
The Stable Models of a
Predicate Logic Program

V. Wiktor Marek

Department of Computer Science

University of Kentucky

Lexington, KY 40506–0027, USA

Anil Nerode

Mathematical Sciences Institute

Cornell University

Ithaca, NY 14853

Jeffrey B. Remmel

Department of Mathematics

University of California at San Diego

La Jolla, CA 92903

1 Statement of problems and results

In this paper we investigate and solve the problem classifying the Tur-
ing complexity of stable models of finite and recursive predicate logic
programs.

Gelfond-Lifschitz [7] introduced the concept of a stable model M of
a Predicate Logic Program P . Here we show that, up to a recursive 1-1
coding, the set of all stable models of finite Predicate Logic Programs
and the Π0

1 classes (equivalently, the set of all infinite branches of re-
cursive trees) coincide (Theorems 4.1 and 5.1). Typical consequences:
1) there are finite Predicate Logic Programs which have stable models,
but which have no hyperarithmetic stable models; 2) for every recur-

1



sive ordinal α there is a finite Predicate Logic Program with a unique
stable model of the same Turing degree as 0α (Corollary 5.7). Another
consequence of this result is that the problem of determining whether
a finite Predicate Logic Program has a stable model is Σ1

1-complete,
i.e. the set of Gödel numbers of finite Predicate Logic Programs which
have stable models is a Σ1

1-complete set.

A support of a ground atom p is, roughly, a subset A of the Herbrand
base such that whenever M is a stable model of the program P and A∩
M = ∅ then p ∈M (see below for a precise definition). Among supports
of a ground atom p, there are always inclusion-minimal ones. Such
minimal supports are finite. We call a program P locally finite if every
atom has only finitely many minimal supports. Under our codings,
locally finite Logic Programs correspond exactly to finitely splitting
trees. Locally finite Logic Programs, for which there is an effective
algorithm which applied to an atom p, produces a explicit list of all
the minimal supports of p, correspond to recursively splitting recursive
trees. We also show that local finiteness is a continuity property by
associating with every Logic Program an operator on the Herbrand Base
such that the program is locally finite iff the operator is continuous. It
turns out that the classification of programs according to the number
of supports of atoms provides additional information on the complexity
of their stable models.

2 Motivation

Why are we interested in how hard it is to construct stable models M
of Predicate Logic Programs P , and more generally in what the set of
all stable models is like? Because stable models are good theoretical
and computational candidates for knowledge representation of the set
of beliefs, or point of view, of an agent holding to a theory in one of a
variety of nonmonotone reasoning systems. These systems include:

• Reiter’s extensions in Default Logic [23],

• Doyle’s extensions in truth maintenance systems [6],

• Marek-Nerode-Remmel’s theory of extensions in non-monotone
rule systems [15, 16, 17, 18],

• Reinfrank et al. theory of nonmonotonic formal systems [22],

2



• Gelfond-Lifschitz stable models of logic programs [7].

McCarthy ([20]) suggested that non-monotonic reasoning could be
formulated as a mathematical discipline. He introduced two notions
of circumscription as a first try. The other systems above followed in
his wake. The Marek-Nerode-Remmel formulation ([15]) was specifi-
cally designed to abstract all important common features in a logic-
free formulation. It is a convenient half-way point for reformulation
of non-monotonic theories as Logic Programs. Generally, the idea be-
hind non-monotonic reasoning is that we should be allowed to deduce
conclusions using a theory consisting of premises and rules of inference
which can be a combination of

- knowledge, never later revised

and

-belief, held in the absence of contrary knowledge.

If we deduce using only knowledge, we are in the traditional do-
main of classical logic since Aristotle. If we deduce using beliefs as
well, we can then deduce due to absence of knowledge as well as from
its presence. We are then in the domain of non-monotonic reasoning.
A warning to the untutored is that the notion of a unique least deduc-
tively closed set containing a theory, stemming from monotonic logics,
is not appropriate for any of the non-monotone reasoning systems listed
above. Rather, there are many minimal deductively closed sets for the
theory, no one including another. If we pick one of these minimal de-
ductively closed sets for the theory as our current ”point of view” for
decision making, and later new knowledge is obtained contradicting a
belief of the theory, then we are impelled, for consistency’s sake, to
revise our theory by abandoning the offending belief. Also, we must
abandon all conclusions inferred from beliefs contradicting facts, and
we then must adopt a new theory and as a new “point of view”, an-
other minimal deductively closed set for that new theory. In contrast,
in traditional monotone reasoning, once a premise is established, it and
its consequences are never retracted or revised later. Characteristic of
non-monotonic reasoning is retraction. Beliefs may be falsified by later
facts and have to be abandoned, or at least replaced by new beliefs.
What we are carrying out in other papers [18] is

- representing non-monotonic theories (premises and rules of infer-
ence) of current knowledge and belief as a Logic Program P ,

3



- representing our current choice of a model, or deductively closed
“point of view”, as the choice of a stable model M of that Logic Pro-
gram,

thus letting a pair (P , M) represent our current ”state of mind”. That
is, when new facts contradict old beliefs, or newly preferred beliefs
replace less preferred beliefs, we have a new Logic Program P ′ and
need a new stable model M ′ of that theory to move to a new revised
“state of mind” (P ′, M ′). How to do this is our proposed calculus of
belief revision using stable models ([17]).

To repeat, the Logic Programming machinery is a vehicle for natu-
ral representation of the syntax, deductive structure, and intended se-
mantics of all the non-monotonic reasoning systems alluded to above.
Implementations of Logic Programming can, in principle, be used as
interpreters or compilers for these non-monotone reasoning systems.
These implementations now vary widely, from those based on tradi-
tional Robinson’s resolution to methods based on Jeroslow’s ”logic as
mixed integer programming” paradigm ([3]). Equally important, in-
formal and formal semantic reasoning about extensions of a default
theory or a truth maintenance system can be carried out entirely using
semantic reasoning about corresponding stable models of a correspond-
ing Logic Program.

Where do the Logic Programs corresponding to nonmonotone the-
ories come from? When stripped of logical and syntactic finery, many
different non-monotonic logic systems have the same mathematical and
computational structure, including their natural semantics. This is why
algorithms for Logic Programs can also be used for default logic [23],
truth maintenance systems [6, 5], circumscription [12, 13]. This can be
dimly seen through the ad hoc translations of such systems into one
another [8, 11, 19, 22]. But the diverse symbolisms are complicated
and to a large extent irrelevant. The authors [15, 16] developed a com-
mon conceptual logic-free framework of non-monotone rule systems.
The computational and mathematical equivalence of most of the sub-
jects listed above is outlined there. Non-monotonic rule systems can
be used as an easy intermediate stepping stone to reformulate theories
and extensions of default logic and truth maintenance systems as Logic
Programs and stable models.

To summarize, Logic Programming not only is an example of a non-
monotonic reasoning system, but any interpreter or compiler for Logic
Programs which computes stable models can also serve to compute
extensions in the other non-monotonic reasoning systems listed above.

4



We remark that the non-monotonic rule system approach also revealed
that finding stable models of logic programs and finding marriages for
marriage problems and finding chain covers for partially ordered sets
and many other combinatorial questions are essentially equivalent [15],
allowing us to think about extensions using standard mathematics and
algorithms for that standard mathematics.

2.1 Stable models

For an introductory treatment of Logic Programs, see [14]. Here is a
brief self-contained account of their stable models [7]. Assume as given
a fixed first order language based on predicate letters, constants, and
function symbols. The Herbrand base of the language is defined as
the set BL of all ground atoms (atomic statements) of the language. A
literal is an atomic formula or its negation, a ground literal is an atomic
statement or its negation. A Logic Program P is a set of “program
clauses”, that is, an expression of the form:

p← l1, . . . , lk (1)

where p is an atomic formula, and l1, . . . , lk is a list of literals.

Then p is called the conclusion of the clause, the list l1, . . . , lk is
called the body of the clause. Ground clauses are clauses without vari-
ables. Horn clauses are clauses with no negated literals, that is, with
atomic formulas only in the body. Horn clause programs are programs
P consisting of Horn clauses. Each such program has a least model in
the Herbrand base determined as the least fixed point of a continuous
operator TP representing 1-step Horn clause logic deduction ([14]).

Informally, the knowledge of a Logic Program is the set of clauses
with no negated literals in the bodies, that is, the Horn clauses. The set
of beliefs of a Logic Program is the set of clauses with negated literals
occurring in the bodies. This use of language is sufficiently suggestive to
guide the reader to translations of many nonmonotone theories in other
reasoning systems into equivalent Logic Programs so that extensions as
models for the non-monotonic theory correspond to stable models as
models for the Logic Program.

A ground instance of a clause is a clause obtained by substituting
ground terms (terms without variables) for all variables of the clause.
The set of all ground instances of the program P is called ground(P ).

Let M be any subset of the Herbrand base. A ground clause is

5



said to be M -applicable if the atoms whose negations are literals in the
body are not members of M . Such clause is then reduced by eliminating
remaining negative literals. This monotonization GL(P,M) of P with
respect to M is the propositional Horn clause program consisting of
reducts ofM -applicable clauses of ground(P ) (see Gelfond-Lifschitz [7]).
Then M is called a stable model for P if M is the least model of the
Horn clause program GL(M,P ). We denote this least model as NM,P .
It is easy to see that a stable model for P is a minimal model of P ([7]).
We denote by Stab(P ) the set of all stable models of P . There may be
no, one, or many stable models of P .

We should note that the syntactical condition of stratification of
Apt, Blair, and Walker [2] singles out programs with a well-behaved,
unique stable model, but there is no reason to think that in belief
revision one could move from stratified program to stratified program;
but how one might do this is an interesting and challenging question.

2.2 Proof schemes

What kind of proof theory is appropriate for Logic Programs? The key
idea for our proofs is that of a proof scheme with conclusion an atom
p. Proof schemes are intended to reflect exactly how p is a finitary
non-monotonic consequence of P .

Of course, a proof scheme must use, as in Horn Logic, the positive
information present in the positive literals of bodies of clauses of P , but
proof schemes also have to respect the negative information present in
the negative literals of bodies of clauses. With this motivation, here is
the definition. A proof scheme for p with respect to P is a sequence
of triples < 〈pl, Cl, Sl〉 >1≤l≤n, with n a natural number, such that the
following conditions all hold.

1. Each pl is in BL. Each Cl is in ground(P ). Each Sl is a finite
subset of BL.

2. pn is p.

3. The Sl, Cl satisfy the following conditions. For all 1 ≤ l ≤ n, one
of (a), (b), (c) below holds.

(a) Cl is pl ←, and Sl is Sl−1,

(b) Cl is pl ← ¬s1, . . . ,¬sr and Sl is Sl−1 ∪ {s1, . . . , sr}, or

6



(c) Cl is pl ← pm1 , . . . , pmk
,¬s1, . . . ,¬sr, m1 < l,. . . ,mk < l, and

Sl is Sl−1 ∪ {s1, . . . , sr}.

(We put S0 = ∅).

Suppose that ϕ =< 〈pl, Cl, Sl〉 >1≤l≤n is a proof scheme. Then conc(ϕ)
denotes atom pn and is called the conclusion of ϕ. Also, supp(ϕ) is the
set Sn and is called the support of ϕ.

Condition (3) tells us how to construct the Sl inductively, from the Sl−1

and the Cl. The set Sn consists of the negative information of the proof
scheme.

A proof scheme may not need all its lines to prove its conclusion. It
may be possible to omit some clauses and still have a proof scheme with
the same conclusion. If we omit as many clauses as possible, retaining
the conclusion but still maintaining a proof scheme, this is a minimal
proof scheme with that conclusion. It may be possible to do this with
many distinct results, but obviously there are only a finite number of
ways altogether to trim a proof scheme to a minimal proof scheme
with the same conclusion, since no new clauses are ever introduced. Of
course, a given atom may be the conclusion of no, one, finitely many, or
infinitely many different minimal proof schemes. These differences are
clearly computationally significant if one is searching for a justification
of a conclusion. The apparatus needed to discuss this was introduced
in [15].

Formally, preorder proof schemes ϕ, ψ by ϕ ≺ ψ if

1. ϕ, ψ have same conclusion,

2. Every clause in ϕ is also a clause of ψ.

The relation ≺ is reflexive, transitive, and well-founded. Minimal
elements of ≺ are minimal proof schemes.

Here are some propositions from [15, 16].

Proposition 2.1 Let P be a program and M ⊆ BL. Let p be an atom.
Then p is in NP,M if and only if there exists a proof scheme with con-
clusion p whose support is disjoint from M .

If Z is a set of atoms we let ¬Z be the conjunction of all the negations
of atoms of Z. Now fix program P and atom p for the discussion.
Associate with the atom p a (possibly infinitary) Boolean equation Ep

p↔ (¬Z1 ∨ ¬Z2 ∨ . . .), (2)

7



where the Z1, Z2 . . . is a (possibly infinite) list of supports of all minimal
proof schemes with conclusion p with respect to P . In fact, for our pur-
poses it is enough to list only the inclusion-minimal supports. This is
called a defining equation for p with respect to P . If there are infinitely
many distinct minimal supports for proof schemes with conclusion p,
this will be an infinitary equation. We make two other conventions
about the defining equation of p. Namely 1) If p is not the conclusion
of any proof scheme with respect to P , then the defining equation for
p is p ↔⊥, which is equivalent to ¬p. Hence in this case, ¬p must
hold in every stable model of P . 2) If p has a proof scheme with empty
support, that is, a proof scheme which uses only Horn clauses, then the
defining equation for p is equivalent to ⊤. In this case, p belongs to
all stable models of P . The set EqP of all equations Ep obtained as p
ranges over the Herbrand base is called a defining system of equations
for program P .

Example 2.1 Let P be a program:
p(0)← ¬q(X)
nat(0)←
nat(s(X))← nat(X).

Then for each n, < 〈p(0), p(0)← ¬q(sn(0)), {q(sn(0)}〉 > is a minimal
proof scheme with conclusion p(0). Thus atom p(0) has an infinite
number of minimal proof schemes with respect to program P .

Proposition 2.2 Let P be a logic program with defining system of
equations EqP . Let M be a subset of the Herbrand universe BL. Then
M is a stable model for P if and only if M ∪ {¬q: q ∈ BL \M} is a
solution of the system EqP .

Here is a second characterization of stable models via proof schemes.

Proposition 2.3 Let P be a program. Also, suppose that M is a sub-
set of the Herbrand universe BL. Then M is a stable model of P if,
and only if, for every p ∈ BL, it is true that p is in M if and only if
there exists a proof scheme ϕ with conclusion p such that the support
of ϕ is disjoint from M .

8



2.3 FSP Logic Programs

We now examine Logic Programs P such that every defining equation
for every atom p is finite. This is equivalent to requiring that every
atom has only a finite number of inclusion-minimal supports of minimal
proof schemes. Such a program may have the property that there is an
atom which is the conclusion of infinitely many different minimal proof
schemes, but these schemes have only finitely many supports altogether
among them.

Example 2.2 Let P be the program:
p(0)← q(X)
q(X)← ¬r(0)
nat(0)←
nat(s(X))← nat(X).

Then the atom p(0) is the conclusion of infinitely many proof schemes:

< 〈q(sn(0)), q(sn(0))← ¬r(0), {r(0)}〉, 〈p(0), p(0)← q(sn(0)), {r(0)}〉 >

as n ranges over ω.
The single minimal support of all these proof schemes is {r(0)}.
That is, whenever r(0) is not in M , then p(0) will be in NP,M .

A finitary support program (FSP program) is a Logic Program such that
for every atom p, there is a finite set of finite sets S, which are exactly
the inclusion-minimal supports of all those minimal proof schemes with
conclusion p.

3 FSP and Continuity

In this section we study the FSP property. It turns out that this prop-
erty is equivalent to the continuity property for a suitably defined oper-
ator. This is precisely the same operator whose square (that is two-fold
application) determines the monotonic operator whose least and largest
fixpoints determine the well-founded model of the program ([27]).

Associate an operator with each Logic Program as follows.

Definition 3.1 Let P be a program. The operator FP : P(BL) →
P(BL) is defined as follows: If S ⊆ BL then FP (S) is the set of all

9



atoms in BL for which there exists a proof scheme p such that supp(p)∩
S = ∅. Thus FP assigns to S the set NS,P .

Proposition 3.2 The operator FP is anti–monotonic, that is, if S1 ⊆
S2, then FP (S2) ⊆ FP (S1).

Proposition 3.3 The operator FP is lower half-continuous; that is,
if 〈Sn〉n∈ω is a monotone decreasing sequence of subsets of BL then⋃

n∈ω FP (Sn) = FP (
⋂

n∈ω Sn).

Proof: Suppose that p ∈ BL is an atom. Then there exists a set Xp

of finite subsets of BL such that for every S ⊆ BL, p ∈ FP (S) if and
only if there is a Y in Xp disjoint from S. Next, assume that 〈Sn〉n∈ω

is a descending sequence of subsets of the Herbrand base BL and apply
Proposition 3.2. We get the inclusion:

⋃

n∈ω

FP (Sn) ⊆ FP (
⋂

n∈ω

Sn)

Conversely, assume that p is in FP (
⋂

n∈ω Sn). Then there exists a finite
Y in Xp,such that

⋂
n∈ω Sn is disjoint from Y . This implies that there

exists a finite n0 such that
⋂

n≤n0
Sn is disjoint from Y . Since the

sequence 〈Sn〉n∈ω is monotone decreasing, Sn0 is disjoint from Y . Thus
p is in FP (Sn0), and therefore in

⋃
n∈ω FP (Sn). 2

Proposition 3.4 Let P be a Logic Program. Then following conditions
are equivalent:
(a) P is an FSP Logic Program.
(b) FP is an upper half-continuous operator; that is, whenever 〈Sn〉n∈ω

is a monotone increasing sequence of subsets of BL, we have

⋂

n∈ω

FP (Sn) = FP (
⋃

n∈ω

Sn)

Proof: Assume (a), namely assume that P is FSP. We must prove that

⋂

n∈ω

FP (Sn) = FP (
⋃

n∈ω

Sn).

The inclusion ⊇ follows immediately from the anti–monotonicity of FP

(Proposition 3.2).

Now let us assume that p is in
⋂
F (Sn). It follows that for every n in

ω, there exists a Y in XP such that Sn is disjoint from Y . Since Xp is

10



finite, there must be a Y in XP such that for infinitely many n, Sn is
disjoint from Y . Since the sequence 〈Sn〉n∈ω is monotone increasing, all
Sn must omit Y . Thus (

⋃
n∈ω Sn)∩ Y = ∅. So the implication (a)⇒(b)

holds.

Now assume (b), namely that FP is upper half-continuous. We must
show that each Xp is finite. Assume otherwise, for a contradiction. So
suppose that p is such that Xp is infinite. Since we can assume that
Xp contains only inclusion-minimal supports, we face to the following
situation: There is an infinite set of finite sets, X such that the elements
of X are pairwise inclusion-incompatible and X is a family of sets such
that for every S, p ∈ FP (S) if and only if for some Y ∈ X , Y ∩ S = ∅.

Order the countably infinite set X with order type ω as X = 〈Y0, Y1, . . .〉.
We now construct two sequences, one 〈an〉n∈ω of elements of BL, the
other 〈Kn〉n∈ω a sequence of subsets of ω.

Define K0 = ω, let a0 be the first element of Y0 (we assume that BL is
ordered of ordertype ω as well) such that {j : a /∈ Yj} is infinite.
We claim that a0 is well-defined. Otherwise, for every a ∈ Y0 there is
a natural number na such that for all m > na, a ∈ Ym. Then, since Y0

is finite, there is an n ∈ ω such that for all m > n, Y0 ⊆ Ym (we just
need take n = maxa∈Y0na). We have a contradiction because distinct
elements of X are incomparable with respect to inclusion. Hence a0

exists and we may set K1 = {n ∈ K0 : a0 /∈ Yn}.
Similarly, suppose that al and Kl are already defined, and Kl is infinite,
and Kl = {n : Yn∩{a0, . . . , al} = ∅}. Let nl be the least n in Kl. Then
we may select al+1 as the first element a of Ynl

such that {j ∈ Kl : a /∈
Yj} is infinite. As above we can prove there is such an al+1. We then
set Kl+1 = {j : {a0, . . . , al+1} ∩ Yj = ∅}. Notice that our construction
ensures that Kl+1 is infinite. Now define Xn as {a0, . . . an}, then, by
construction, for some j (in fact for infinitely many j), Xn is disjoint
from Yj. Thus p is in FP (Xn). Hence

p ∈
⋂

n∈ω

FP (Xn)

On the other hand, setting Z =
⋃

n∈ω Xn we have, by construction,
Z ∩ Yj 6= ∅, for all j ∈ ω. Since X = 〈Y0, Y1, . . .〉 and none of the Yj’s
is omitted by Z, p /∈ FP (Z). Hence FP (

⋃
n∈ω Xn) ⊂

⋂
n∈ω FP (Xn). 2

11



4 Coding Stable Models into Trees

In this section, we shall give the neccessary recursion theoretic back-
ground to make precise and to prove our claim that given any recursive
Logic Program P , there is a recursive tree T such that there is an ef-
fective 1-1 degree-preserving map between the set of stable models of
P and the set of paths through T .

4.1 Recursive programs

When we discuss finite programs then we can easily read off a recursive
representation of the Herbrand base. The reason is that the alphabet
of such a program, that is, the set of predicate symbols and function
symbols that appear in the program, is finite. The situation changes
when P is an infinite predicate logic program representable with a re-
cursive set of Gödel numbers. When we read off the enumeration of the
alphabet of the program from an enumeration of the program itself,
there is no guarantee that the alphabet of P is recursive. In particular
the Herbrand base of the program is recursively enumerable but may
not necessarily be recursive.

For the purposes of this paper, we define a program P to be recur-
sive if not only the set of its Gödel numbers is recursive, but also the
resulting representation of the Herbrand base is recursive.

4.2 Recursively FSP programs

A recursively FSP program is an FSP recursive program such that we
can uniformly compute the finite family of supports of proof schemes
with conclusion p from p. The meaning of this is obvious, but we need
a technical notation for the proofs. Start by listing the whole Herbrand
base of the program, BL as a countable sequence in one of the usual
effective ways. This assigns an integer (Gödel number) to each element
of the base, its place in this sequence. This encodes finite subsets of
the base as finite sets of natural numbers, all that is left is to code each
finite set of natural numbers as a single natural number, its canonical
index. To the finite set {x1, . . . , xk} we assign as its canonical index
can({x1, . . . , xk}) = 2x1 + . . .+2xk . We also set can(∅) = 0. If program
P is FSP, and the list, in order of magnitude, of Gödel numbers of all

12



minimal support of schemes with conclusion p is

Zp
1 , . . . , Z

p
lr
,

then define a function suP :BL → ω as below.

p 7→ can({can(Zp
1 ), . . . , can(Zp

lr
)})

We call a Logic Program P a recursively FSP program if it is FSP
and the function suP is recursive.

4.3 Tools from Recursion Theory

Let ω = {0, 1, 2, . . .} denote the set of natural numbers and let <
,>:ω × ω → ω − {0} be some fixed one-to-one and onto recursive
pairing function such that the projection functions π1 and π2 defined
by π1(< x, y >) = x and π2(< x, y >) = y are also recursive. We extend
our pairing function to code n-tuples for n > 2 by the usual inductive
definition, that is < x1, . . . , xn >=< x1, < x2, . . . , xn >> for n ≥ 3.
We let ω<ω denote the set of all finite sequences from ω and 2<ω denote
the set of all finite sequences of 0’s and 1’s. Given α = (α1, . . . , αn)
and β = (β1, . . . , βk) in ω<ω, we write α ⊑ β if α is initial segment
of β, that is, if n ≤ k and αi = βi for i ≤ n. For the rest of this
paper, we identify a finite sequence α = (α1, . . . , αn) with its code
c(α) =< n,< α1, . . . , αn >> in ω. We let 0 be the code of the empty
sequence ∅. Thus, when we say a set S ⊆ ω<ω is recursive, recursively
enumerable, etc., we mean the set {c(α):α ∈ S} is recursive, recursively
enumerable, etc. A tree T is a nonempty subset of ω<ω such that T is
closed under initial segments. A function f :ω → ω is an infinite path
through T if for all n, (f(0), . . . , f(n)) ∈ T . We let [T ] denote the set
of all infinite paths through T . A set A of functions is a Π0

1-class if
there is a recursive predicate R such that A = {f :ω → ω :∀n(R(< n,<
f(0), . . . , f(n− 1) >>)}. A Π0

1-class A is recursively bounded if there is
a recursive function g:ω → ω such that ∀f∈A∀n(f(n) ≤ g(n)). It is not
difficult to see that if A is a Π0

1-class, then A = [T ] for some recursive
tree T ⊆ ω<ω. We say that a tree T ⊆ ω<ω is highly recursive if T is a
recursive, finitely branching tree such that there is a recursive procedure
which given α = (α1, . . . , αn) in T produces a canonical index of the set
of immediate successors of α in T , that is, produces a canonical index
of {β = (α1, . . . , αn, k): β ∈ T}. If A is a recursively bounded Π0

1-class,
then A = [T ] for some highly recursive tree T ⊆ ω<ω, see [10]. We let
A′ denote the jump of the set A and 0′ denote the jump of the empty

13



set. Thus 0′ is the degree of any complete r.e. set. We say that a tree
T ⊆ ω<ω is highly recursive in 0′ if T is a finitely branching tree such
that T is recursive in 0′ and there is an effective procedure which given
an 0′-oracle and an α = (α1, . . . , αn) in T produces a canonical index of
the set of immediate successors of α in T , that is, produces a canonical
index of {β =< α1, . . . , αn, k): β ∈ T}.

We say that there is an effective one-to-one degree preserving corre-
spondence between the set of stable models of a recursive program P ,
Stab(P ), and the set of infinite paths [T ] through a recursive tree T if
there are indices e1 and e2 of oracle Turing machines such that
(i) ∀f∈[T ]{e1}

gr(f) = Mf ∈ Stab(P ),
(ii) ∀

M∈Stab(P )
{e2}

M = fM ∈ [T ], and

(iii) ∀f∈[T ]∀M∈Stab(P )
({e1}

gr(f) = M if and only if {e2}
M = f).

Here {e}B denotes the function computed by the eth oracle machine
with oracle B. We write {e}B = A for a set A if {e}B is a char-
acteristic function of A. If f is a function f :ω → ω, then gr(f) =
{< x, f(x) >:x ∈ ω}. Condition (i) says that the infinite paths of the
tree T , uniformly produce stable models via an algorithm with index e1.
Condition (ii) says that stable models of P uniformly produce branches
of the tree T via an algorithm with index e2. A is Turing reducible to
B, written A ≤T B, if {e}A = B for some e. A is Turing equivalent to
B, written A ≡T B, if both A ≤T B and B ≤T A. Thus condition (iii)
asserts that our correspondence is one-to-one and if {e1}

gr(f) = Mf ,
then f is Turing equivalent to Mf . Finally, given sets A and B, we let
A⊕B = {2x : x ∈ A}

⋃
{2x+ 1 : x ∈ B}.

4.4 Representing programs by trees

Theorem 4.1 We suppose that the first order language L has infinitely
many ground atoms.

1. Then for any recursive program P in L, there exists a recursive
tree T ⊆ ω<ω and an effective one-to-one degree preserving corre-
spondence between the set of all stable models of P , Stab(P ) and
[T ], the set of all infinite paths through T .

2. If, in addition to the hypothesis of (1), program P is FSP, then
the tree T is finite splitting.

3. If, in addition to the hypothesis of (2), program P is recursively
FSP, then the tree T is a highly recursive tree.

14



Proof: Enumerate effectively and without repetitions the Herbrand
base BL of the language L of the program P . Use this to identify
BL with ω, having in mind that when we talk about a subset A ⊆ ω,
then such a set A determines a unique subset of BL. Next, notice that
since P is a recursive program, so is ground(P ). Also, given p ∈ BL

the set of minimal proof schemes with conclusion p is recursive. The
set of supports of such schemes is not necessarily recursive, although it
is recursively enumerable. We will have to be careful about this point
to avoid errors in the proof.

We shall encode a stable model M of P by a path πM = (π0, π1, . . .)
through the complete ω-branching tree ω<ω as follows.

First, for all i ≥ 0, π2i = χM(i). That is, at the stage 2i we encode the
information if the atom encoded by i belongs to the model M .

Next, if π2i = 0 then π2i+1 = 0. But if π2i = 1, that is i ∈ M , then
we put π2i+1 equal to that qM(i) such that qM(i) is the least code for a
minimal proof scheme for i for which the support of ϕ is disjoint from
M . That is, we select a minimal proof scheme ϕ for i ,or to be precise
for the atom encoded by i, such that ϕ has the smallest possible code
of any proof scheme ̺ such that supp(̺) ∩M = ∅. If M is a stable
model then (Proposition 2.3) for every i ∈ M , at least one such proof
scheme exists.

Clearly M ≤T πM . For it is enough to look at the values of πM at
even places to read off M . Now given an M -oracle, it should be clear
that for each i ∈ M , we can use an M -oracle to find qM(i) effectively.
This means that πM ≤T M . Thus the correspondence M 7→ πM is an
effective degree-preserving correspondence. It is trivially 1 : 1.

Now we have to construct a recursive tree T ⊆ ωω such that [T ] =
{πM : M ∈ stab(P )}.

Let Nk be the set of all codes of minimal proof schemes ϕ such that
all the atoms appearing in all the rules used in ϕ are smaller than k.
Obviously Nk is finite. We can also find the canonical index for Nk,
uniformly in k.

We have to say which finite sequences belong to our tree T . To this
end, given a sequence σ = (σ(0), . . . , σ(k)) ∈ ω<ω set Iσ = {i : 2i ≤
k ∧ σ(2i) = 1} and Oσ = {i : 2i ≤ k ∧ σ(2i) = 0}. Now we define T by
putting σ into T if and only if the following five conditions are met:
(a) ∀i(2i+ 1 ≤ k ∧ σ(2i) = 0⇒ σ(2i+ 1) = 0).
(b) ∀i(2i+ 1 ≤ k ∧ σ(2i) = 1⇒ σ(2i+ 1) = q
where q is a code for a minimal proof scheme ϕ such that conc(ϕ) = i

15



and supp(ϕ) ∩ Iσ = ∅).
(c) ∀i(2i + 1 ≤ k ∧ σ(2i) = 1 ⇒ there is no code c ∈ N⌊k/2⌋ of a
minimal proof scheme ψ such that conc(ψ) = i, supp(ψ) ⊆ Oσ and
c < σ(2i+ 1)).
(here ⌊·⌋ is the so-called number-theoretic “floor” function).
(d) ∀i(2i ≤ k ∧ σ(2i) = 0 ⇒ there is no code c ∈ N⌊k/2⌋ of a minimal
proof scheme θ such that conc(θ) = i and supp(ψ) ⊆ Oσ)
(e) If k = 2i+ 1, then there is no number j < σ(k) such that:
(e1) j is a code for a minimal proof scheme with conclusion i
(e2) The proof scheme ψ coded by j has the same support as the proof
scheme ϕ coded by σ(k).

Condition (a) corresponds to the first condition we imposed on πM .
Conditions (b), (c), (d), take care of the second condition. It should be
clear that the conditions (c) and (d) do not eliminate all “false” finite
sequences. There may be sequences that are in T and are not initial
sequences of a πM . Those sequences will be cut off because their exten-
sions will be eliminated. Condition (e) needs an additional explanation:
there may be many minimal proof schemes with the conclusion i and
same support. Condition (e) ensures that only one code, in fact the
least one, of such a proof scheme is encoded among the successors of a
given σ of even length 2i. The net effect of this condition is that, if i
has the property that there are only finitely many supports of minimal
proof schemes with the conclusion i, then every node on level 2i will
have only finitely many successors. Moreover it is clear that all the
proof schemes used in our encoding of M by πM are put into T .

It is immediate that if σ ∈ T and τ ⊑ σ, then τ ∈ T . Moreover it is
clear from the definition that T is a recursive subset of ω<ω. Thus T is
a recursive tree.

Also, it is easy to see that our definitions ensure that, for a stable model
M of P , the sequence πM is a branch through T , that is, πM ∈ [T ].

We shall show now that every infinite branch through T is of the form
πM for a suitably chosen stable model M . To this end assume that
β = (β(0), β(1), . . .) is an infinite branch through T . There is only one
candidate for M , namely Mβ = {i : β(2i) = 1}.

Two items have to be checked:
(I) Mβ is a stable model of P .
(II) π(Mβ) = β.

16



First we prove (I).
If Mβ is not a stable model of P then, according to Proposition 2.3 one
of two cases must hold:
(i) there is i ∈Mβ \NMβ ,P or
(ii) there is j ∈ NMβ ,P \Mβ.

If (i) holds, then consider such an i and the term β(2i + 1). For
(β(0), . . . , β(2i + 1)) = β(2i+1) to be in T it must be the case that
β(2i+ 1) is a code of a minimal proof scheme ϕ such that conc(ϕ) = i
and supp(ϕ) ∩ Iβ(2i+1) = ∅. But since i /∈ NMβ ,P , there must be some n

belonging to Mβ ∩supp(ϕ). Choose such an n. Then β(2n) /∈ T because
supp(ϕ) ∩ Tβ(2n) 6= ∅ (Thus if there is a proof scheme that seems to
work, but should not, then we close the branch a bit later).

If (ii) holds, then consider such a j. For some n there is a proof scheme
ψ such conc(ψ) = j, supp(ψ) ⊆ Oβ(n) . But then β(n) does not satisfy
the condition (d) of our definition of the tree.

Thus both (i) and (ii) have been excluded, and we have established that
if β ∈ [T ], then Mβ is a stable model of P . This is property (I) above.

Finally, we claim (II) that is: if β ∈ [T ] then β = π(Mβ).

If β 6= π(Mβ) then for some i ∈Mβ there is a code c of a minimal proof
scheme ϕ such that conc(ϕ) = i, supp(ϕ) ⊆ ω \Mβ and c < β(2i+ 1).
Then there is an n large enough so that supp(ϕ) ⊆ Oβ(n) and hence

β(n) does not satisfy the condition (c) for β(n) to be in T . Hence, if
β 6= π(Mβ), then β(n) /∈ T for some n and so β /∈ [T ]. This completes
the proof of (II) and of (1) as well.

Now we look at the properties (2) and (3) from our theorem.

Notice that the tree T constructed in the proof of (1) has the property
that, whenever β(n) ∈ T , then two things happen:
(†) For every i such that 2i ≤ n, β(2i) ∈ {0, 1}.
(‡) For every i such that 2i + 1 ≤ n, β(2i + 1) is either 0 or it is
a code of a minimal proof scheme ϕ such that conc(ϕ) = i and no
j < β(2i + 1) has same conclusion and same support. Therefore if P
has a finite number of supports of minimal proof schemes for each i,
then T is finitely branching. This proves (2).

Finally, if P has the additional property that there is a recursive func-
tion whose value at i encode all the supports of minimal proof schemes
for i, then the tree T is recursively bounded. Indeed, at all even levels
the values of the bounding function can be read off from the previous

17



levels. At the odd levels we proceed as follows: Once we know the code
for all codes of supports of schemes for i, we search the proof schemes
until we find a proof scheme for i with the given support. Then we
make sure that there is no proof scheme with smaller code and same
conclusion and support. We do this for all supports for i. So if we have
a recursive function encoding a standard code of the set of all codes of
supports of minimal proof schemes, then from the value of this function
we can decode all the values that we put at odd levels. As the proce-
dure is effective in the function encoding the set of supports, there is a
recursive bound on the values of the successors. This proves (3). 2

5 Coding Trees into Stable Models of Fi-

nite Logic Programs

In this section, we shall give the converse of the Theorem 4.1, namely
that given any recursive tree T , there exists a finite Predicate Logic
Program P such that there is an effective 1:1 degree preserving corre-
spondence between [T ] and Stab(P ). We also give two refinements.

5.1 Representation of trees by programs

Theorem 5.1 Let C be any Π0
1-class. Then

1. There is a finite program, P , and an effective one-to-one degree
preserving correspondence between the elements of C and the set
of all stable models of P , Stab(P ).

2. If in addition C is of the form [T ] for a finitely splitting T , then
P can be chosen FSP.

3. If in addition T is a highly recursive tree, then P can be chosen
recursively FSP.

Proof: Let C be a non-empty Π0
1 class. Then there is a recursive tree

T ⊆ ω<ω such that C = [T ].

Consequently, we need to prove that, given a recursive tree T , there
is a finite program P such that there is a 1-1, degree-preserving corre-
spondence between [T ] and Stab(P ).

18



Our assumption is that T is a recursive tree. Recall that the code of
the empty sequence ∅ is 0 and the code c(α) of a finite sequence α =
(a1, . . . , an) is c(α) =< n,< a1, . . . , an >> where <,> is the recursive
pairing function defined in section 4.3. The usual way of representing
recursive relations by Horn Clause programs gives the following results.

I. There exists a finite Horn program P0 such that for a predicate tree(·)
of the language of P0, the atom tree(n) belongs to the least Herbrand
model of P0 if and only if n is a code for a finite sequence σ and σ ∈ T
(n is an abbreviation of term sn(0)),

II. There is a finite Horn program P1 such that for a predicate seq(·)
of the language of P1, the atom seq(n) belongs to the least Herbrand
model of P1 if and only if n is the code of a finite seqence α.

III. There is a Horn program P2 which correctly computes several no-
tions for manipulating predicates and functions on sequences.

Here is a short list of predicates that are properly defined within P2

and which compute several recursive relations:
(a) samelength(·, ·). This succeeds if and only if both arguments are
the codes of sequences of the same length.
(b) diff(·, ·). This succeeds if and only if the arguments are codes of
sequences which are different.
(c) shorter(·, ·). This succeeds if and only both arguments are codes of
sequences and the first sequence is shorter than the second sequence.
(d) length(·, ·). This succeeds when the first argument is a code of a
sequence and the second argument is the length of that sequence.
(e) notincluded(·, ·). This succeeds if and only if both arguments are
codes of sequences and the first sequence is not the initial segment of
the second sequence.

Now, the program P− is the union of programs P0 ∪ P1 ∪ P2. This
program P− is a Horn program. The predicate tree(·) computes in the
least model of P− precisely all the codes of sequences that are in T .
Clearly P− is a finite program. We denote its language by L−. M− is
the least Herbrand model of P−.

After we add the clauses (1)-(7) below, the resulting program will be
also a finite program. Those additional clauses will not contain any
of predicates of the language L− in the head, but they will appear in
the body of clauses (1) to (7). Therefore, whatever stable model of the
extended program we consider, its trace on the set of ground atoms
of L− will be M−. In particular, the meaning of the predicates listed
above will always be the same.

19



We are ready now to write the additional clauses which, together with
the program P−, will form the desired program P .

First of all, we select three new unary predicates:
(i) inbranch(·), having as intended interpretation the set of codes of se-
quences forming a branch through T . This branch corresponds to the
stable model of P .
(ii) notinbranch(·), having as intended interpretation the set of all codes
of sequences which are in T but are not on the branch that the model
describes.
(iii) control(·), which is used to make sure that the branch is infinite.

Here are the final 7 clauses of our program.

(1) inbranch(X)←− tree(X), ¬notinbranch(X)
(2) notinbranch(X)←− tree(X), ¬inbranch(X)
(3) inbranch(0) /* Recall 0 is the code of the empty sequence */
(4) notinbranch(X)←− tree(X), inbranch(Y ),

tree(Y ), samelength(X,Y ), diff(X,Y )
(5) notinbranch(X)←− tree(X), tree(Y ), inbranch(Y ), shorter(Y,X),

notincluded(Y,X)
(6) control(X)←− inbranch(Y ), length(Y,X)
(7) control(X)←− ¬control(X).

Clearly, P = P− ∪ {(1), . . . , (7)} is a finite program. Its language is
denoted by L.

We shall prove that:
(I) If T is a finitely splitting recursive tree, then every element of BL

has only finitely many supports of minimal proof schemes. Thus, if T
is finitely splitting, then P is FSP.
(II) There is a one-to-one degree preserving correspondence between
the stable models of P and the infinite branches through P .
(III) If T is recursively bounded, then P is recursively FSP.

First we prove (I). Let us look at the structure of our program. As we
wrote it, there are two connected but separate parts. First, we have
the part P−. It is a Horn program and therefore the support of the
minimal proof schemes for each atom of its language is empty. This
is because there is no negation in the body of clauses of P−. Hence
no negative information is collected into its support. Thus, all atoms
in the language of L− either have no derivation at all, or have only
derivations with empty support. When we add clauses (1)-(7), we note
that no atom of L− is in the head of any of these new clauses. This

20



means that no grounded instance of such a clause can be present in a
minimal proof scheme with conclusion any atom of L−. This means that
minimal proof schemes with conclusion an atom p of L− (with respect to
P ) can involve only clauses from P−, and so must have empty support.
Thus, ground atoms of L− have only finitely many supports of minimal
proof schemes: zero, if they are not in the least model of P−, or one,
if they are in the least model of P−. Morover we can ensure that the
least model of P− is recursive so that given any ground atom of L−,
we can effectively decide if it has a proof scheme.

Now we shall look at the atoms appearing in the heads of clauses (1)-
(7),

These are atoms of the following three forms:
(a) inbranch(t)
(b) notinbranch(t)
(c) control(t)

The ground terms of our language are of form n, where n ∈ ω, that
is, of the form sn(0). In the case of atoms of the form inbranch(t) and
notinbranch(t) the only ground terms which possess a proof scheme
must be those for which t is a code of a sequence of natural numbers
belonging to T . The reason for this is that the clauses having those
predicates in the head have, in the body, predicates from L− which
fail if t is not a sequence. The only exception is clause (3) which is,
itself, a fact of the form inbranch(0) and 0 is the code of the empty
seqence which is in every tree T by definition. This eliminates from our
consideration ground atoms of the form inbranch(t) or notinbranch(t)
with t /∈ T . Similarly, the only ground atoms of the form control(t)
which possess a proof scheme are atoms of the form control(n), where
n is a natural number.

Thus we are left with this cases:
(A) inbranch(c(σ)), where σ ∈ T .
(B) control(m), where m is a natural number.
(C) notinbranch(c(σ)), where σ ∈ T .

Case (A). Atoms of the form inbranch(c(σ)), σ ∈ T .
There are only two clauses C with inbranch in the head. Those are
(1) and (3). Clause (3) is an atom. This implies that a minimal proof
scheme which derives inbranch(0) and uses (3) must be of the form
< 〈inbranch(0), (3), ∅〉 >. The remaining clause (1) has this feature:
its body contains positive atoms from L−. Atoms appearing there
negatively are notinbranch. In case the last clause employed in the

21



minimal proof scheme for inbranch(c(σ)) is (1), then this proof scheme
ϕ must be a concatenation of a proof scheme for tree(c(σ)) and the
sequence < 〈inbranch(c(σ)), (1), {notinbranch(c(σ))}〉 >. The reason
why we have only a one element support is that the support of the
proof scheme of tree(σ) is empty.

Thus, in case (A) there were either one or two supports of minimal
proof schemes.

Case (B). Atoms of the form control(k). There are only two clauses
with the atom control in the head. These are clauses (6) and (7).
Clause(6) has in the body two atoms: length - which has always at
most one support of a minimal proof scheme (namely the empty set),
and inbranch(·). Since we are proving (I) and so our assumption is
that the tree T is finitely splitting, there are only finitely many se-
quences σ in T of length k. Now, let us look at a proof scheme for
control(k) whose last rule is of type (6). Such a scheme must be com-
posed of the scheme for inbranch(c(σ)) and a scheme for length(c(σ), k).
The existence of this second scheme implies that the length of σ is k.
There are only finitely many supports of minimal proof schemes for each
inbranch(c(σ)) (here we use (A)). All such supports are supports for
control(k). Hence control(k) has only finitely many supports of its min-
imal proof schemes which end in clause (6). If a minimal proof scheme
ϕ ends in clause (7), then ϕ is < 〈control(k), (7), {control(k)}〉 >. Thus
there are only finitely many supports for minimal proofs schemes with
conclusion equal to control(k) for any k.

Case (C) Atoms of the form notinbranch(c(σ)). Here we have to take
into account clauses (2), (4), and (5). When the last clause used in
the minimal proof scheme is (2), we reason as in case (A), the sub-
case of clause (1). When that last clause is (4) the support is inher-
ited from an atom of the form inbranch(c(τ)) where τ is also in T ,
τ 6= σ, and the length of τ is the same as that of σ. There are only
finitely many such τ ’s, and each of them has only finitely many sup-
ports for inbranch(c(τ)). Therefore here also we have finitely many
supports. The case of clause (5) is similar, there are only finitely many
sequences τ in T of shorter length, and the supports of proof schemes for
inbranch(c(τ)) are supports for notinbranch(c(σ)). Thus this case also
creates only finitely many supports. Thus there are only finitely many
supports of minimal proofs schemes with conclusion notinbranch(c(σ)).

Thus, we have proved that if T is finitely branching then every ground
atom possesses only finitely many supports of minimal proof schemes.

22



Now we prove (II).
We establish a “normal form” for the stable models of P . Each such
model must contain M−, the least model of P−. In fact, the restriction
of a stable model of P to BL− is M−.

Given any β ∈ ωω, that is, β = (β(1), β(2), . . .) is any infinite sequence
of natural numbers, we assign to M the following set of ground atoms:
Mβ = M− ∪ {control(n) : n ∈ ω} ∪ {inbranch(c(β(n)) : n ∈ ω} ∪
{notinbranch(c(σ)) : σ ∈ T \ {β(n) : n ∈ ω}
We prove that the stable models of P are exactly all Mβ for β ∈ [T ].
This will use Proposition 2.3.

First, assume that M is a stable model of P . We know that the atoms
of L− in M constitute M−. What is the disposition of the remaining
atoms of L? We claim that all the atoms of the form control(n) are in
M . Suppose to the contrary that, for some k, atom control(k) is not
in M , then clause (7) would ensure that control(k) is in M which is a
contradiction.

Because for every k, control(k) ∈ M , it follows that for every k ≥ 0,
M contains an atom of the form inbranch(c(σ)) with length(σ) = k.
That is, we can not use clause (7) to derive control(k). Hence our
analysis of minimal proof schemes ϕ such that conc(ϕ) = control(k)
shows that ϕ must include a minimal proof scheme for some atom of
the form inbranch(c(σ)) with σ ∈ T since otherwise, control(k) has no
derivation, contradicting the stability of M (see Proposition 2.3).

Next, we claim that for each σ ∈ T , precisely one of inbranch(c(σ)),
notinbranch(c(σ)) is in M . Indeed clauses (1) and (2) ensure that at
least one of these two atoms is in M . But, if both inbranch(c(σ)),
notinbranch(c(σ)) are inM , since only clauses (1) and (3) have inbranch
in the head, we see that for σ 6= ∅, only (1) can be used. But the use of
(1) is blocked by presence of notinbranch(c(σ)) in M . The case σ = ∅
is similar. Thus we have established that exactly one of inbranch(c(σ)),
notinbranch(σ) is in M .

Next, we will use the fact that M satisfies the clause (4) to show that
for every k, there is at most one atom in M of the form inbranch(c(σ))
having length(σ) = k. But we know that for some σ of length k, there
is an atom of the form inbranch(c(σ)) in M . So we can conclude that
there is exactly one such σ.

Using clause (5) we establish the compatibility of every pair σ, σ′ such
that inbranch(c(σ)), inbranch(c(σ′)) belong to M . Taking into account
the fact that M contains atoms of the form inbranch(c(σ)) with σ of

23



arbitrary length, we conclude that there is exactly one infinite sequence
β such that inbranch(c(β(n))) belongs to M for all n ∈ ω. By (4) all
the atoms of the form notinbranch(c(τ)) for τ ∈ T \ {β(n) : n ∈ ω} are
in M . Since no other atom is in M , we conclude that M = Mβ. Note
that we have proved that if [T ] is empty, then P has no stable model.

To complete the argument for (II), we have to prove that β ∈ [T ] implies
that Mβ is a stable model of P . The presence of clauses (1) and (2) in
P implies that {inbranch(c(β(n))) : n ∈ ω} ∪ {notinbranch(c(σ)) : σ ∈
T \ {β(n) : n ∈ ω}} ⊆ NMβ ,P . Then clause (6) can be used to show
that for all n, control(n) also belongs to NMβ ,P . But M− ⊆ NMβ ,P . We
finally conclude that Mβ ⊆ NMβ ,P .

We can prove that NMβ ,P ⊆ Mβ by a straightforward induction
on the length of proof scheme. The case when a proof scheme has as
conclusion atom p ∈ L− is easy. It reduces to induction on the number
of iterations of the operator TP−). Also, induction on the number of
applications of clauses (1)-(7) is straightforward.

Given β ∈ [T ], the construction of Mβ is easy. First, construct M−; this
does not depend on β and moreover M− is a recursive set. Then add all
the atoms inbranch(c(β(n))), and then all the atoms notinbranch(c(σ))
for all σ ∈ T \ {β(n) : n ∈ ω}. T is recursive, so the resulting set of
atoms is certainly recursive in β. Thus Mβ is recursive in β. On the
other hand β can be effectively recovered from Mβ easily, because our
procedures were uniform, once T was fixed. We conclude that there is
an effective, one-to-one, degree-preserving correspondence between [T ]
and Stab(P ). This establishes (II).

To verify (3) we have to trace back our construction of supports of proof
schemes for every atom. Whether or not T is recursively bounded, there
is just one support for the atoms in M−, the empty set. We can encode
it. The atoms of L− which are not in M− have no supports. Since M−

is recursive, we can effectively find the set of supprots of minimal proof
schemes for any atom in L−.

We only need to take care of atoms of the form inbranch(c(σ)), control(n),
and notinbranch(c(σ)). The first of these atoms, according to our anal-
ysis has either one or two supports. Whether or not T is finitely branch-
ing, we can effectively find these supports. The supports of control(k)
are either {control(k)} or are inherited from supports of inbranch(c(σ)).
If the tree T is recursively bounded then, uniformly in k, we can ef-
fectively enumerate all sequences of length k that are in T . From that
enumeration, we can uniformly find a code for all the supports for all

24



minimal proof schemes for control(k). Finally, using a similar argu-
ment we can encode uniformly all supports of minimal proof schemes
for atoms of the form notinbranch(c(σ)). Thus, the program P is re-
cursively FSP. This completes the proof of (III), and of the theorem as
well. 2

A classical result, first explicit in [26] and [1] but known a long time
earlier in equational form, is that every r.e. relation can be computed
by a suitably chosen predicate over the least model of a finite Horn
program. An elegant method of proof due to Shepherdson (see [25] for
references) uses the representation of recursive functions by means of
finite register machines. When such machines are represented by Horn
programs in the natural way, we get programs in which every atom
can be proved in only finitely many ways (See also [21]). Thus we can
conclude:

Proposition 5.2 Let r(·, ·) be a recursive relation. Then there is a
finite program Pr computing r(·, ·) such that every atom in the least
model Mr of Pr has only finitely many minimal proof schemes.

We can combine Proposition 5.2 with the proof of Theorem 5.1, to
strengthen parts (2) and (3) of that theorem. In part (2), we can
require that P has only finitely many proof schemes for every atom. In
part (3), we can require that there is a recursive bound on such proof
schemes.

Let us think of the expressive power of a Logic Program as being crudely
characterized by the kind of associated Π0

1-class or the kind of tree which
corresponds to its set of stable models in our constructions. Then, com-
paring the two versions of Theorem 5.1, we see that the more stringent
requirement (beyond having only finitely many supports) of having only
finitely many proof schemes, does not change the expressive power of
Logic Programs. That is, if we can write a Logic Program P such
that its stable models are “nicely” represented by the paths through a
finitely splitting T , then we can write another Logic Program P ′ with
that property plus the additional property that P ′ has only finitely
many proof schemes for every atom.

5.2 Positive results for programs

When we compare Theorems 4.1 and 5.1, we see for Theorem 4.1 that
not only for finite, but also for recursive Logic Programs P , the class

25



of all stable models Stab(P ) can be encoded by a Π0
1 class. In turn,

in Theorem 5.1 we encode Π0
1 classes as the set of all stable models of

a finite Logic Program. This implies that from the point of view of
Turing reducibility it makes no difference if we write finite or infinite
(but recursive) Logic Programs. Thus we have:

Corollary 5.3 The expressive power of the stable semantics for finite
Logic Programs and for recursive Logic Programs is the same, in the
sense of 1-1 Turing degree preserving transformations. That is, for ev-
ery recursive program predicate P there exists a finite predicate program
P ′ such that there is an effective 1-1 Turing degree-preserving transfor-
mation from Stab(P ′) onto Stab(P ).

The degrees of elements of Π1
0-classes have been extensively studied in

recursion theory. The combined results of the theorems 4.1 and 5.1 is
that we can immediately transfer results about degrees of elements of
Π1

0-classes to results about the degrees of stable models of finite Predi-
cate Logic Programs. Below we shall state a sample of such results.

Corollary 5.4 (Positive results for recursive Logic Programs)
Suppose P is a recursive Logic Program with a stable model. Then

1. P has a stable model which is recursive in a complete Σ1
1 set.

2. If P has denumerably many stable models, then each stable model
of P is hyperarithmetic. Otherwise P has 2ℵ0 stable models.

If a program P is recursively FPS, then the tree T constructed in the
proof of Theorem 4.1 is recursively bounded and so the class [T ] is
highly recursive. Recursion theory again provides us with information
on the Turing degrees of elements of such classes.

Corollary 5.5 (Positive results for recursively FPS Programs)
Suppose that P is a recursively FPS Logic Program with a stable model.
Then

1. P has a stable model whose Turing jump is recursive in 0′.

2. If P has only finitely many stable models, then each of these stable
models is recursive.

3. There is a stable model M of P in an r.e. degree.

26



4. There exist stable models M1 and M2 of P such that any function,
recursive in both M1 and M2, is recursive.

5. If P has no recursive stable model, then there is a nonzero r.e.
degree a such that P has no stable model recursive in a.

The next set of corollaries follow because a recursive finitely branching
tree is automatically highly recursive in 0′.

Corollary 5.6 (Positive results for FPS Programs) For any re-
cursively FPS Logic Program P that possesses a stable model:

1. There is a stable model M of P whose Turing jump is recursive
in 0′′, the Turing jump of 0′.

2. If P has only finitely many stable models, then each of these stable
models is recursive in 0′.

3. There is a stable model M which is in some r.e. degree in 0′.

4. There are stable models M1 and M2 such that any function, re-
cursive in both M1 and M2, is recursive in 0′.

5. If P has no stable model which is recursive in 0′, then there is a
nonzero degree a >T 0′ such that a is r.e. 0′ and such that P has
no stable model recursive in a.

5.3 Negative results for programs

Every finite Logic Program is certainly recursive, so positive results
such as those stated above in Corollaries 5.4, 5.5 and 5.6 for recur-
sive Logic Programs certainly also hold for finite Logic Programs. In
contrast, we get stronger negative results by constructing finite Logic
Programs which do the same tasks we previously proved could be done
with recursive Logic Programs, see [18]. Moreover our reduction of the
Π0

1 classes to classes Stab(P ) for a suitably constructed finite program P
not only allows us to estimate the Turing complexity of stable models,
but also provides us with finite programs with “pathological” behavior.
This is interesting because it means that trying to prove that all finite
programs have better behavior than this is fruitless, and to get better
behavior we have to look for additional hypotheses.

Corollary 5.7 (Negative results for finite Logic Programs)

27



1. There exists a finite Logic Program P such that P has a stable
model but P has no stable model which is hyperarithmetic.

2. For any recursive ordinal α, there is a finite Logic Program P
such that P has a unique stable model M and M ≡T 0(α).

Using well-known recursion-theoretic facts about recursively bounded
Π0

1 classes we get:

Corollary 5.8 (Negative results for recursively FSP Programs)

1. There exists a finite Logic Program P1 which is recursively FSP
such that P1 has no recursive stable model (although P1 possesses
2ℵ0 stable models).

2. There exists a finite recursively FSP Logic Program P2 such that
P2 possesses 2ℵ0 stable models and any two stable models M1 6=
M2 of P2 are Turing incomparable.

3. If a is a Turing degree and 0 <T a <T 0′, then there exists
a finite recursively FSP Logic Program P3 such that P3 has 2ℵ0

stable models, a stable model of degree a but P3 has no recursive
stable model.

4. There exists a finite recursively FSP Logic Program P4 such that
if a is the degree of any stable model of P4 and b is a r.e. degree
with a <T b, then b ≡T 0′.

5. If c is any r.e. degree, then there exists a finite recursively FSP
Logic Program P5 such that the set of r.e. degrees which contain
stable models of P5 equals the sets of r.e. degrees ≥T c.

6. There exists a finite recursively FSP Logic Program P6 such that
if W is stable model for P6 where W <T 0′, then there exists a
nonrecursive r.e. set A such A <T W .

We can relativize all the results in Corollary 5.5 to an 0′ oracle for FSP
finite Logic Programs. This is due to the following result of Jockusch,
Lewis, and Remmel.

Theorem 5.9 ([9]) For any tree T which is highly recursive in 0′,
there is a recursive finitely branching tree S ⊆ ω<ω with an effective
one-to-one degree preserving correspondence between [T ] and [S].

28



Encoding highly recursive in 0′ trees by binary trees gives us now results
on FSP finite Logic Programs.

Corollary 5.10 (Negative results for finite FSP Logic Programs)

1. There exists a finite FSP Logic Program P1 such that P1 has no
stable model which is recursive in 0′, although P possesses 2ℵ0

stable models.

2. There exists a finite FSP Logic Program P2 such that P2 possesses
2ℵ0 stable models and any two stable models M1 6= M2 of P2 have
the property that M1

⊕
0′ 6≡T M2

⊕
0′.

3. If a is a Turing degree and 0′ <T a <T 0′′, then there exists a
finite FPS Logic Program P3 such that P3 has 2ℵ0 stable models,
a stable model of degree a but P3 has no stable model which is
recursive in 0′.

4. There exists a finite FPS Logic Program P4 such that P has 2ℵ0

stable models, and if a is the degree of any stable model of P4 and
b is a degree which is r.e. in 0′ with a <T b, then b ≡T 0′′.

5. If c ≥T 0′ is any degree which is r.e. in 0′, then there exists a
finite FSP Logic Program P5 such that the set of degrees which
are r.e. in 0′ and which contain stable models of P5 equals the
sets of degrees ≥T c which are r.e. in 0′.

6. There exists a finite FSP Logic Program P6 such that if W is
stable model for P6 where 0′ ≤T W <T 0′′, then there exists a set
A such 0′ <T A <T W and A is r.e. in 0′.

Corollary 5.6, combined with the fact that the perfect model, if it ex-
ists, is the unique stable model of the Logic Program ([7]), gives the
following:

Corollary 5.11 If P is a recursively FSP Logic Program, and P has
a unique stable model then that unique stable model of P is recursive.
Consequently, if P is a locally stratified, recursively FSP Logic Program,
then its perfect model is recursive.

This result is in contrast to the recent result of [4]. They show that arbi-
trarily complex hyperarithmetic sets can be encoded by perfect models

29



of a locally stratified finite program, so that every hyperarithmetic set
is the projection of perfect model of such a program. Here, in con-
trast, the additional assumption of being recursively FSP reduces the
complexity of such program to a recursive set!.

We end this paper with two more results which are a consequence
of the proofs of Theorems 4.1 and 5.1

Corollary 5.12 The problem of testing if a finite Predicate Logic Pro-
gram possesses a stable model is Σ1

1-complete, i.e., the set of Gödel
numbers of finite Logic Programs which have a stable model is a Σ1

1-
complete set.

Proof: Under a suitable Gödel numbering, we can view the set of ground
atoms of any finite Logic Program P as a recursive subset of the natural
numbers. It is then easy to see by directly writing out the definition in
logical form that given a function f : ω → ω, the predicate “the range
of f is a stable model of P” is an arithmetic predicate. Moreover, given
the index of an r.e. set e, i.e. let We = {x : ϕe(x) converges} where ϕe

is the partial recursive function computed by the e-th Turing machine,
it is also easy to check that the predicate “We is the set of codes of a
finite predicate Logic Program” is also arithmetic predicate. It follows
that Stab = {e : We is the set of codes of clauses of a finite Logic
Program which has a stable model} is equal to the set of e such that
∃f(R(e, f)) where R is an arithmetic predicate. Hence the set Stab is
a Σ1

1 set. Now it is well known that Infpath = {e : We is a recursive
tree ⊆ ω<ω and [We] 6= ∅} is a Σ1

1-complete set, see [24]. Thus to show
that Stab is a Σ1

1-complete set, it is enough to show that Infpath is 1:1
reducible to Stab, i.e. there exists a 1:1 recursive function g such that
e ∈ Infpath ↔ g(e) ∈ Stab. The existence of the function g follows
from a slight modification of the proof of Theorem 5.1. The idea is the
following. Given an r.e. set We, we construct a new r.e. set W ∗

e from
We as follows. We enumerate We as a0, a1, . . .. First we enumerate 0
which is the code of the empty sequence into W ∗

e . Then we enumerate
an into W ∗

e if and only if

1. an is the code of some sequence (α1, . . . , αk),

2. the codes of all sequences (α1, . . . , αj) where j ≤ k appear in the
enumeration of We, say c((α1, . . . , αj)) = anj

with nj as small as
posible,

3. for all m ≤ max({n} ∪ {nj : j ≤ k}), am is the code of some
sequence (β1, . . . , βl) and for all j ≤ l, the code of (β1, . . . , βj)

30



appears in the enumeration of We.

It is easy to see that if We is tree, then We = W ∗
e . If We is not a tree,

then we claim thatW ∗
e is a finite tree. That is, either for some t, at is not

the code of a sequence or at is the code of some sequence (β1, . . . , βm)
but for some j < m, the code of (β1, . . . , βj) does not occur in We. In
either case, (3) above ensures that no an with n > t can be enumerated
into W ∗

e so that W ∗
e will be finite. Finally, it is easy to check that our

conditions ensure that if the code of (α1, . . . , αk) can be enumerated in
W ∗

e , then the codes of all sequences (α1, . . . , αj) where j ≤ n can also
be enumerated in W ∗

e so that W ∗
e is a tree. Now there is a recursive

function h such that W ∗
e = Wh(e). Then in the proof of Theorem 5.1, we

can let Wh(e) play the roll of T . Since the construction of the Program
P1 from Wh(e) is uniform and works for r.e. as well as recursive sets, we
can uniformly construct the r.e. index of a Program P (e) as in Theorem
5.1 such that there is an effecitve 1:1 correspondence between the stable
models of P (e) and [Wh(e)]. Moreover, there is a recursive function g
such that Wg(e) is the set of codes of the clauses of P (e). It now follows
that if e /∈ Infpath, then either We is not a tree or We is a tree such
that [We] = emptyset. In that case, [W ∗

e ] will be empty and hence P (e)

has no stable models. If e ∈ Infpath, then P (e) will have at least one
stable model. Thus e ∈ Infpath↔ g(e) ∈ Stab as claimed so that Stab
is a Σ1

1-complete set.

We remark that the above proof works just as well if we use the set
of canonical indices of finite Logic Programs rather than the set r.e.
indices of finite Logic Programs. 2

Corollary 5.13 The problem of testing if a finite Predicate Logic Pro-
gram possesses a a unique stable model is Σ1

1-complete, i.e., the set
of Gödel numbers of finite Logic Programs which have a unique stable
model is Turing equivalent to a Σ1

1-complete set.

Proof: Let Stab2+ = {e : We is the set of codes of clauses of a finite
Logic Program which has at least 2 stable models} and Stab1 = {e : We

is the set of codes of clauses of a finite Logic Program which has a
unique stable model}. Similarly let Infpath2+ = {e : We is a tree with
at least 2 infinite paths} and Infpath1 = {e : We is a tree with at least
2 infinite paths}. Now the recursive function g of Corollary 5.12 shows
that Infpath1 is 1:1 reducible to Stab1 and Infpath2+ is 1:1 reducible to
Stab2+. Moreover it is easy to see that Infpath2+ and Stab2+ are Σ1

1

sets. Clearly Infpath1 = Infpath \ Infpath2+ and Stab1 = Stab \ Stab2+.
Thus both Infpath1 and Stab1 are Turing reducible to any Σ1

1-complete

31



set, in particular they are both Turing reducible to Infpath. Now given
any r.e. set We, let Ve consists of the codes of all strings of 0’s plus the
set of all y such that y is the code of a string (α1 +1, α2, . . . , αn) where
(α1, α2, . . . , αn) is in W ∗

e (here W ∗
e is defined as in the proof of Corollary

5.12). It follows that Ve is a tree with at least one infinite path, namely
the path < (0), (0, 0), (0, 0, 0), . . . >, and that Ve has exactly one infinite
path iff W ∗

e has no infinite paths. Now there is a recursive function k(x)
such that Ve = Wk(e) for all e. But then e /∈ Infpath↔ k(e) ∈ Infpath1.
Hence the complement of Infpath is 1:1 reducible to Infpath1. Thus
we have shown that Infpath ≤T Infpath1 ≤T Stab1 ≤T Infpath. Hence
Stab1 is Turing equivalent to a Σ1

1-complete set.

As was the case in Corollary 5.12, the above proof works just as well if
we use the set of canonical indices of finite Logic Programs rather than
the set r.e. indices of finite Logic Programs. 2

Acknowledgements

This research was partially supported by NSF grants IRI 9012902,
DMS-8902797, DMS-8702473 and ARO contract DAAG629-85-C-0018.

References

[1] H. Andreka and I. Nemeti I. The Generalized Completeness of
Horn Predicate Logic as a Programming Language. Acta Cyber-
netica, 4:3–10, 1978.

[2] K. Apt, H. Blair, and A. Walker. Towards a Theory of Declar-
ative Knowledge. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89–142, Los Altos, CA,
1987. Morgan Kaufmann.

[3] C. Bell, A. Nerode, R. T. Ng, and V.S. Subrahmanian. Im-
plementing Deductive Databases by Linear Programming. Cornell
Mathematical Sciences Institute Technical Report 91-48, 1991.

[4] H. Blair, W. Marek, and J. Schlipf. Expressiveness of Locally Strat-
ified Programs. Technical report, University of Syracuse, 1991.

[5] J. de Kleer. An Assumption-based TMS. Artificial Intelligence,
28:127–162, 1986.

32



[6] J. Doyle. A Truth Maintenance System. Artificial Intelligence,
12:231–272, 1979.

[7] M. Gelfond and V. Lifschitz. The Stable Semantics for Logic
Programs. In Proceedings of the 5th International Symposium
on Logic Programming, pages 1070–1080, Cambridge, MA., 1988.
MIT Press.

[8] M. Gelfond and H. Przymusinska. On the Relationship Between
Circumscription and Autoepistemic Logic. In Proceedings of the
ISMIS Symposium, 1986.

[9] C.G. Jockusch, A. Lewis, and J. B. Remmel. π0
1 Classes and Rado’s

Selection Principle. Journal of Symbolic Logic, 56:684–693, 1991.

[10] C.G. Jockusch and R.I. Soare. π0
1 Classes and Degrees of Theories.

Transactions of American Mathematical Society, 173:33–56, 1972.

[11] K. Konolige. On the Relation Between Default and Autoepistemic
Logic. Artificial Intelligence, 35:343–382, 1988.

[12] V. Lifschitz. Computing Circumscription, Proceedings IJCAI-
1985, Morgan Kaufmann.

[13] V. Lifschitz Pointwise Circumscription, Proceedings AIII-1986,
pages 406-410, Morgan Kaufmann.

[14] J. Lloyd, Foundations of Logic Programming, Springer-Verlag,
1989.

[15] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic Rule Sys-
tems I. Annals of Mathematics and Artificial Intelligence, 1:241–
273, 1990.

[16] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic Rule Sys-
tems II. Annals of Mathematics and Artificial Intelligence, 5:229-
264, 1992.

[17] W. Marek, A. Nerode, and J.B. Remmel. A Context for Belief Re-
vision: Normal Logic Programs (Extended Abstract) Proceedings,
Workshop on Defeasible Reasoning and Constraint Solving, Inter-
national Logic Programming Symposium, San Diego, CA., 1991.
Also available as Cornell Mathematical Sciences Institute Techni-
cal Report 91-63.

33



[18] W. Marek, A. Nerode, and J.B. Remmel. How Complicated is the
Set of Stable Models of a Logic Program? Annals of Pure and
Applied Logic, 56:119-136, 1992.

[19] W. Marek and V.S. Subrahmanian. The Relationship Between
Logic Program Semantics and Non-monotonic Reasoning. In Pro-
ceedings of the 6th International Conference on Logic Program-
ming, 1989.

[20] J. McCarthy. Circumscription - A Form of Non-Monotonic Rea-
soning. Artificial Intelligence 13:295–323, 1980.

[21] A. Nerode and R. Shore. Logic for Applications. Springer-Verlag,
1993.

[22] M. Reinfrank, O. Dressler, and G. Brewka. On the Relation Be-
tween Truth Maintenance and Non-monotonic Logics. In Proceed-
ings of IJCAI-89, pages 1206–1212, San Mateo, CA., 1989. Morgan
Kaufmann.

[23] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence,
13:81–132, 1980.

[24] H.J. Rogers. Theory of Recursive Functions and Effective Com-
putability McGraw-Hill, 1967.

[25] J.C. Shepherdson. Unsolvable Problems for SLDNF-resolution.
Journal of Logic Programming, 10:19–22, 1991.

[26] R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.

[27] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and
well-founded semantics for general logic programs. Journal of the
ACM, 38:587, 1991.

34


