
Logical Constraints and Logic Programming 1

V. Wiktor Marek, 2 Anil Nerode, 3 and Jeffrey B. Remmel 4

Abstract

In this note we will investigate a form of logic programming with constraints. The
constraints that we consider will not be restricted to statements on real numbers
as in CLP(R), see [15]. Instead our constraints will be arbitrary global constraints.
The basic idea is that the applicability of a given rule is not predicated on the fact
that individual variables satisfy certain constraints, but rather on the fact that the
least model of the set rules that are ultimately applicable satisfy the constraint of
the rule. Thus the role of clauses will be slightly different than in the usual Logic
Programming with constraints. In fact, the paradigm we present is closely related
to stable model semantics of general logic programming [13]. We will define the
notion of a constraint model of our constraint logic program and show that stable
models of logic programs as well as the supported models of logic programs are
just special cases of constraint models of constraint logic programs.

Our definition of constraint logic programs and constraint models will be quite

general. Indeed, in general definition, the constraint of a clause will not be re-

stricted to be of a certain form or even to be expressible in the underlying lan-

guage of the logic program. This feature is useful for certain applications in hybrid

control systems and database applications that we have in mind. However for the

most part in this paper, we focus on the properties of constraint programs and

constraint models in the simplest case where the constraints are expressible in the

1A short version of this paper has been published in the Proceedings of the Third
International Conference on Logic Programming and Nonmonotonic Reasoning, Springer
Lecture Notes in Computer Science 927, 1995

2Department of Computer Science, University of Kentucky, Lexington, KY 40506, Re-
search partially supported by NSF grant IRI-9400568. E-mail: marek@cs.engr.uky.edu

3Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853, Research sup-
ported by US ARO contract DAAL03-91-C-0027. E-mail: anil@math.cornell.edu

4Department of Mathematics, University of California, La Jolla, CA 92093. Research
partially supported by NSF grant DMS-9306427. E-mail: remmel@kleene.ucsd.edu

1

language of underlying program. However even in this case, we will show that

some new phenomenon can occur. Because stable models are special cases of con-

straint models, constraint models have that property that there may be zero or

many constraint models for a given constraint program and that the constraint

models may be quite complex. Nevertheless we will show in the case of propo-

sitional logic where constraints are positive formulas, there always exists a least

constraint model and it can be computed in a polynomial time.

1 Introduction

Constraint Logic Programming received a good deal of attention since its
introduction in the seminal paper of Jaffar and Lassez in 1986 [15]. The
crucial observation of Jaffar and Lassez is that not all atoms in the body of
a logic program play the same role in the evaluation process. They noted
that it is actually beneficial to separate some goals, such as goals of the form
f(X1, . . . , Xn) = a and goals of the form f(X1, . . . , Xm) ≤ a, into the sep-
arate parts which can be evaluated or solved using specialized resources of
the underlying computer system. Thus a part of the goals act as constraints
in the space of possible solutions. One can interpret this phenomenon with
a slightly shifted emphasis. Namely we can think of the constraints as con-
ditions that need to be satisfied by (some) parameters before we start to
evaluate the remaining goals in the body of the clause. Thus the constraint
controls the applicability of the clause, that is, if it fails, then the rule cannot
fire. It is this point of view that we shall generalize in this paper. Our idea
is that constraints can be quite arbitrary and that their role is to control
the applicability of the rule. Nevertheless we shall see that in certain special
cases our generalization still fits quite naturally with the idea of solving the
constraints via “specialized equipment”.

The constraints in Constraint Logic Programming are evaluated in some
fixed domain. This is generally some fixed relational system. In the specific
schemes proposed for constraint logic programming, it can be the set of reals
with some specific operations and/or relations, as in the original CLP (R)
or a Boolean Algebra as in CHIP [11] or the set of finite or infinite trees
as in [10]. Here we will not make that type of assumption. That is, the

2

domain where the constraints are evaluated is not necessarily fixed upfront.
This decision makes the resulting theory much more flexible. In fact all the
previously mentioned schemes can be embedded in our scheme. It should
be noted that already Jaffar and Lassez showed that the constraint logic
programming scheme CLP (R) can be embedded in logic programming. The
gain is not in the conceptual level but in the effectiveness of processing. By
contrast, our notions of constraint logic programs and constraint models is a
genuine extension of logic programming and logic programming with negation
as failure. We will show that appropriate translations allow us to express
both the supported semantics of logic programs [9] and stable semantics for
such programs (therefore also perfect semantics [3] as well) as the particular
cases of our scheme. Nevertheless the relaxation of the conditions on the
constraints still leads to a coherent and clean theory of what we call below
constraint models of constraint programs.

The novel feature of the theory proposed below is that the constraints
are supposed to be true in the model consisting of the atoms computed in
the process. That is, we allow for an a posteriori justification of the rules
applied in the process of computation. At first glance a different phenomenon
occurs in constraint logic programming, namely the constraints are applied a
priori. However we shall see below that both approaches essentially coincide
in the case of upward preserved constraints. These are constraints which
have the property that they are preserved as we go from a smaller to a
bigger model, see section 4. This is precisely what happens in constraint
logic programming. Once a constraint is computed, it is maintained. Indeed,
in constraint logic programming, once we find the multidimensional region
containing the solutions of the constraint, the subsequent steps can only
refine this description, the solutions must come from that region. We will
see, however, that even in the case of upward preserving constraints, we get
a scheme more powerful than ordinary logic programming. We shall show
the least constraint model always exists and can be computed via the usual
construction of the least fixed point of a monotone operator but that the
closure ordinal for the least constraint model can be strictly bigger than ω.
That is, the operators corresponding to such programs are monotone but are
not always compact. Thus there will be the least and largest fixpoints for
such operators. The least fixpoint will be the least constraint model. The
largest fixpoint will be the largest constraint model but of a transformed

3

program. The fact that both the upwards and downwards iterations of the
operator are transfinite make our class of programs less irregular in a certain
sense than the usual operators for Horn logic programming. Recall the fact
that in Horn logic programming the least fixpoint is reached in at most ω
steps whereas the greatest fixed point can take up to ωCK

1 iterations, see
Blair [6].

The constraints we allow may be very diverse and complex formulas.
They may be formulas in the underlying language of the program or they
may be formulas in second order or even infinitary logic. An example of
this type of constraint is the parity example where constraint is a statement
about the parity of the (finite) putative model of the program. This type of
the constraint is a formula of infinitary logic if the Herbrand base is infinite.
What is important is that there is a method to check if the constraint holds
relative to a possible model. Thus we will assume that we have a satisfaction
relation between the subsets of Herbrand base and formulas that can be used
in constraints. Of course, CLP (R) and similar schemes make the same type
of assumptions.

Our motivation for allowing more general constraints originally came from
the certain applications in control theory of real-time systems. The basic idea
is that we sample the plant state at discrete intervals of time, ∆, 2∆,
Based on the plant measurements, a logic program will compute the control
to be used by the plant for the next ∆ seconds so that the plant state will
be guaranteed to meet certain required specifications. One possible way for
such logic programs to operate is that the set of rules with which we compute
at any give time n∆ is a function of the observations of the state of the plant
at time n∆. In this fashion, we can view the plant state at time n∆ as
determining which constraints of the rules of the logic program are satisfied
and hence which rules can fire at time n∆. In such a situation, we cannot
expect that we will have the constraints which are upward preserving or
even that the constraints should necessarily be in the same language as the
underlying language of the program. Therefore it will be definitely necessary
to step out of the current constraint logic programming paradigm. Another
application of the same type is to have a logic program controlling inventory
via a deductive database. In this case, we may want to change the rules of the
deductive database as a function of outside demand. Once again one could
view the satisfaction of the constraints as depending on the database for the

4

inventory and the set of orders that come in at a given time. In this way one
can vary the set of applicable rules as function of the current inventory and
demand.

The paper is organized as follows. We investigate the basic properties of
constraint programs in Section 2. Propositional programs with constraints
are studied in Section 3. We show basic properties of such programs in our
setting. It turns out that both stable and supported models of programs
can be modelled as constraint programs. In Section 4 we discuss programs
with arbitrary constraints. We show that programs with upward-preserving
constraints have always a least constraint model, although the closure ordinal
of the construction is no longer ω. Section 5 contains a proof theoretic
characterization of constraint models. In Section 6 we show how Default
Logic can be simulated by programs with constraints. Section 7 contains a
technique for construction of constraint models. This technique is complete
for both upward-preserving and downward-preserving constraints. We show
that the alternating fixpoint technique for constructing a three-valued model
can be used for constraint programs with downward-preserving constraints.

2 Preliminaries

First, we shall introduce our syntax. The clauses we consider are of the form:

C = p← q1, . . . , qm : Φ

Here p, q1, . . . , qm are (ground) atoms. Φ is a formula of some formal lan-
guage. In the most general case we do not put restrictions on what Φ will
be. The (Horn) clause p ← q1, . . . , qm will be denoted by HC . The formula
Φ is called the constraint of C and is denoted by ΦC .

The idea behind this scheme is the following: Given a set of atoms, i.e. a
subset of Herbrand base, M , we consider the formulas ΦC for clauses C of the
program. Some of these formulas are satisfied by the structure determined
by M . This satisfaction is checked as follows. In the case of predicate logic,
M determines a relational systemMM which is used for testing if Φ is true.
Notice that, in principle, Φ can be any sort of formula. For instance, Φ may
be a formula of second order logic or of some infinitary logic. In the case of

5

propositional logic, M determines a valuation that can be used to test Φ is
true. Then we let AM be the set of all clauses C such thatMM |= ΦC . If we
drop the constraints from the clauses in Am, we get a set of Horn clauses HC ,
i.e. a Horn program, which we denote by PM . Then PM has a least Herbrand
model NM and we say that M is a constraint model for P if NM = M .

Although the use of formulas from outside of propositional logic or predi-
cate logic may not seem very natural, it is easy to construct natural examples
where the constraints naturally go beyond the expressibility in these logics.
Indeed there has been significant work in deductive database theory on ex-
tensions of Datalog where one extends the underlying language by adding
constructs like a transitive closure operator, [1]. Here is a simple example
involving parity constraints.

Example 2.1 We consider a propositional program P with constraints on
the parity of the target model. In a infinite propositional language, the
formula expressing the fact that the number of the atoms in the model is
even (or odd) is infinitary formula. Let P be the following program with
logical constraints:

p← : ⊤
s← q : ⊤
q ← p : “parity odd”
r ← p : “parity even”

Here the formula “parity odd” is a formula saying that the number of atoms
true in the model is odd. Likewise “parity even” is the infinitary formula
saying that the number of atoms true in the model is even. In a model with
finite number of true atoms, one of these formulas will be true. Of course, in
the model with infinite number of true atoms both of these formulas will be
false. Notice that these formulas are, in fact, infinite alternatives of infinite
conjunctions.

Returning to our example, it should be clear that P has two constraint
models. The first one {p, q, s} has parity one, and the other one {p, r} has
parity zero.
Let us add now to this program P additional clause:

6

C = w ← r : ⊤

Then the program P ∪ {C} has just one constraint model, {p, q, s}. The
reason the other model disappeared is that the presence of an (unconditional)
clause C allows us to derive w once r has been derived. But the derivation
of w changes the parity of the constructed set of atoms and hence invalidates
the derivation of r which in turn invalidates the derivation of w as well.

In the next section we shall look at the simplest case where the underlying
logic is propositional logic and the constraints ΦC are also formulas of the
propositional logic.

3 Propositional programs with constraints

First of all notice that if all constraints are equal to ⊤ then our construction
of a constraint model reduces to the the least Herbrand model as in ordinary
Horn logic programming. Thus in that case, the constraint model coincides
in this case with the usual intended model of the program, namely, the least
model.

Next, consider the case when the formulas Φ are of the form:

¬r1 ∧ . . . ∧ ¬rn

That is, the constraints are goals. It should be noted here that this type of
constraint is frequently used within Artificial Intelligence. In this case con-
straint models are just stable models of an associated general logic program.
That is, given a constraint clause with the constraint in the form of a goal

p← q1, . . . , qm : ¬r1 ∧ . . . ∧ ¬rn,

assign to it a general clause

C ′ = p← q1, . . . , qm,¬r1, . . . ,¬rn

Then set P ′ = {C ′ : C ∈ P}. We then have this proposition

7

Proposition 3.1 If P is a constraint program whose clauses have constraints
in the form of a goal, then for every M ⊆ H, M is a constraint model of P
if and only if M is a stable model of P ′.

Next, notice that the clauses with equivalent constraint have the same
effect. Specifically we have the following proposition

Proposition 3.2 If |= Φ ≡ Ψ and P is a constraint program such that for
some clause C in P , ΦC = Φ and P̄ a new program which results from P by
substituting Ψ for Φ in one of places where it occurs as a constraint, then P
and P̄ have precisely the same constraint models.

Next, consider the case when a formula Φ ≡ Ψ1∨ . . .∨Ψk. Since changing
Φ to Ψ1 ∨ . . . ∨ Ψk does not change the class of constraint models, we can
assume that Φ = Ψ1 ∨ . . . ∨Ψk.

Given a clause C = p← q1, . . . , qm : Φ let

C ′′ = {p← q1, . . . , qm : Ψ1, . . . , p← q1, . . . , qm : Ψk}

Then given a program P , define

P ′′ =
⋃

C∈p

C ′′

We have then

Proposition 3.3 Let M ⊆ H. Then M is a constraint model of P if and
only if M is a constraint model of P ′′

Proof: We show that for all M , PM = P ′′
M . This, of course implies the

theorem.

Note that if p ← q1, . . . , qm ∈ PM , then for some Ψ1 ∨ . . . ∨ Ψk, p ←
q1, . . . , qm : Ψ1 ∨ . . . ∨ Ψk ∈ P , M |= Ψ1 ∨ . . . ∨ Ψk. But then for some
j ≤ k, M |= Ψj and hence p ← q1, . . . , qm ∈ P ′′

M . Thus PM ⊆ P ′′
M . Vice

versa, if p← q1, . . . , qm ∈ P ′′
M , then for some Ψ1 ∨ . . . ∨Ψk, p← q1, . . . , qm :

Ψ1 ∨ . . . ∨ Ψk ∈ P , M |= Ψj for some j ≤ k. But then M |= Ψ1 ∨ . . . ∨ Ψk,
thus p← q1, . . . , qm ∈ PM . Hence P ′′

M ⊆ PM . 2

8

Now call Φ purely negative if Φ is of the form Ψ1 ∨ . . . ∨Ψk and each Ψj

is a goal. Propositions 3.1 and 3.3 imply the following

Proposition 3.4 If each constraint in P is purely negative, then M is a
constraint model of P if and only if M is a stable model of (P ′′)′.

Since stable models of a general logic program form an antichain (i.e. are
inclusion incompatible), the same holds for programs with purely negative
constraints.

The inclusion-incompatibility of constraint models does not hold for ar-
bitrary constraints. To this end consider this example:

Example 3.1 Let P = {p←: p ∧ q, q ←: p ∧ q}. Then it is easy to see that
both ∅ and {p, q} are constraint models of P .

An analysis of example 3.1 lead us to the realization that the supported
models of general logic programs can easily be described by means of a suit-
able transformation into programs with constraints. To this end let

C = p← q1, . . . , qm,¬r1, . . . ,¬rn

be a general logic program clause and assign to C the following constraint
clause

C ′′′ = p←: q1 ∧ . . . ∧ qm ∧ ¬r1 ∧ . . . ∧ ¬rn

Then set P ′′′ = {C ′′′ : C ∈ ground(P)}. We have then

Proposition 3.5 Let P be a general logic program. Then M is a supported
model of P if and only if M is a constraint model of P ′′′.

We consider another very natural case, namely when all constraints are
purely positive. Here a formula is said to be purely positive if it is built
from propositional letters using only conjunctions and alternatives. In this
case constraint programs reduce (at a cost) to usual Horn programs. Here
is how is it done. First we notice that we can assume that our constraints
are in disjunctive normal form (Proposition 3.2) and then we notice that the

9

constraint distribute with respect to alternative (this fact has been used in
the proof of Proposition 3.3). Then we execute the transformation in which
the constraints which are now conjunctions of atoms are put into the bodies
of their respective clauses. This is precisely how Jaffar and Lassez reduce
CLP (R) to the usual logic programming. We leave to the reader to show
that the constraint model of the original program coincides with the least
model of thus transformed program.

We conclude this Section with the complexity considerations for con-
straint programs which have propositional constraints. The existence prob-
lem for constraint models of such programs are, generally, on the first level
of the polynomial hierarchy. Specifically, we can use Proposition 3.4 to prove
the following:

Proposition 3.6 The problem of existence of constraint model of a con-
straint program with propositional constraints is NP-complete.

Proof: Since general propositional programs can be polynomially (in fact
linearly) transformed to constraint programs so that stable models become
precisely stable models (Proposition 3.4), the problem is NP-hard. On the
other hand, once we take a guess, reduction and recomputation can certainly
be made in polinomial time. Hence our problem is in NP. 2

The result stated in Proposition 3.6 has been significantly extended by
Pollet and Remmel [19]. and we state them here for completeness of the
presentation.

Recall that a boolean quantified formula is an expression of the form

B = ∃ ~x1∀ ~x2 . . . Q ~xnΦ(~a, ~x1, . . . , ~xn)

or
B = ∀ ~x1∃ ~x2 . . . Q ~xnΦ(~a, ~x1, . . . , ~xn)

where Φ a Boolean term.

A program with boolean quantified constraints is a collection of constraint
clauses where the constraints are boolean quantified formulas. LPBQCi is
the collection of programs with boolean quantified constraints having at most

10

i alternations of quantifiers, In this setting general logic programs are pre-
cisely LPBQC0 programs with constraints being the conjunctions of negated
atoms. That is, the stable semantics for logic programs is obtained from
constrained semantics for LPBQC0 programs with constraints being con-
junctions of negated atoms via simple linear transformation described above.
Similarly, supported semantics was obtained also form LPBQC0 with an-
other transformation.

Recall now that by the classical result of Mayer and Stockmeyer [18]
the satisfaction relation for the existential quantified boolean formulas with
i alternations of quantifiers, QSATi is a ΣP

i+1-complete problem. We have
then

Proposition 3.7 ([19]) The set of finite programs in LPBQCi that possess
a constraint model forms a ΣP

i+1-complete set.

4 Arbitrary constraints

We turn our attention to constraints programs with constraints possessing
some preservation properties. The preservation property in question is being
preserved upwards.

Definition 4.1 A formula Φ is preserved upwards if whenever M ⊆ N ⊆ H
and M |= Φ, then N |= Φ.

The nature of the formula Φ is immaterial here, it can be a propositional
formula, formula of the predicate calculus or even a formula of higher-order
predicate calculus. What is important is that we have a satisfaction relation
|= which is used to check when a model satisfies a constraint.

Let Φ be a formula of propositional calculus built out of propositional
variables by means of conjunction and alternative only. Then clearly Φ is
preserved upwards. But in predicate calculus formulas built by use of existen-
tial quantifiers in addition to conjunction and alternative are also preserved
upwards. The same happens in case of higher-order existential quantifiers.

11

Since constraint models of programs with purely negative constraints are
stable models of an appropriate translation, it follows easily that some con-
straint programs have no constraint models. We show that for constraint
program in which all constraints are preserved upwards there always exists
a least constraint model.

Theorem 4.2 Let P be a constraint program with upward preserved con-
straints. Then P has the least constraint model.

Proof: Construct a subset of the Herbrand base by means of an inductive
process as follows.

Let P0 be the subset of P consisting of the clauses C for which ΦC = ⊤.
The clauses of this subprogram are applied unconditionally. Program P0

can be identified with the Horn program arising from P0 by elimination of
constraints altogether. Thus P0 possesses the least model, M0.

Now, assume that for some ordinal γ programs Pξ and models Mξ has
been defined for all ξ < γ. Form an auxiliary structure Nγ =

⋃
ξ<γ Mξ. Now

define Pγ as the set of those C ∈ P such that Nγ |= ΦC . Then, strip Pγ of
constraints. Thus, Pγ = (P)Nγ

. The resulting program is a Horn program
and so it possesses the least model. Call this model Mγ.

Finally, set:
M =

⋃

γ∈Ord

Mγ

We claim that M is a constraint model of P . To prove our claim, we must
first prove that prove that

PM =
⋃

γ∈Ord

(P)Mγ

Indeed, if a clause p ← q1, . . . , qm belongs to
⋃

γ∈Ord(P)Mγ
then for some Φ

and γ ∈ Ord, C = p← q1, . . . , qm : Φ, C ∈ P , Mγ |= Φ. But Φ is preserving
upwards, so M |= Φ. Therefore p← q1, . . . , qm belongs to PM .

Conversely, if p ← q1, . . . , qm belongs to PM , then for some Φ such that
M |= Φ, p ← q1, . . . , qm : Φ is in P . But by the cardinality argument, for

12

some γ, Mγ = Mγ+1. Then Mγ = M and so the other inclusion is also
established.

We are now in a position to prove that M is the least constraint model
of P . First, let us see that M is indeed a constraint model of PM . So, let
p← q1, . . . , qm belong to PM and all q1, . . . , qm belong to M . Then for some
γ, p ← q1, . . . , qm belongs to Pγ. Also there is δ such that q1, . . . , qm belong
to Mδ. Let ξ = max(γ, δ). Then p ∈Mδ+1. Thus p ∈M .

Next, let R be any constraint model of P . By induction on γ we prove
that Mγ ⊆ R. So, let γ = 0. Since R |= ⊤, (P0)R ⊆ PR. Therefore R must
contain M0.

In the inductive step, we proceed similarly. The inductive assumption
implies that Nγ ⊆ R. Since all the constraints preserve upwards, it follows
that Pγ ⊆ PR. This, in turn, implies that Mγ ⊆ R. 2

As noticed above, when the constraints are propositional positive for-
mulas, they certainly are preserved upwards. This means that for constraint
programs with positive propositional constraints there always exists the least
constraint model. This last result can be obtained independently via the sim-
pler proof outlined at the end of section 3. Moreover, it can be proven that in
that case the length of the hierarchy we construct is at most ω. In addition,
if the program P is finite, the model M can be constructed in polynomial
time.

When the constraints are formulas appearing in constraint part of the
clauses are predicate formulas we face different choices of the satisfaction
relations which, in turn, imply different closure conditions on the upward
preserving formulas. This, in turn results in different closure ordinals of the
resulting constraint model as constructed in Theorem 4.2. Among several
subtle points here let us mention the issue of the set of atoms under con-
sideration. We have this choice here: Are we taking into account only the
terms actually appearing in the grounding of the program, or do we presup-
pose some Herbrand preinterpretation (set of constants and a set of function
symbols) and a certain collection of relational symbols for the formation of
ground atoms? We will look at this second case right now. That is we fix
a Herbrand universe U and we fix a set of predicate symbols (together with
their arities). In this fashion we get a fixed Herbrand base H. Subsets M of

13

H stand in one-to-one correspondence with Herbrand structures MM with
the universe U . The satisfaction relation |= is the usual satisfaction relation
for such models. We shall refer to Herbrand preinterpretation (to use the
terminology of [2]).

Proposition 4.3 p.herb Let a Herbrand preinterpretation U be given, and
let |= be the satisfaction relation between subsets of the Herbrand base H and
the formulas of L be defined by S |= ϕ ifMM |= ϕ. Then the class of positive
formulas (that is closure of atomic formulas under conjunction, alternative
and both existential and universal quantifications) is upward-preserving.

Proof: Although a direct proof by induction on the length of such formulas is
possible, let us mention a more abstract argument showing what is happening
here. The reason why the preservation holds is tha whenever M1 ⊆M2 ⊆ H
then the identity is a homomorphism of MM1

onto MM2
. Therefore the

Lyndon homomorphism theorem ([8]) is applicable and the result follows. 2

We will see now that indeed, with the arbitrary positive constraints as
defined above the construction of the least constraint model may, indeed taka
more than ω steps. In our next example we examine a program with positive
constraints requiring ω + 1 steps for the construction of the least constraint
model.

Example 4.1 Let P be this program:

p(0)←: ⊤
p((s(0))←: ⊤
p((s(s(X)))← p(s(X)) : p(X)
q(0)←: ∀Xp(X)

Here the construction of the least constraint model takes precisely ω+1 steps.
At step 0 we get p(0) and p(s(0)) and at all subsequent steps we get a single
new atom. Up to ω we construct all the atoms pn(0) for n ∈ ω and since the
Herbrand universe (as opposed to Herbrand base) is ω, the sentence ∀Xp(X)
becomes true. Thus the last rule is activated and in the ωth step we get q(0)
which completes the construction of the least constraint model.

14

We shall generalize now our construction of Example 4.1 and for every
constructive ordinal α we will produce a program with positive predicate
constraints requiring at least α steps to complete construction of the least
constraint model. Let ≺ be a recursive well-ordering of type α and for each
β < alpha

Intuitively, we want to construct a finite program with positive predicate
constraints that at every step β of the construction computes the iβth element
of a recursive well-ordering of type α. This seems to be easy to accomplish
by something like

p(X)←: ∀Y (Y < X ⇒ p(Y))

plus a (Horn) program with a binary predicate < computing ≺.

Unfortunately, the constraint of our clause is not positive. Moreover we
need to make sure that when we start to compute p(·) the interpretation of
the binary predicate < is correct. In order to overcome the first obstacle we
introduce an auxiliary predicate NotSmaller with the intended interpretation
N ×N\ <. Then the desired clause takes form

p(X)←: ∀Y (NotSmaller(Y,X) ∨ p(Y))

which clearly is positive. Now we just have to take care of having the correct
interpretation of < and NotSmaller. Since < is recursive, so is its comple-
ment (the intended interpretation of NotSmaller) and therefore there are two
Horn programs P< and PNotSmaller computing < and NotSmaller, respec-
tively. We can assume that P< and PNotSmaller are constraint programs
(insert ⊤ as constraints). The construction of the least model of the union
of P< ∪PNotSmaller takes ω steps (notice that the construction of Theorem
4.2 collapses to the usual van Emden – Kowalski construction when all the
constraints are ⊤). Thus in ω steps we have the correct interpretation of
the relations < and NotSmaller. We construct now an additional constraint
program P ′ consisting of these two clauses:

a←: ∀X,Y (Y < X ∨ NotSmaller(Y,X))
p(X)← a : ∀Y (NotSmaller(Y,X) ∨ p(Y))

and define the program Pα as the union P< ∪ PNotSmaller ∪ P ′.

15

Proposition 4.4 The program Pα is a logic program with positive constraints
reaching the fixpoint in ω + 1 + α steps.

Proof: Clearly in the first ω steps we compute precisely < and NotSmaller.
a is not computed until the constraint enforcing that < and NotSmaller get
the correct interpretation is satisfied. Once a is computed (in (ω + 1)st step)
we start to compute the consecutive elements of ≺. It is clear that in the βth

step (after the initial ω + 1 steps) we add to the extent of p the βth element
of ≺. Since P< and PNotSmaller do not have in tthe bodies of their clauses
neither a nor p(·), the interpretations of < and NotSmaller in structures Mξ

for ξ > ω are always the same. Thus the construction of the least constraint
model requires precisely α steps after the initial ω + 1 steps and the thesis is
proven. 2

Using the usual logic programming paradigm it is natural to look at the
operator associated with the program.

Here is the definition of the operator. The variable I ranges over the
subsets of the Herbrand base. |= denotes the satisfaction relation between
the formulas used for constraints and subsets of Herbrand base.
SP (I) = {p : for some q1, . . . , qn ∈ I and I |= Φ, p← q1, . . . , qn : Φ belongs to
ground(P)}

Proposition 4.5 If all the constraints in P are preserved upwards, then
SP is a monotone operator. Hence SP possesses the least and the largest
fixpoints.

It is not difficult to see that the least fixpoint of SP is constructed in the
proof of Theorem 4.2. Thus this least fixpoint is the least constraint model
of P .

The largest fixpoint of P is also a constraint model but of a transformed
program. This is the case because we did not introduce the notion of a
supported model and so we need to make a program transformation first.

Specifically, given a clause with a logical constraint

C = p← q1, . . . , qn : Φ

16

let CIV be the clause

CIV = p← : q1 ∧ . . . ∧ qn ∧ Φ

We then have the following fact:

Proposition 4.6 Assume that all the constraints in clauses of P are pre-
served upwards. Then fixpoints of operator SP are precisely constraint models
of P IV . Thus the largest fixpoint of SP is the largest constraint model of P IV .

We noticed that the least fixpoint of SP is the least constraint model for
P provided that all the constraints of P are preserved upwards. Yet, the
operator SP does not need to be compact and so the fixpoint may be reached
in more than ω steps. The influence of constraints on the actual closure
ordinal of both downward and upward iteration (see Blair [6] for the results
on the closure ordinal of downward iteration) is not clear at this point.

Now let us look at constraints preserved downwards. Formally, Φ is pre-
served downwards if M1 ⊆ M2 and M2 |= Φ implies M1 |= Φ. Clearly,
purely negative formulas of propositional language are preserved downwards
but in other languages there are many more such formulas. For instance any
negation of a purely positive formula is preserved downwards.

We have the following proposition.

Proposition 4.7 If all the constraints in the constraint program P are pre-
serving downwards then the constraint models of P are inclusion-incompatible.

Proof: Let M1 ⊆M2 be two constraint models of P . Since all the constraints
are preserving downwards therefore PM2

⊆ PM1
. Therefore NM2

⊆ NM1
and

since M1 = NM1
and M2 = MM2

, M2 ⊆M1. Thus M1 = M2. 2

5 Proof theory for constraint programs

Although Logic Programming is often associated with top-down evaluation of
queries (i.e. backward chaining), we can look at the usual Horn programming

17

in an forward chaining fashion (i.e. with bottom-up evaluation). In this
paradigm we treat the clauses of the program as rules of proof which fire
when their premises are proven. This is how the layers of the iterations of
the operator TP are produced.

In case of programs with logical constraint a similar construction is pos-
sible except that we need to take into account the fact that the application
of rules requires that its constraint be satisfied.

We will assume now that all the constraint come from some formal lan-
guage. The nature of this language is immaterial as long as we have a sat-
isfaction relation between the subsets of the Herbrand base and formulas of
that language.

We define the notion of M -proof of an atom p from program P (here M
is a subset of Herbrand base) inductively.

Definition 5.1 1. If p ←: Φ belongs to P and M |= Φ then 〈p〉 is an
M -proof of length 1.

2. If p← q1, . . . , qn : Φ belongs to P and S1, . . . , Sn are M -proofs, respec-
tively, of q1, . . . , qn of length, respectively, m1, . . . ,mn and M |= Φ then
S1 ⌢ . . . ⌢ Sn ⌢ 〈p〉 is an M -proof of p of length m1 + . . . + mn + 1.

3. p is M -provable from P if p has an M -proof of some length from P .

With this concept we have the following characterization theorem

Theorem 5.2 M is a constraint model of P if and only if M coincides with
the set of atoms possessing an M-proof from P .

Proof: We prove two facts:
(a) All elements with M -proof from P belong to NM .
This is easily proven by induction on the length of such M -proof.
(b) All elements of NM possess an M -proof from P .
This is again proven by induction, but this time on the least number n such
that p belongs to TPM

↑ n(∅).
It follows that M coincides with the least model of PM if and only if M
consists of all elements possessing an M -proof from P . 2

18

6 Default Logic and programs with logical

constraints

Our approach to logical constraints allows us to get an insight into Reiter’s
Default Logic [20] and on some possible extensions of Reiter’s formalism.

Recall that a default rules is a rule of the form:

d =
α : Mβ1, . . . ,Mβk

γ

A default theory is a pair 〈D,W 〉 where D is a set of default rules and W is
a set of formulas.

We shall see now how logic programs with logical constraints can be used
to get a nice rendering of default logic. Our Herbrand base (the set of atoms)
is the set of all formulas of the propositional language L. The constraints,
however, are formulas of the form

¬δ1 /∈ S& . . . &¬δk /∈ S (1)

We need to define when a set of atoms, say I, satisfies a constraint of the form
(1). It is defined in the most natural way; namely I |= ¬δ1 /∈ S& . . . &¬δk /∈ S
if none of ¬δi, 1 ≤ i ≤ k belongs to I,

Now we translate the rule d into the following clause with logical con-
straints:

t(d) = γ ← α : ¬β1 /∈ S& . . . &¬βk /∈ S

Two more sets of rules must be included in addition to the translations of
the default rules in D. First we need to translate the formulas of W . This is
done by adding clauses of the form

t(γ) = γ ← : ⊤

for each γ ∈W . Moreover we need to add the processing rules of logic. This
is done by a (uniform) construction of an auxiliary program Plogic.

α← : ⊤ for all tautologies α, and
β ← α ⊃ β, α : ⊤ for all pairs of formulas α and β.

19

Now form a translation of the default theory 〈D,W 〉 as follows:

t(D,W) = {t(d) : d ∈ D} ∪ {t(γ) : γ ∈ W} ∪ Plogic

We then have the following result.

Theorem 6.1 Let 〈D,W 〉 be a default theory, and let t(D,W) be its trans-
lation as a constraint program as defined above. Then I is a constraint model
of t(D,W) if and only if I is a default extension of 〈D,W 〉.

We notice that once this result is proved, it becomes clear that Re-
iter’s Default Logic is just one of many other techniques for constructions
of constraint-controlled rules of proof in propositional logic. We shall not
pursue the matter further here, although it should be clear that the results
on upward preserved constraints are also applicable for theories with such
constraints.

7 Constraint Models for Programs with Down-

ward-Preserving Constraints

We shall outline now a construction of a constraint model for the case of pro-
grams with downward-preserving constraints. These programs, in contrast
to programs with upward-preserving constraints do not necessarily possess
constraint models.

We shall show now a construction which is not necessarily sound but it is
complete in important cases. This construction is a modification of forward
chaining construction of stable model of logic program.

In our case the construction may require well-orderings of the length
longer than ω. Therefore we will have to assure preservation of constraints
used in the construction under limits of increasing sequences. This requires
that we introduce the following definition.

Definition 7.1 We say a formula Φ is limit-preserving if the following holds:
Whenever 〈Mξ〉ξ<α is increasing family of subsets of Herbrand base (i.e for
ξ1 < ξ2α, Mξ1 ⊆Mξ2) and for all ξ < α, Mξ |= Φ, then

⋃
ξ<α Mξ |= Φ.

20

First-order formulas limit-preserving formulas are Π2 formulas, that is
formulas which in their prenex form have one at most one alternation of
quantifiers with universal quantifier as the first one.

Limit-preserving formulas are closed under conjunctions and alternatives
(finite or infinitary). It should be clear that atomic sentences are limit pre-
served.

We shall describe now a construction which given a constraint program
will always produce a constraint model of a subprogram of the original con-
straint program even in the case when the original program has no constraint
models. For constraints which are (disjunctions, even possibly infinite) of
negative literals, we prove a completeness result as well. Specifically, we will
show that in that case every constraint model can be obtained by means of
our construction.

Let P be a constraint program. Let � be a well-ordering of ground
version of P . We also assume that all the constraints in clauses of P are
limit-preserving. By H(P) we mean the part of program P consisting of
these clauses C for which ΦC is a tautology. That is H(P) is the Horn part
of P . Thus TH(P) is an operator associated with the Horn part of P [21].
The least fixpoint of this operator is the least model of H(P). We define an
increasing family of subsets of Herbrand base of P , 〈Aξ〉 and a sequence of
clauses 〈Cξ〉 as follows:

Definition 7.2 A0 = TH(P) ↑ ω(∅).

If α is limit ordinal and Aξ are defined for ordinals ξ < α, then Mα =⋃
ξ<α Mξ.

If α is a non-limit ordinal, say α = β + 1, and Aβ already defined, then
consider clauses C with the following properties:

1. head(C) /∈ Aβ,

2. body(C) ⊆ Aβ

3. Aβ |= ΦC

21

4. TH(P) ↑ ω(Aβ ∪ {head(C)}) |= Φξ for all ξ < α

5. TH(P) ↑ ω(Aβ ∪ {head(C)}) |= ΦC

If there is no clause C satisfying all the above conditions then Cα is not
defined, whereas Aα =

⋃
ξ<α Aξ.

Otherwise Cα is the ≺-first clause satisfying the above conditions and we
also define

Aα = TH(P) ↑ ω(Aβ ∪ {head(C)})

The set A =
⋃

Aα is called the set of accepted elements. The least ordinal
α such that Cα is not defined is called the length of the construction. This
ordinal number α depends on the ordering ≺ and we denote it α≺.

It is easy to see that A =
⋃

ξ<α≺
Aξ.

We say that a clause C is called contradictory if head(C) /∈ A, body(C) ⊆
A, A |= ΦC but TH(P) ↑ ω(A ∪ {head(C)}) does not satisfy ΦCξ

for some
ξ < α≺ or TH(P) ↑ ω(A ∪ {head(C)}) does not satisfy ΦC .

The contradictory clauses are clauses which met all the preconditions for
application, but after it has been fired either some of the constraints were
previously applied are no longer valid or the constraint of C (which was valid
in A) is no longer valid.

Whether a clause is contradictory depends on ≺. A clause can be non-
contradictory for various reasons. For instance its head may already be in
A. Then there is no need to look at the body. Or the body of C may
be not satisfied in A or, finally, the constraint of C may be false in A.
Finally, a clause which has been applied during the construction of A is
non-contradictory.

Let us denote by I≺ the set of clauses that are contradictory.

Theorem 7.3 1. Let ≺ be a well-ordering of P . Then A≺ is a constraint
model of P \ I≺.

2. If all the constraints in P are conjunctions of negative literals (finite
or infinite) or disjunctions of conjunctions of negative literals, then for

22

every constraint model M of P there exists a well-ordering ≺ of P such
that A≺ = M .

The operator SP introduced in Section 4 for positive programs can be
studied for arbitrary programs. For downward-preserving constraints the
operator SP is no longer monotone. In fact, it is antimonotone.

Proposition 7.4 When all the constraints in P are downward-preserving,
SP is antimonotone operator.

Therefore, as noticed in [5], the operator S2
P is monotone. Thus S2

P possesses
both least and largest fixpoints. Moreover, these fixpoints, say A and B, are
alternating, i.e. SP (A) = B and SP (B) = A. Thus, although we cannot be
sure that that there is a constraint model (as was the case of programs with
upward-preserving constraints), we have an alternating pair. Notice that
SP (A) consists of these atoms that can be computed when the constraints
are checked with respect to A.

8 Constraint disjunctive programming

In this section we generalize programs with logical constraints to accomodate
“nonstandard” disjunction in the heads of program clauses. That is we in-
troduce an additional construct proposed by Gelfond and Lifschitz [14], see
also Baral and Gelfond [4]. Surprisingly, it turns out that if the nonstandard
disjunction is permitted and all the constraints are propositional we obtain
precisely the class of “general disjunctive programs” of Lifschitz and Woo
[17].

Let us define a disjunctive clause with logical constraint as a construct of
the form

p1| . . . |pk ← q1, . . . , qm : Φ

where p1, . . . , pk, q1, . . . , qm are atoms and Φ is a formula of some language
for which a satisfaction relation |= is defined. This satisfaction relation |=
maps the pairs consisting of subsets of the set of atoms and formulas into
{0, 1}.

23

A disjunctive constraint program is a set of disjunctive clauses with logical
constraint.

We shall now define the notion of constraint model of a disjunctive con-
straint program. To this end we first recall the notion of an answer set for
a disjunctive program as defined in [14]. Specifically, a subset M ⊂ At is
called closed under a disjunctive rule

p1| . . . |pk ← q1, . . . , qm

if whenever all qi, 1 ≤ i ≤ m belong to M then at least one of pj, 1 ≤ j ≤ k
belongs to M as well. An answer set of a set P of disjunctive rules is a minimal
set M closed under all the rules in P . With this definition we define the notion
of a constraint model of disjunctive constraint program P as follows. Let
M ⊆ At. Consider PM consisting of disjunctive rules p1| . . . |pk ← q1, . . . , qm

such that for some Φ, M |= Φ and p1| . . . |pk ← q1, . . . , qm : Φ. If M is an
answer set for PM then M is called a constraint model for P .

We notice that Propositions 3.2 and refp.3 hold in the present context.
That is substitution of equivalent constraints and splitting disjunctions in
the context part does not change the semantics.

Let us now consider the case when all the constraints are propositional
formulas. Then, given a disjunctive constraint program P , there is a dis-
junctive program P ′ such that the collections of constraint models of P and
P ′ coincide and all the constraints of P ′ are of the form l1 ∧ . . . ∧ ls where
l1, . . . , ls are literals.

Thus, up to a syntactic transformation discussed above, we are dealing
with the programs consisting of program clauses

p1| . . . |pk ← q1, . . . , qm : t1,∧ . . . ∧ tl ∧ ¬r1 ∧ . . . ∧ . . . rn

We shall now see that these programs coincide, up to syntactic sugar,
with general disjunctive programs of [17]. That is we will show a simple
modular translation of general disjunctive programs to constraint disjunc-
tive programs so that the answer sets are precisely constraint models of the
translated programs.

To this end recall that a general disjunctive rule is a rule of the form:

C = p1| . . . |pk|not(t1)| . . .!not(tl)← q1, . . . , qm,not(r1), . . . ,not(rn)

24

A general disjunctive program is a set of such clauses. An answer set to such
program is constructed as follows: Given M ⊂ At, PM consists of clauses

p1| . . . |pk ← q1, . . . , qm

such that for some t1, . . . , tl in M and for some r1, . . . , rn all not in M ,

p1| . . . |pk|not(t1)| . . .!not(tl)← q1, . . . , qm,not(r1), . . . ,not(rn)

belongs to P . M is an answer set for P if M is an answer set for PM .

We define now the translation as follows. A general disjunctive clause

C = p1| . . . |pk|not(t1)| . . .!not(tl)← q1, . . . , qm,not(r1), . . . ,not(rn)

is translated to a disjunctive constraint clause:

Cv = p1| . . . |pk ← q1, . . . , qm : t1 ∧ . . . ∧ tl ∧ ¬r1 ∧ . . . ∧ ∧rn

We define P v = {Cv : C ∈ P}. We have then the following result

Proposition 8.1 Let P be a general disjunctive program and P v its trans-
lation as a constraint disjunctive program. Then for every M ⊆ At, M is an
answer set for P if and only if M is a constraint model for P v.

Proof: Given M ⊆ At, it is easy to check that

C = p1| . . . |pk ← q1, . . . , qm

belongs to PM if and only if if

C ′ = p1| . . . |pk ← q1, . . . , qm : ⊤

belongs to (P v)M . Since in both cases we look for minimal sets closed under
rules (and all constraints in (P v)M are trivial), we get the desired result. 2

Proposition 8.1 allows us to use the results of Eiter and Gottlob [12] to
determine the complexity of various problems related constraint models of
constraint disjunctive programs.

25

By existence problem for semantics S (and a class of programs C) we
mean the problem of finding if the program P ∈ C possesses a model in the
class S. Similarly, the entailment problem for S is checking whether (given
a program P ∈ C and a formula ϕ) ϕ is true in models of P from S. For the
semantics of answer sets and the class DP , of disjuntive programs without 6
in the heads of clauses, Eiter and Gottlob [12] determined the complexity of
both existence and entailment problems.

Proposition 8.2 (Eiter and Gottlob [12]) Existence problem for answer sets
of disjunctive programs is ΣP

2 -complete. The entailment problem for these
classes is ΠP

2 -complete.

We will use this result together with our translation result (Proposition
8.1) to establish the results on complexity of the existence and entailment
problems for constraint disjunctive programs.

Proposition 8.3 The existence of constraint models of constraint disjunc-
tive programs is a ΣP

2 -complete problem. The corresponding entailment prob-
lem is ΠP

1 -complete.

Proof: We discuss the existence problem, the entailment problem is similar.
First, notice that our problem belongs to the class ΣP

2 . Indeed, after the
initial guess of M , the reduction process takes linear time. Next, we need
to check if M is a minimal model of PM which can be done with one call
to NP-oracle. Second, we establish ΣP

2 -hardness of our problem. Indeed, the
existence problem for answer sets for disjunctive programs reduces to our
problem by Propositions 8.1 and 8.2. This estabilshes that our problem is
ΣP

2 -complete. 2

9 Predicate programs over a recursive, decid-

able, domain

In this section we will look at predicate programs where the constraint check-
ing is done with respect to some recursive and decidable domain. We will

26

see that the least constraint model assigned to such program (see below for
details) has all relations recursively enumerable.

We first need to develop a theory corresponding to Herbrand structures,
but without the restrictions that different ground terms denote different el-
ements. Thus, in particular, Clark’s equality axioms will not hold in our
Herbrand models.

Let A = 〈A,R1, . . . , Rk, f1, . . . , fl, a1, . . .〉 be a relational structure and
〈A, . . . , fl, a1, . . .〉 be its underlying algebra. We say that this algebra (and
by abuse of language A) is generated by constants if every element b ∈ A is
the value of some ground term t(ai1 , . . . , ain).

Now, we define the Herbrand universe U and Herbrand base H of the
language LA in the usual manner. We define in this universe a structure HA

as follows:

R′

i(t1, . . . , tm) iff tA1 = b1,∧ . . . ∧ tAm = bm ∧Ri(b1, . . . , bm)

Eq(t1, t2) iff tA1 = tA2

LetHA = 〈U,R′
1, . . . R

′
k, f1, . . . fl, a1, . . .〉 be a structure on Herbrand universe

with Herbrand interpretation of functions and relations defined above. We
then have:

Proposition 9.1 Let A be a structure generated by constants. and let HA

be the structure over Herbrand universe defined above. Then

1. HA is elementarily equivalent to A

2. The mapping contract : t 7→ tA is a homomorphism of HA onto A.

Proof: The following stronger fact implies both parts. If ϕ is a formula with
at most k free variables then:

HA |= ϕ[t1, . . . , tk] iff A |= ϕ[tA1 , . . . tAk]

This fact is easily proved by induction. The fact that the structure is gener-
ated by constants is used in the quantifier case. 2

27

Usually, the subsets of Herbrand base correspond to relational structures.
In our case, we need to fine tune this correspondence. Namely, we consider
subsets of H closed under Eq. These are subsets M of HA satisfying this
property:

ri(t1, . . . , tk) ∈M ∧ Eq(t1, s1) ∧ . . . ∧ Eq(tk, sk)⇒ ri(s1, . . . , sk) ∈M

There is a one-to-one correspondence between closed subsets of H and rela-
tional structures on the universe of the underlying algebra. We will use this
fact below.

Now, let A = 〈A,R1, . . . , Rk, f1, . . . , fl, a1, . . .〉 be a relational structure.
We say that A is decidable recursive if:

1. A ⊆ N is recursive

2. All Ri, fj are recursive relations and functions

3. 〈a1, . . . , 〉 is recursive

4. A is decidable, that is there is an algorithm that, given any integer k,
a formula ϕ with free variables among v0, . . . , vk−1 and a sequence s of
elements of A of length k, correctly decides if A |= ϕ[s]

5. A is generated by constants.

Now, let P be a predicate constraint program over a domainA. A ground-
ing of P , ground(P) is the set of all ground substitutions of all clauses of P
incremented by the following auxiliary program PA. Namely PA consists of
clauses of three types:
(i) Eq(t1, t2)← : ⊤, whenever tA1 = tA2
(ii) ri(t1, . . . , tn)← : ⊤ whenever 〈tA1 , . . . , tAn 〉 ∈ Ri

(iii) si(t1, . . . , tn)← si(t
′
1, . . . , t

′
n), Eq(t1, t

′
1), . . . , Eq(tn, t

′
n) for all si’s and all

choices of ground terms.
The goal of clauses of types (i) and (ii) is to reconstruct all diagram of A.
The clauses of type (iii) make sure that the subset of extended Herbrand
base that will be computed is closed.

Now we say that a predicate constraint program P over domain A is
simple if:

28

1. The predicate letters r1, . . . , rk (that is names of relations in A) do not
appear in heads of clauses from P

2. The only function symbols appearing in P are those of f1, . . . , fl that
is the only function symbols of LA are allowed.

Thus simple programs do not attempt to redefine relations from A. This is,
of course, entirely analogous to DATALOG situation. Relations definable in
A are treated as extensional relations.

Let DiagA =
⋃

i{ri(t1, . . . , tn) : 〈tA1 , . . . , tAn 〉 ∈ Ri}.

The following lemma says that constraints simple programs depend on A
only.

Lemma 9.2 Let P be a simple program and let M1,M2 be two subsets of
extended Herbrand base such that M1 ∩ DiagA = M2 ∩DiagA. Then PM1 =
PM2.

Lemma 9.2 says that with simple programs the part of the set used for
reduction which is outside of DiagA does not matter.

We now have the result showing that with simple programs the least
model we compute has only recursively enumerable relations.

Proposition 9.3 If A is a decidable recursive structure and P a simple
program, then all relations of the least constraint model of P are recursively
enumerable.

Proof: First of all, notice that P possesses a least constraint model. It
reconstructs all relations Ri (notice the way we defined the grounding of the
program). Since these relations are not redefined, the least constraint model
B has all relations Ri (1 ≤ i ≤ k) identical with those of A. Since A is
recursive, these relations are recursive, thus recursively enumerable.

We show now that the relations Sj (interpreting predicates occurring in
the heads of clauses from P) are also recursively enumerable.

29

To this end, tle 〈b1, . . . , bn〉 be a tuple of elements from A (notice that
the universe of B is A). Since A is generated by constants, there is a tuple
〈t1, . . . , tn〉 so that tAi = bi for 1 ≤ i ≤ n. Take such tuple of terms 〈t1, . . . , tn〉.

Now notice that the program PDiag(A) is recursively enumerable. The reason
is that Diag(A) is recursive.

Thus there is a recursive function L listing all the atoms of the form
si(t1, . . . , tn) which are computed in the computation of all terms in the least

model of PDiagA

. This is so, because all iterations of the T -operator for

PDiagA

are recursively enumerable, and in uniform way.
Now we run L on consecutive inputs. If we compute si(t1, . . . , tn), we put
answer the query 〈b1, . . . , bn〉 ∈ Si in positive. Thus Si is recursively enumer-
able. 2

Notice that this result is optimal in the sense that all the recursively
enumerable sets can be computed with Horn programs and with some small
work the usual argumment can be lifted to the present context.

References

[1] A.V. Aho and J.D. Ullman. Universality of Data Retrieval Languages.
In: ACM Symposium on Principles of Programming Languages 2979,
pages 110–120.

[2] K. Apt. Logic programming. In: J. van Leeuven, editor, Handbook of
Theoretical Computer Science, pages 493–574. MIT Press, Cambridge,
MA, 1990.

[3] K.R. Apt, H.A. Blair, and A. Walker. Towards a Theory of Declarative
Knowledge. In: J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–142, Los Altos, CA, 1987. Morgan
Kaufmann.

[4] C. Baral and M. Gelfond, Logic programming and knowledge repre-
sentation. Journal of Logic Programming 19-20 pages 73-148, 1994.

30

[5] C. Baral and V.S. Subrahmanian. Stable and Extension Class The-
ory for Logic Programs and Default Theories. Journal of Automated
Reasoning 8, pages 345–366, 1992.

[6] H.A. Blair. The recursion-theoretic complexity of predicate logic as
programming language. Information and Control 54, pages 25–47,
1982.

[7] A.K. Chandra and D. Harel. Structure and complexity of relational
queries. Journal of Computer and System Sciences 43, pages 99–128,
1982.

[8] C.C. Chang and H.J. Keisler. Model Theory. North Holland, Amster-
dam, 1972.

[9] K.L. Clark. Negation as failure. In: H. Gallaire and J. Minker, editors,
Logic and data bases, pages 293–322. Plenum Press, 1978.

[10] A. Colmerauer. PROLOG III Reference and Users Manual, PrologIA,
Marseilles 1990.

[11] M. Dincbas and H. Simonis and P. Van Hententryck and A. Aggoun.
The Constraint Logic Programming Language CHIP. In: Proceedings
of the 2nd International Conference on Fifth Generation Computing
Systems, pages 249-264. 1988.

[12] T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive
Logic Programming: Propositional Case. Annals of Mathematics and
Artificial Intelligence, to appear.

[13] M. Gelfond and V. Lifschitz. The Stable Semantics for Logic Pro-
grams. In: Proceedings of the 5th International Symposium on Logic
Programming, pages 1070–1080, Cambridge, MA., 1988. MIT Press.

[14] M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing 9, pages 365–385,
1991.

[15] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In: Pro-
ceedings of the 14th ACM Symposium on Principles of Programming
Languages, pages 111–119, Münich, 1987.

31

[16] J. Jaffar and M. Maher. Constraint Logic Programming: A Survey.
Journal of Logic Programming 19-20, pages 503–581, 1994.

[17] V. Lifschitz and T.Y.C. Woo. Answer Sets in General Nonmono-
tonic Reasoning. Proceedings of the 3rd international conference on
principles of knowledge representation and reasoning, KR ’92, pages
603–614, San Mateo, CA., 1992, Morgan Kaufmann.

[18] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential time, Proceedings of
the 13th annual symposium on switching and automata theory, pages
125–129, IEEE Computer Society, 1972.

[19] C. Pollett and J.B. Remmel. Logic programs with quantified boolean
constraints. Unpublished manuscript, 1995.

[20] R. Reiter. A logic for default reasoning. Artificial Intelligence 13,
pages 81–132, 1980.

[21] M.H. van Emden and R.A. Kowalski. The Semantics of Predicate
Logic as a Programming Language. Journal of the ACM 23 pages
733–742, 1976.

32

