of Lecture
Notes in Computer Science, pages 292–308, Berlin-New York, 1982. Springer.

[MT89] W. Marek and M. Truszczyński. Stable semantics for logic programs and default
theories. In E.Lusk and R. Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 243–256. MIT Press, 1989.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38(3):588–619, 1991.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132,
1980.

16

[Tru91] M. Truszczyński. Modal interpretations of default logic. In Proceedings of IJCAI-
91, pages 393–398. Morgan Kaufmann, 1991.

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

17

