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Abstract. Normal default logic, the fragment of default logic obtained by restricting
defaults to rules of the form α:Mβ

β
, is the most important and widely studied part

of default logic. In [MNR94], we proved a basis theorem for extensions of recursive
propositional logic normal default theories and hence for finite predicate logic normal
default theories. That is, we proved that every recursive propositional normal default
theory possesses an extension which is r.e. in 0′. Here we show that this bound is
tight. Specifically, we show that for every r.e. set A and every set B r.e. in A there
is a recursive normal default theory 〈D, W 〉 with a unique extension which is Turing-
equivalent to A

⊕
B. A similar result holds for finite predicate logic normal default

theories.

1. Introduction

In this paper we investigate the complexity of extensions of normal default theories and for

other closely related modes of nonmonotonic reasoning. In the past number of years non-

monotonic reasoning [Rei80, McC80, MD80, McD82, Moo85, VRS91] has been formalized

and well-understood [MNR90, MNR92b, ABW88, Van88, Prz89b, Lif85, MST90, Prz89a,

Fit91]. These advances were followed by analysis of complexity issues. In case of finite
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propositional logic nonmonotonic formalisms, the basic results are found in [BF91, MT91,

Got92, Van89]. In case of formalisms admitting variables and, more generally, infinite re-

cursive propositional nonmonotonic formalisms, a number of results has been found. These

include basic complexity results for Horn logic [Smu68, AN78], the complexity of the perfect

model semantics of stratified logic programs [AB90], the complexity of the perfect model

semantics of locally stratified logic programs [BMS91], the complexity of the stable model

semantics of logic programs [MNR92a], and the complexity of the well-founded model se-

mantics for logic programs [Sch94]. The complexity of (predicate) circumscription has been

established [Sch87]. A topological characterization of stable, supported and minimal model

semantics of logic programs has been recently studied in [Fer94].

The complexity of finite versions of nonmonotonic formalisms do not always correspond

to the complexity of the corresponding infinitary problems. For instance, the existence

problem for the stable model semantics of logic programs is NP-complete in the proposi-

tional case [BF91, MT91] whereas the corresponding problem for finite predicate programs

is Σ1
1-complete. On the other hand the the well-founded model for finite propositional logic

programs can be computed in polynomial time [Van89] whereas the well founded model of a

finite predicate logic program may be a complete Π1
1 set. Even bigger discrepancies appear

in the case of circumscription, see [Prz89a, Sch87].

In this paper we study the complexity of the extensions of normal default theories and

establish a precise bounds the Turing degrees of such extensions. First of all, recall that by

the fundamental result of Reiter [Rei80] normal default theories always possess an extension.

An extension of 〈D,W 〉 can be computed by a kind of forward-chaining procedure in which

one constructs an extension in stages where at each stage one selects the first (in some

well-ordering) applicable rule and add its conclusion to the extension, see details in [MT93,

MNR93]. In [MNR94], we showed that when this forward chaining procedure is properly

formulated one can prove a basis result for the set of extensions of a recursive normal

propositional logic default theory, namely that a recursive normal default theory always

possesses an extension that is r.e. in 0′ and hence recursive in 0′′.

The main result of this paper is to show that this basis result is sharp. Specifically, we

show that given an arbitrary r.e. set A and a set B which is recursively enumerable in A,

we can find a FC-normal nonmonotonic rule system with a unique extension E such that

E ≡T A
⊕

B. In fact, we will construct a nonmonotonic rule system [MNR90] SA,B which

is stratified, with two strata, such that its unique extension is Turing-equivalent to A
⊕

B.

The system SA,B uses a form of closed world assumption. One can then use various known
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translations, [GL90, MT93, MNR93], to show that this nonmonotonic rule system can also

be represented as recursive propositional or a finite predicate logic program with classical

negation and a recursive propositional or finite predicate logic normal default theory.

We note in passing that the technique used in this paper can be used to find an alternative

and much simpler argument for the main result of [BMS91] where it is shown that any given

hyperarithmetic set is computed by a suitably chosen finite, locally stratified, logic program.

2. Preliminaries

2.1. Nonmonotonic rule systems

A nonmonotonic rule system is a pair S = 〈U,N〉, where U is any set, and N is a set of

nonmonotonic rules over U , that is, entities of the form:

r =
a1, . . . , am : b1, . . . , bn

c
(1)

where a1, . . . , am, b1, . . . , bm ∈ U . Here m, n, or both can be equal to 0. N splits in a natural

fashion into two sets of rules. Those in Mon(S) have n equal to 0 and those in Nmon(S)

have n > 0. The rules in Mon(S) are called monotonic whereas those in Nmon(S) are called

nonmonotonic.

The intended meaning of a rule of the form (1) is as follows: “If for a given context C,

all ai’s are derived, and all bj’s are not in C, then derive c.” More formally, we introduce

the notion of S-derivation (for S ⊆ U). This is a sequence 〈c1, . . . , cs〉 such that there is a

rule of the form

(1)
: b1, . . . bn

c1

∈ N

where b1, . . . , bn /∈ S (n can be 0) and for every 1 < j ≤ s, there is a rule of the form

(2)
ci1 , . . . , cir : b1, . . . bn

cj

∈ N

where i1, . . . , ir < j, and b1, . . . , bn /∈ S (n can again be 0).

Thus, an S-derivation is like a usual derivation except that the applicability of rules

is controlled by S, called a context. The set of S-derivable elements of U is denoted by

CS. We then introduce the notion of an extension of a system S by saying that S is an

extension of S if S = CS. The notion of extension generalizes the notions of an extension of

a default theory [Rei80], an extension of a truth maintenance system [Doy79], a stable model

of logic program [GL88], an answer set of logic program with classical negation [GL90], an
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S-expansion of a modal theory [MD80, McD82] and a stable expansion of modal theory

[Moo85]. The precise connection of nonmonotonic rule systems and these formalisms is

discussed in [MNR90, MNR92b].

In [MNR94] we studied conditions that guarantees the existence of extensions since that

is a minimal condition to have a viable theory of belief revision in many applications. There

are several such conditions in the published literature. Some of these will be used below.

These include the notion of stratification [ABW88] and its generalization, local stratification

[Prz88]. These conditions guarantee (when described in the language of nonmonotonic rule

systems) the existence of a unique extension (this is, of course, the perfect model of the

program encoding the system). In the case of default logic, Reiter introduced the notion

of a normal default theory and proved that any normal default theory always possesses an

extension although, in general, it is not unique.

In [MT93] it has been shown how to construct Reiter extensions of a normal default theory

via a kind of forward chaining construction. The key to generalizing this construction to

nonmonotonic rule systems was to realize that the form of the rules in a normal default

theory insured that the forward chaining construction maintained consistency. In [MNR94],

we generalized normal default theories to what we called Forward Chaining (FC) normal

nonmonotonic rule systems. We briefly recall the relevant notions here.

Given a set U , a family of subsets of U , Cons is called a consistency property ([Sco82])

if the following conditions are met:

1. ∅ ∈ Cons

2. X ∈ Cons and Y ⊆ X implies Y ∈ Cons

3. If A ⊆ Cons is directed (i.e., X,Y ∈ A implies there is Z ∈ A such that X ⊆ Z, Y ⊆

Z), then
⋃
A ∈ Cons.

When S = 〈U,N〉 is a nonmonotonic rule system and Cons is a consistency property, then

we say that S is FC-normal with respect to Cons is these additional two properties are met:

4. If A ∈ Cons then Clmon(A) ∈ Cons (where Clmon(A) is the closure of A under all rules

in Mon(S)).

5. All rules in Nmon(N) are FC-normal with respect to Cons, i.e. if

r =
a1, . . . , am : b1, . . . , bn

c

belongs to N and A ⊆ U are such that Clmon(A) = A, a1, . . . , am ∈ A, b1, . . . , bn /∈ A,

and c /∈ A then (a) A ∪ {c} ∈ Cons and (b) A ∪ {bj, c} /∈ Cons for every 1 ≤ j ≤ m.
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We say that S is FC-normal if it is FC-normal with respect to some consistency property.

The idea here is that we build our extension using forward chaining (hence FC in the

name) maintaining the “approximations’ to the constructed extension within the family

Cons. The crucial condition (5) makes sure that the application of a rule will never be

invalidated in the future. Indeed, once a rule has been applied and its conclusion accepted,

we maintain consistency (condition (5.a)) but we will never will be able to add any of the

restraints bi while maintaining consistency (condition (5.b)).

The following results generalize the results normal default theories of Reiter [Rei80] are

proved in [MNR94].

First, an FC-normal nonmonotonic rule system S always possesses at least one extension.

Also, all extensions of S are consistent with respect to any consistency property Cons for

which S is FC-normal.

Second, the forward chaining algorithm for constructing extensions (as introduced in

[MNR93]) produces extensions (and not only partial extensions) for all the well orderings of

Nmon(S).

Third, all extensions of S are obtained by the forward chaining procedure.

Forth, different extensions of S are orthogonal with respect to Cons, i.e. their union

does not belong to Cons.

Other properties exhibited in Reiter’s paper [Rei80] generalize to the context of normal

nonmonotonic rule systems as well. Moreover, we show in [MNR94] that the normal default

theories can, indeed, be represented as FC-normal nonmonotonic rule systems.

2.2. Default Logic and its fragment, Normal Default Logic

A default rule is a nonmonotonic derivation rule

d =
α : Mβ1, . . . ,Mβk

γ

where α, β1, . . . , βk, γ are formulas of propositional language. A default theory is a pair

〈D,W 〉 such that D is a set of defaults, and W is a set of formulas of the propositional

language.

Given a default theory 〈D,W 〉 introduce the operator Γ : L → L as follows. Given S, let

Γ(S) be the least set of formulas U such that W ⊆ U , U is closed under logical consequences,

i.e. Cn(U) = U , and for all defaults d in D, if α ∈ S and ¬β1 /∈ S, . . . , ¬βk /∈ S then γ ∈ U .
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It is easy to see that such U always exists. The operator Γ is antimonotonic. Fixed points

of Γ are called extensions of 〈D,W 〉. Extensions of default theories and their properties has

been intensely studied by researchers in logical foundations of Artificial Intelligence.

Of particular importance for applications are default rules of the form α:Mβ

β
. These are

called normal default rules. When D consists of normal default rules, then 〈D,W 〉 is called

normal default theory. Normal default theories always possess extensions. In [MNR94] we

proved that a recursive normal default theory possesses an extension which is r.e. in 0′. It

is natural to ask how sharp is this bound. Can it be lowered? It is our goal to show that it

is not possible.

3. Nonmonotonic rule systems with a unique extension
coding a desired set

Let φ0, φ1, . . . be a list of all partial recursive functions and φA
0 , φA

1 , . . . be a list of all partial

recursive function relative to an oracle A. A subset X ⊆ ω is called r.e. (r.e. in A) if X

equals the domain of some φe (φA
e ). Given a pair of sets, A,B ⊆ ω, A

⊕
B = {2x : x ∈

A} ∪ {2x + 1 : x ∈ B}.

Let Me be the eth Turing oracle machine. Then there is a predicate ϕC,D
e,x,n which holds

precisely if the machine Me with the input x converges in exactly n steps and during this

computation the elements about which the oracle receives queries are precisely the elements

of C ∪D and moreover the oracle answers YES to the queries in C and NO to queries in D.

Let A be an r.e. set, and let B be a set r.e. in A. In this section we describe a construction

of a recursive FC-normal nonmonotonic rule system S = SA,B = 〈U, n〉 such that S possesses

a unique extension, E, and E ≡T A
⊕

B.

Let e be such that B = {x : φA
e (x) ↓}. Let f be a one-one recursive function whose range

is A and let AS = {f(0), . . . , f(s)}.

The set U is the union of three disjoint sets of elements:

1. {as
i : i, s ∈ ω}. These describe the enumeration of the set A.

2. {an
i,x : i, n, x ∈ ω} ∪ {ān

i,x : i, n, x ∈ ω}. These are the elements used to describe the

elements of used in the computation φA
e (x).

3. {bx : x ∈ ω}. These elements will be used to construct the set B.

Next we describe the set of rules N . The set N consists of two groups of rules: monotonic

rules Mon(S) and nonmonotonic rules Nmon(S).
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(a) Mon(S) consists of two groups of rules:

(i) { :
as

i

: s ∈ ω, i = f(s)}. These rules reflect the enumeration of A in stages.

(ii) {
as

i
:

an
i,x

: i, n, s, x ∈ ω}. These rules do two things for us. First, they provide us

copies of the elements of A to code the computation φA
e (x) . Second, they will be

used to enforce normality of our system.

(b) Nmon(S) consists again of two groups of rules:

(i) {
:an

i,x

ān
i,x

: i, n, x ∈ ω}. These are nothing else but the closed world assumption with

respect to the constants an
i,x. It will be crucial in our proof of normality of S.

(ii) Here we have an infinite collection of rules:

{
an

i1,x
,...an

ik,x
:ān

j1,x
,...,ān

jl,x

bx
: ϕC,D

e,x,n holds and C = {i1, . . . , ik},

D = {j1, . . . , jl}}

These are the rules which we use to compute B.

The required consistency property, Cons, is defined as follows.

X ∈ Cons⇔ ¬∃i,n,x{a
n
i,x, ā

n
i,x} ⊆ X

Our rules ensure that an
i,x will be in the extension if i ∈ A and that ān

i,x will be in the

extension if i /∈ A. Thus, X is “consistent” if it does not contain a pair of “contradictory”

elements an
i,x, ān

i,x.

Our main result is the following theorem.

Theorem 3.1. S = 〈U,N〉 is a recursive FC-normal nonmonotonic rule system with respect

to the consistency property Cons above. Moreover S has a unique extension E = {as
i :

f(s) = i} ∪ {an
i,x : i ∈ A} ∪ {ān

i,x : i /∈ A} ∪ {bx : x ∈ B} which is Turing equivalent to A
⊕

B

.

Proof: We will prove four facts:

1. S is a recursive nonmonotonic rule system

2. S is FC-normal with respect to the consistency property Cons as defined above

3. S is stratified, with two strata (this implies uniqueness of extension)

4. The unique extension E of S is Turing equivalent to A
⊕

B.
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Clearly, U is a recursive set, since it is easy to see that each of its three components is

recursive.

Next, we look at the rules of N . Since the family 〈As〉s∈ω is a recursive decomposition

of A, the group (a)(i) is recursive. It should be entirely obvious that the group (a)(ii) is

recursive too. The group (b)(i) is clearly recursive – it encodes the Closed World Assumption

with respect to the set of elements an
i,x which is a recursive set. Finally, the group (b)(ii) is

again recursive since there is an effective algorithm to see if ϕC,D
x,n holds. This shows that N

is a recursive set of rules. Thus S is a recursive nonmonotonic rule system.

In order to prove FC-normality of S, we investigate the form of families of sets closed

under the monotonic rules. Clearly, if S is such set then S contains all the elements as
i for

all i ∈ As \ as−1. Moreover, whenever as
i ∈ S then an

i,x ∈ S. From the form of our rules it

follows that the two above conditions determine all sets closed under the monotonic rules.

Notice that no monotonic rule allows derivation of any ān
i,x or bx.

Now, we show that every nonmonotonic rule in N is normal with respect to the property

Cons. So assume that S is consistent with respect to Cons and closed under monotonic

rules. We need to consider two cases.

Case of the rules of the type (b)(i). Here

r =
: an

i,x

ān
i,x

Since ān
i,x is not a premise of any monotonic rule, the monotonic closure of S∪{ān

i,x} coincides

with S ∪ {ān
i,x}. Moreover S ∪ {ān

i,x, a
n
i,x} is inconsistent. Thus all these rules are normal.

Case of the rules of the type (b)(ii). Here the first condition of normality follows in the

fashion similar to the previous case. If S is closed and consistent w.r.t Cons then so is

S ∪ {bx}. On the other hand, adding to that set ān
i,x (where ān

i,x appears in the constraint of

the rule r) must result in inconsistency, for since x does not belong to the complement of A,

x belongs to A and so the element an
i,x ∈ S. This shows that our system 〈U,N〉 is normal.

We are now showing that the system 〈U,N〉 is stratified for then we can use the argument

of [ABW88]. Actually, it is very easy to see that the following is a stratification of the length

two.

The objects as
i , a

n
i,x are in stratum 0.

The objects ān
i,x are in stratum 1.

The objects bx are also in stratum 1.

The fact that 〈U,N〉 is stratified is immediate – by the form of rules in N . This implies that
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〈U,N〉 has a unique extension.

Finally, in order to show that the unique extension E of S is Turing equivalent to A
⊕

B,

we establish four equivalences which together imply our statement.

(a) as
i ∈ E if and only if i ∈ As \ As−1

(b) ai
n,x ∈ E if and only if i ∈ A

(c) āi
n,x ∈ E if and only if i /∈ A

(d) bx ∈ E if and only if x ∈ B

Both (a) and (b) are obvious. Thus we know that

E ∩ ({as
i : s, i ∈ ω} ∪ {an

i,x : i, n, x ∈ ω}) = {as
i∃si ∈ As \ As−1} ∪ {an

i,x : i ∈ A}

This immediately implies (c) by the fact that we have a Closed World Assumption on the

constants ai
n,x, āi

n,x. (d) follows from the description of how B is computed from A. Thus E

is Turing reducible to A
⊕

B. The converse reducibility is obvious from (b) and (d). 2

In [MNR94] we proved the following result

Theorem 3.2. ([MNR94]) Suppose that S = 〈U,N〉 is a recursive nonmonotonic rule

system and S is FC-normal. Then S has an extension E such that E is r.e. in 0′ and hence

E ≤T 0′′.

Since our system SA,B possesses a unique extension E which is Turing-equivalent to

A
⊕

B, the estimate of Proposition 3.2 cannot be improved.

We will show now how our results on the complexity of nonmonotonic rule systems can

now be used to show that the bound on the complexity of extensions of normal default

theories cannot be lowered. To this end we again rewrite the nonmonotonic rule system

SA,B as a logic program P ⋆.

(0) as
x ← for x ∈ As \ As−1.

(1) an
i,x ← as

i for all i, n, s, x ∈ ω.

(2) ān
i,x ← not(an

i,x) for all i, n, x ∈ ω.

(3) bx ← an
i1,x, . . . a

n
ik,x, ā

n
j1,x, . . . , ā

n
jl,x

whenever ϕC,D
x,n holds and

C = {i1, . . . , ik}, D = {j1, . . . , jl}.

This logic program is then translated into default logic in the manner of [MT89, GL90]. One

additional element is that we must make sure that under this logical interpretation ān
i,x is

equivalent to ¬an
i,x. We are then getting the following default theory 〈D,W 〉, where W is:
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as
x for x ∈ As \ As−1.

as
i ⊃ an

i,x for all i, n, s, x ∈ ω.

an
i1,x, . . . a

n
ik,x, ā

n
j1,x, . . . , ā

n
jl,x
⊃ bx whenever ϕC,D

x,n holds and

C = {i1, . . . , ik}, D = {j1, . . . , jl}.

ān
i,x ⇔ ¬an

i,x

Default part of our theory is:

{
:M¬an

i,x

¬an
i,x

: i, n, x ∈ ω}.

It is obvious that the default theory 〈D,W 〉 is normal. We use now the following fact

[BF91, MT89, GL90]:

Proposition 3.1. M is an extension of the program P ⋆ if and only if Cn(M) is a default

extension of 〈D,W 〉.

It is obvious that M and Cn(M) are of the same Turing degree. Since M is Turing-

equivalent to A
⊕

B, so is Cn(M) which is a unique extension of the default theory 〈D,W 〉.

This completes our discussion of the complexity estimate of default extensions of normal

default theories. We formulate it explicitly as a corollary.

Corollary 3.1. Let A be an r.e. set and let B be r.e. in A. Then there exists a recursive

normal default theory 〈D,W 〉 such that 〈D,W 〉 possesses a unique extension S and S ≡T

A
⊕

B.

We do not have the space in this abstract to show how we can write a finite logic program

and a finite predicate logic normal default theory which are equivalent respectively to the

recursive logic program and the recursive normal default theory described above. However

one can use the techniques in [MNR92a] to accomplish this.

We end this abstract with one last remark. One way of looking at the nonmonotonic

rule system SA,B is that we have constructed a stratified nonmonotonic rule system with

two strata whose unique extension which allows us to code up to 0′′. This process can be

extended. For example, suppose that C is r.e. in B, say C = {x : φB
f (x) ↓}. Then we can

add a new strata of rules to SA,B to form a stratified nonmonotonic rule system SA,B,C with

3 strata whose unique extension is Turing equivalent to (A
⊕

B)
⊕

C. That is, we simply

add the following rules.

(i) { bi:
bn
i,x

: i, n, s, x ∈ ω}.
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(ii) {
:bn

i,x

b̄n
i,x

: i, n, x ∈ ω}.

(iii) Here we have an infinite collection of rules:

{
bn
i1,x

,...bn
ik,x

:b̄n
j1,x

,...,b̄n
jl,x

bx
: ϕH,K

f,x,n holds and H = {i1, . . . , ik},

K = {j1, . . . , jl}}

We note, however, that SA,B,C will no longer be FC-normal by Theorem 3.2.

This process can easily be continued to produce a stratified nonmonotonic rule system

with n strata, for any n ∈ ω, whose unique extension codes up the n-th jump of the recursive

sets, O(n) which implies the main result in [AB90]. Indeed, the process can easily be extended

to the transfinite, to produce a recursive locally stratified nonmonotonic rules system whose

unique extension will code 0(α) for any recursive ordinal α which implies the main result of

[BMS91]. In both cases, we can replace the recursive nonmonotonic rule systems by finite

predicate logic programs.
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