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Abstract

We continue the investigations of [Ra90, Ra91, RM89] and study the automated
theorem proving for reasoning about perception of reasoning agents and their con-
sensus reaching. Using the techniques of [Ra91] and of Logic programming ([Ap90,
NS93]) we develop the processing techniques for consensus programs.

1 Introduction

Investigations concerning a systematic logical approach to reasoning about knowledge of
one or several intelligent agents have in recent years been developed by logicians and
computer scientists. These investigations lead to a variety of different logical systems
based on various paradigms. We mention here the work of Halpern and Moses ([HM84]),
Fagin, Halpern, and Vardi [FHV90]), Mazer ([Ma88]), Orlowska ([Or90]) just to indicate
to the reader that the issues of knowledge in the distributive environment are studied
widely. TARK proceedings ([Ha86, Va, Pa90, Mo92]) include numerous papers devoted to
the subject.

The authors ([RM89]) proposed an approach to reasoning about the perception and the
knowledge of groups of fully communicating agents based on the point of view expressed
in these principles:

1. The sharpness of agent’s perception depends on agent’s abilities.

2. Abilities of various agents may be comparable or not comparable (in the sense that
one agent may be more capable in one situation, whereas other agent may be more
capable in another situation).
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3. Agent’s knowledge about a reality is only approximate.

4. Agent’s knowledge about a predicate (property) p can be reflected by her percep-
tion of p, that is the characteristic features of p acquired in a process of collecting
information, conducting research, etc.

5. Agent’s knowledge about a property p can be reflected in her abilities to recognize
various features and attributes of objects. This may require access to specific recog-
nition medium such as a database, laboratory, test etc.

Starting with this intuition the authors ([RM89]) developed a logic with two types of
connectives: perception connectives and knowledge connectives. Perception connectives
correspond to the approximation connectives of predicate logic ([Ra87, Ra88, Ra90]). The
knowledge connectives correspond to those of the logic of knowledge of Orlowska ([Or90]).
The logics without knowledge operators, but with the perception connectives only, have
been reexamined by Rasiowa ([Ra91]), under the terms of perception logics. Rasiowa
([Ra91]) established an automated theorem proving technique for such logics. A similar
approach has been proposed by Fitting ([Fi92]). In that paper Fitting uses a similar
paradigm. The relationship between the experts called domination is captured by means
of many-valued Kripke models.

In this paper we look again at the perception logics (that is we leave the knowledge
part of the language unattended) and prove several results relating the ordinary resolution
method of Robinson ([Ro65]) and the form of the resolution discussed in [Ra91].

Our approach here is based on a different technique, much more closely connected to
the current presentations of resolution. In this we follow the current texts by Apt ([Ap90])
and Nerode and Shore ([NS93]). The technique used in [Ra91] employed a variant of an
argument used by Orlowska in her investigations on the resolution for multivalued logics.

The paper is organized as follows. In the next section we give a short technical intro-
duction to the logic of perception.

In the third section we explore in detail the relationship between the ordinary resolution
and T -resolution. We prove a technical result showing the precise connection between these
forms of resolution. We also see that a more specialized variant of resolution, the linear
input resolution, is preserved by the transformations of the resolution proof trees we use
to encode the T -resolution in the ordinary resolution and vice versa.

In the fourth section we outline the theory of logic programming associated with the
T -resolution.

In the final section we show how the theory developed in the propositional case can be
lifted to the predicate case.
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2 Perception logics and resolution

We will now make precise some intuitions described in Section 1.

Let T be a finite set (of reasoning agents). The set T is endowed with a partial ordering
≤T . Intuitively, s ≤T t means that the agent t is more perceptive that the agent s. This
is interpreted as follows. When both the agents s and t are asked about a specific fact p,
the agent t will be less gullible. Her abilities are better in recognizing if the fact p really
happens. Specifically, t can find that p did not, actually, happen (whereas s perceives p as
true). In particular, when s ≤T t and p is an atomic statement then, whenever t perceives
p to be true, s perceives p to be true. In other words, the property s ≤T t means that
this sharper perception happens for all possible facts p. Notice, that a similar property is
called “dominance” in Fitting ([Fi92]). All agents observe the same reality. This means
that each agent is endowed with a valuation of the set of atoms At (in the propositional
case) or a relational structure (with the same underlying algebra, that is with the same
objects, and the same interpretation of the function symbols and the constants) – in the
predicate case.

Denoting by Vt the valuation assigned to the agent t the requirement of better percep-
tion for a stronger agent is formally expressed as

w ≤T t ⇒ ∀p∈At Vt(p) ≤ Vw(p) (1)

In the predicate case, denoting by At the relational system assigned as the perception of
the agent t we have, for every predicate letter p,

w ≤t t ⇒ pAt ⊆ pAw (2)

Formally, the language of perception logic is the language of the classical logic extended
by unary modal operators dt, for t ∈ T . Intuitively, dtϕ means that the agent t (and, as
will turn out all the agents with weaker perception) perceives ϕ.

The semantics for our language is determined by the consensus interpretation. In the
predicate case a T - reality for the underlying language is a collection of first order relational
structures. The collection is indexed by the set T . All the structures in a T -reality have
the same underlying algebra and the T -reality must satisfy Condition (2).

Analogously we define the notion of T -reality for a propositional case. It is a collection
of valuations of the underlying set of atoms. Moreover we require (1).

Once it is clear what we mean by the realities for our language, we define the notion of
satisfaction. The fact that a T -reality M = 〈At〉t∈T satisfies ϕ means that the consensus
about ϕ has been reached. This, of course implies that the set of formulas true in a T -
reality is not complete. The notion of satisfaction for formulas is defined in a roundabout
way. We give the full definition of satisfaction for the predicate case. The propositional
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case can be easily described by an obvious modification of the clause (a) and eliminating
quantifier cases (g) and (h). First we define the relation M |= dt(ϕ)[v] (where v is a
valuation of variables).

(a) M |= dt(pi(x1, . . . , xm))[v] iff At |= pi(x1, . . . , xm)[v]

(b) M |= dt(φ ∨ ψ)[v] iffM |= dt(φ)[v] orM |= dt(ψ)[v]

(c) M |= dt(φ ∧ ψ)[v] iffM |= dt(φ)[v] andM |= dt(ψ)[v]

(d) M |= dt(φ⇒ ψ)[v] iff for all s ≤T t,M |= ds(φ)[v] impliesM |= ds(ψ)[v]

(e) M |= dt(¬φ)[v] iff for all s ≤T t, not (M |= ds(φ)[v] )

(f) M |= ds(dt(φ))[v] iffM |= dt(φ)[v]

(g) M |= dt(∀xiφ)[v] iff for all a ∈M ,M |= dt(φ)[v(i/a)]

(h) M |= dt(∃xiφ)[v] iff there exists a ∈M ,M |= dt(φ)[v(i/a)]

Next, we define the satisfaction for all formulas of the underlying language L.

M |= Ψ[v] if and only ifM |= dt(Ψ)[v] for all t ∈ T .

A complete axiomatization for the relation |= has been given in [RM89].

Here is a short list of fundamental properties of the satisfaction (consensus) relation
for a T -realityM.

M |= ¬dt(ϕ)[v] iff notM |= dt(ϕ)[v] (3)

M |= dw(¬dt(ϕ))[v] iff M |= ¬dt(ϕ)[v] (4)

M |= (dt(ϕ)⇒ dt(ψ))[v] iff notM |= dt(ϕ)[v] orM |= dt(ψ)[v] (5)

∀w,t∈tw ≤T t,M |= dt(ϕ)[v] implies M |= dw(ϕ)[v] (6)

∀w,t∈Tw ≤T t implies M |= (dt(ϕ)⇒ dw(ϕ))[v] (7)

Let us shortly describe what these properties mean. The properties (3), (4) and the
point (f) of the definition of the satisfaction relation tell us that the agents possess the
complete information about the other agents perception. This does not change their per-
ception, though. In particular, the agent’s perception of basic facts does not depend on
other agents perception. The property (5) tells us that the implication between the state-
ments about perception behaves “classically” (although, in general, implication behaves
“intuitionistically” in T -realities). The properties (6) and (7) tell us that the perception
behaves antimonotonically with respect to ≤T .
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These properties and the fact that the quantifiers commute with the operators dt allow
us to find the prenex form for formulas of the language. Next, we can perform Skolemization
of the prenex form of the formulas dtϕ. Finally, using the properties (b), (c) and (f) in the
definition of satisfaction, and the property (4), we can eliminate nested occurrences of dt.

Let us introduce the notion of D-atom. It is a formula of the form dtp(s1, . . . , sr) where
t ∈ T and s1, . . . , sr are terms of the language (in the propositional case no term is present).
A D-literal is an D-atom or its negation. A D-clause is a disjunction of D-literals.

Summing up all properties of formulas of the form dtϕ, we quote the following result
of [Ra91]

Proposition 1 For every formula of the form dtϕ there is a finite set of D-clauses S such

that dtϕ and S are equisatisfiable. That is there is a T -realityM satisfying dtϕ if and only

if there is a T -reality M′ such that M′ satisfies all the D-clauses from S.

Proposition suggests that we may be facing a situation similar to that encountered in
automated theorem proving. A version of resolution principle may work here. Indeed it
is the case. In [Ra91] Rasiowa found a variant of the resolution principle suitable for our
context. We will refer to this rule as T -resolution rule. We shall denote this rule by resT .

A′ ∪ {dt(p(t1, . . . tk))}, A′′ ∪ {¬dw(p(s1, . . . sk))}

(A′ ∪ A′′)Θ
providing w ≤T t (8)

Notice the asymmetry of the rule resT . Its applicability is restricted by the condition
w ≤T t. Here we assume that the parent clauses are standardized apart. Θ is a most
general unifier of atoms p(t1, . . . tk) and p(s1, . . . sk).

As usual, by Herbrand T -reality we mean a T -reality whose underlying universe consists
of ground terms of the language.

The following result is proved in [Ra91]

Proposition 2 Let S be a set of D-clauses. Then there is a T -reality satisfying S if and

only if the closure of S under T -resolution does not contain an empty clause.

In the next section we shall examine the principle of T -resolution and show how it relates
to ordinary resolution.

3 Automated theorem proving for consensus reaching

In this section we reexamine the automated theorem proving method for consensus reach-
ing. The automated theorem proving system for consensus reaching is based on the version
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of resolution rule valid for our system. Here we show how the rule resT can be used for
actual processing of consensus logic programs.

We will prove a basic result on the relationship of the asymmetric resolution rule intro-
duced in [Ra91] and the usual resolution rule (for best description see Nerode and Shore
[NS93]).

We will study now the propositional case. In section 5 we will lift these results to the
predicate case. Let 〈T,≤T 〉 be a poset, and let At be a set of atoms. Recall that a D-atom
is an expression of the form dt(p) where p ∈ At, t ∈ T . Similarly, a D-literal is a D- atom
or its negation. Next, a D-clause is a finite set of D- literals. As usual, 2 is the empty
clause (interpreted as falsity).

In our context, the T -resolution rule is the following rule of proof:

resT

A′ ∪ {dt(p)}, A′′ ∪ {¬dw(p)}

A′ ∪ A′′

where w ≤T t.

The ordinary resolution rule in our setting takes this form:

res
A′ ∪ {dt(p)}, A′′ ∪ {¬dt(p)}

A′ ∪ A′′

The T -resolution rule is asymmetric. We can resolve on a D-atom dt(p) against ¬dw(p)
only if w ≤T t. Hence, D-clauses {dw(p)} and {¬dt(p)} (w ≤T t) do not entail 2. This
agrees with our paradigm; since w ≤T t, the atom p may be perceived by the agent w as
true and the agent t as false without the contradiction.

Let S be a set of D-clauses. By RT (S) we mean the closure of the set S under the rule
resT . Similarly, R(S) is the closure of S under the usual resolution rule. Notice that resT is
a generalization of the ordinary resolution rule. Indeed, every derivation using the ordinary
resolution is a valid resT reasoning. This is because the relation ≤T is reflexive. As noticed
above, the converse does not necessarily hold. That is, a refutation using T -resolution does
not need to be a resolution refutation.

Denote by DT , the diagram of T , the following set of D-clauses:

DT = {{¬dt(p) ∨ dw(p)} : w ≤T t, p ∈ At}

A more intuitive representation for DT is:

DT = {dt(p)⇒ dw(p) : w ≤T t, p ∈ At}

The set DT codifies our knowledge about the relationship between the agents. If the agent
t is more perceptive than the agent w (which in our system is encoded by w ≤T t), and t
accepts a fact p then, certainly, w accepts the fact p - but not vice versa.
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We have now the basic result on the connection between the ordinary resolution rule
and the T -resolution rule. This result is fundamental for the rest of the paper. Once we
prove it, we will be able to list the most of the results of ordinary automated theorem
proving with resolution to the case of D-clauses and T -resolution.

Theorem 1 Let S be a set of D-clauses. Then 2 ∈ RT (S) if and only if 2 ∈ R(S ∪DT ).

Proof: (⇒). Assume that τ is is a RT -refutation of S. We shall transform the tree τ to a
tree τ ′ such that the leaves of τ ′ are either in S or in DT , and such that:

1. τ ′ is a refutation of S ∪DT , and

2. τ ′ applies only the ordinary resolution rule res.

To this end, let
A′ ∪ {dt(p)}, A′′ ∪ {¬dw(p)}

A′ ∪ A′′

be an application of T -resolution rule within the tree τ . We transform this occurrence of
resT to the following two applications of the ordinary resolution rule (with an additional
input from DT )

A′∪{dt(p)} {¬dt(p),dw(p)}
A′∪{dw(p)}

A′′ ∪ {¬dw(p)}

A′ ∪ A′′

It should be clear that our transformation τ 7→ τ ′ is defined by induction on the complexity
of the tree τ . At each application of the rule resT we add one additional leaf from DT and
transform the application of the rule resT into two applications of the ordinary resolution
rule. This implies that the size of the tree τ ′ is linear in the size of τ . Since no new
application of the rule resT is introduced, it is clear that we can eliminate in the manner
outlined above, all the applications of resT . The resulting tree τ ′ uses only the ordinary
resolution rule res. Now, notice that all the nodes (both the leaves and the inner nodes)
of the tree τ appear in the tree τ ′. Therefore 2 appears in τ ′ and so τ ′ is a resolution
refutation. Finally, notice that the only new leaves we introduced come fromDT . Therefore
τ ′ is a refutation of S ∪DT . Thus (⇒) is proved.

(⇐). Conversely, we show that if there is a resolution refutation of S∪DT , then there is a
T -resolution refutation of S alone. The construction will be more involved in this case. Our
strategy is to transform a resolution refutation of S ∪DT to a T -resolution refutation of S
alone by a consecutive elimination ofD-clauses fromDT (and introducing more applications
of the rule resT ). The argument will be again inductive, but the induction will be over
a different argument. We will be consecutively eliminating the deepest application of the
resolution whose one of the parents is a D-clause from DT . By the deepest application we
mean here the application the least distanced from the root.
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Notice that since 〈T,≤T 〉 is a poset, therefore, if τ is a resolution refutation out of S
alone, then τ is a T -resolution refutation from S.

Now, assume that τ has a certain number of leaves from DT . We shall show how to
eliminate the last application of the resolution with a parent in DT . This will be done at
a cost of using T -resolution at a different place, and the reconstruction of the refutation
tree.

Hence, let C = {¬dt(p), dw(p)}, w ≤T t be the D-clause used in τ at some leaf l.
Moreover assume that the distance of l from the root is least among such leaves.

Two situations are possible. In both the D-clause C is an input to the (ordinary)
resolution. However we resolve either on dt(p) or on dw(p).

Case 1. We resolve on dt(p). Then the application of the ordinary resolution is this:

A ∪ {dt(p)} {¬dt(p), dw(p)}

A ∪ {dw(p)}

Since τ is a refutation, τ must contain a descendant of D = A ∪ {dw(p)}, say D′ =
A′ ∪ {dw(p)}, and a D-clause E = A′′ ∪ {¬dw(p)}, and an application of the (ordinary)
resolution

A′ ∪ {dw(p)} A′′ ∪ {¬dw(p)}

A′ ∪ A′′

Thus this application of the resolution resolves D′ against E. We can assume that all the
applications of the resolution rule between C and A′ ∪ A′′ resolve on D-literals different
from dw(p). Now we modify our tree τ as follows. We do not resolve A ∪ {dt(p)} against
C. We resolve A ∪ {dt(p)} against the further D-clauses in the tree τ and get, instead of
A′∪{dw(p)}, A′∪{dt(p)}. Now we resolve the D-clause A′∪{dt(p)} against A′′∪{¬dw(p)}
using the T -resolution. Again A′ ∪A′′ is obtained. The resulting tree τ ′ has one leaf from
DT less and one application of T -resolution more.

Case 2. We resolve on ¬dw(p). Then the application of the ordinary resolution is this:

A ∪ {¬dw(p)} {¬dt(p), dw(p)}

A ∪ {¬dt(p)}

Since τ is a refutation, there must be a descendant of D = A ∪ {¬dt(p)}, say D′ =
A′∪{¬dt(p)}, and a D-clause A′′∪{dt(p)}, and an application of the (ordinary) resolution

A′ ∪ {¬dt(p)} A′′ ∪ {dt(p)}

A′ ∪ A′′

We can assume that all the applications of the resolution rule between C and A′ ∪ A′′

resolve on literals different from dt(p). Now we modify our tree τ as follows. We do not

resolve A∪{¬dw(p)} against C. We resolve A∪{¬dw(p)} against the further D-clauses in
the tree τ and get, instead of A′ ∪ {¬dt(p)}, A

′ ∪ {¬dw(p)}. Now we resolve the D-clause
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A′∪{¬dw(p)} against A′′∪{dt(p)} using the T -resolution. Again A′∪A′′ is obtained. The
resulting tree τ ′ has one leaf from DT less and one application of T -resolution more.

Thus, by iteration of the construction described above we can eliminate the use of all
D-clauses from DT appearing in the leaves of τ . The resulting tree τ ⋆ shares with τ the
property that all the D-literals eliminated by the resolution in τ are also eliminated in
τ ⋆. Since all the D-literals were eliminated in τ (after all τ is a refutation), τ ⋆ is also a
refutation. 2

Figures 1 and 2. illustrate the transformation of the second part of our theorem.

Proposition 3 Let S be a set of D-clauses. Then there is a T -reality satisfying S if and

only if 2 /∈ R(S ∪DT ).

Proof: If M is a T -reality satisfying S then, since DT is satisfied in every T -reality, M
satisfies S ∪DT . ThereforeM satisfies R(S ∪DT ). Thus 2 /∈ R(S ∪DT ).

Conversely, if R(S ∪ DT ) does not contain 2 then there is a model of S ∪ DT . Since
this model satisfies DT , we can read off this model a T -reality satisfying S. 2

Corollary 1 ([Ra91]) Let S be a set of D-clauses. Then there is a T -reality satisfying S
if and only if 2 /∈ RT (S).

Let us restrict now to the case of Horn D-clauses. Here, the important observation is
that all the D-clauses in the diagram of T , DT , are Horn D-clauses. Recall that a Horn
D-clause is a D-clause that contains at most one positive literal. In our setting Horn
D-clauses are of the form:

{ds(p),¬dw1
(q1), . . . ,¬dwk

(qk)}

or of the form:
{¬dw1

(q1), . . . ,¬dwk
(qk)}

The D-clause {ds(p),¬dw1
(q1), . . . ,¬dwk

(qk)} is called a T -program clause and usually de-
noted by

ds(p)← dw1
(q1), . . . , dwk

(qk)

The second type of Horn D-clause is called a goal and is denoted in the logic programming
by:

← dw1
(q1), . . . , dwk

(qk)

For the notion of linear input resolution see Nerode and Shore [NS93]. We can consider
the linear input resolution in our context. That is, we consider a linear tree starting with
a goal and applying T -resolution instead of ordinary resolution.
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Figure 1: A fragment of the tree τ before the transformation of the second part of the
theorem
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Figure 2: A fragment of the tree τ ′ after the transformation
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The crucial observation now is that not only DT consists of Horn clauses, but the trans-
formations described in both parts of out Theorem 1 preserve the linear input resolution.

Specifically we have:

Theorem 2 Let S be a set of Horn D-clauses. Then there is no T -reality satisfying S if

and only if S possesses a linear input refutation using the T -resolution rule.

Proof: We look carefully at the transformations described in the proof of Theorem 1.

Assume that no T -reality satisfies S. Then by Corollary 1 S has a T -resolution refutation.
Therefore S ∪ DT possesses an (ordinary) resolution refutation. Hence S ∪ DT possesses
an (ordinary) linear input refutation. Now we use the transformation of the second part of
Theorem 1. The resulting tree is again a linear input refutation, but uses the T -resolution.
Thus S possesses a linear input refutation using T -resolution rule.

Conversely, since a linear input refutation is a refutation, therefore if S possesses a
linear input refutation using T -resolution rule then S possesses a T -refutation. Therefore
no T -reality satisfies S. 2

Corollary 2 Let S be a theory consisting of Horn D-clauses. The following are equivalent:

1. S possesses a refutation using T -resolution rule.

2. S possesses a linear input refutation using T -resolution rule.

3. S ∪DT possesses a linear input refutation using ordinary resolution rule.

4. S ∪DT possesses a refutation using ordinary resolution rule.

5. S ∪DT is unsatisfiable.

6. There is no T -reality satisfying S.

4 Consensus Programs and their processing

In this section we discuss T -programs and their processing. Recall from Section 3 that a
T -program clause is a D-clause of the form

C = ds(p)← dw1
(q1), . . . , dwk

(qk)

A T -program is any set of T -program clauses. Intuitively, a T -program P describes a
T -reality, with various interconnections of agent perceptions. Intuitively, the T program
clause C tells us that in the T -reality described by P this happens: whenever the agent w1

perceives the fact q1, and the agent w2 perceives the fact q2 etc. then the agent s perceives
p.
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4.1 The least T -reality for a program

The valuations of D-atoms can be put into a one-to-one correspondence with the subsets
of D-atoms in the usual fashion. Therefore we will not distinguish between the valuations
of D-atoms and sets of D-atoms. Also, it is obvious that T -realities are naturally ordered
by inclusion.

Proposition 4 For every T -program P there exists the least T -reality satisfying P .

Proof: As in the classical case it is easy to see that the intersection of all T -realities
satisfying P is also a T -reality satisfying P . Therefore this intersection is the least T -
reality satisfying P . 2

We will describe now a sound and complete method of processing queries to T -programs.

The way we are going to process our queries is a variant of the usual processing of logic
program and will reflect precisely the difference between the usual resolution rule and the
T -resolution rule. To set a terminology, we shall call this operation T -matching. Formally,
a D-atom ds(p) T -matches a T program clause C = dt(p)← dw1

(q1), . . . , dwk
(qk) if s ≤T t.

It should be clear that when s = t then matching reduces to selection of an D-atom dt(p)
for expansion.

The second part of the processing procedure coincides with that of ordinary logic pro-
gramming. Once we have a goal ← dw1

(q1), . . . , dwk
(qk) and select within it a D-atom

dwi
(qi) and the D-atom dwi

(qi) T -matches a T program clause

dt(qi)← dz1
(h1), . . . , dzn

(hn)

then we create a new goal

← dw1
(q1), . . . , dwi−1

(qi−1), dz1
(h1), . . . , dzn

(hn), dwi+1
(qi+1), . . . dwk

(qk)

this process is called expansion. Hence, the expansion process corresponds to one applica-
tion of T -resolution between the current goal and some T program clause in P .

Let G be a goal. We say that the goal G succeeds if there is a sequence of goals
G0, . . . , Gm such that G0 = G, Gm = 2 and each Gi+1 arises from Gi by selecting a
D-atom in Gi, matching it with some T program clause in P and expanding.

We now have the following result.

Proposition 5 Let P be a T -program. Let G be a goal. Then there is no T -reality satis-

fying P ∪ {G} if and only if the goal G succeeds.

Proof: As mentioned above the procedure of T -matching and expanding corresponds to
the linear input T -resolution. Therefore our result follows from Theorem 2. 2

Let us look at an example.

12



w

u s

t

Figure 3: Partial Ordering T

Example 1 Let T be the partial ordering of Figure 3. Consider the following simple T -

program

du(p)← dw(q), ds(r)
dt(r)←
ds(q)←

Given the goal ← dw(p) we notice that the D-atom in that goal T -matches the first clause

in our program. It is not identical with it, just T -matches it, because w ≤T u. This creates

by expansion a new goal ← dw(q), ds(r). The first D-atom in this goal matches the second

clause in our program because w ≤ t. The expansion creates now the goal ← ds(r). The

D-atom in this goal matches the third clause. The result of expansion is now 2 and so the

original goal succeeds.

The completeness result (Proposition 5) implies the following proposition.

Proposition 6 Let ds(p) be a D-atom. Let P be a T -program. Then the goal ← ds(p)
succeeds if and only if ds(p) belongs to the least T -reality satisfying P .

Proof: The goal ← ds(p) succeeds if and only if P ∪ {¬ds(p)} is not satisfiable. This is
equivalent precisely when ds(p) belongs to the least T -reality satisfying P . 2

The operator TP associated to logic program can be lifted to the present situation with
some modifications. The difference is that as we compute new D-atoms, we also need to
add D-atoms perceived by less perceptive agents.
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Specifically, given a T -program P define an operator SP as the T -closure of the set

{dw(p) : There exists C ∈ P,C = ds(p)← dw1
(q1), . . . , dwk

(qk), and

dw1
(q1) ∈M, . . . , dwk

(qk) ∈M,w ≤T s}.

Proposition 7 1. The operator SP is monotone and finitizable.

2. Hence, SP possesses the least fixpoint which is equal to
⋃

n∈ω S
n
P (∅).

Similarly to the case of ordinary logic programs we have the following theorem.

Theorem 3 Let P be a T -program. Then

1. The least T -reality satisfying P coincides with the least fixpoint of SP .

2. The least fixpoint of SP coincides with the set of D-atoms ds(p) for which the goal

← ds(p) succeeds.

Proof: (1) Since T -realities of theories are always T -closed it is only necessary to see that for
a T -reality satisfying P the set {dw(p) : There exists C ∈ P, ds(p)← dw1

(q1), . . . , dwk
(qk),

and dw1
(q1) ∈ M, . . . , dwk

(qk) ∈ M,w ≤T s} is included in M . This is routinely checked.
This implies that the least fixpoint of SP is included in every T -reality satisfying P , hence
it is included in the least T -reality satisfying P . On the other hand it is easy to see that
the least fixpoint of SP is itself a T -reality satisfying P . This completes the proof of (1).
(2) follows from Proposition 6 and (1). 2

4.2 Processing the consensus queries

Now, it is clear how we can get a result about processing atomic queries not involving the
operator dt for T -programs. Such query to a program P is a query about consensus in the
T -reality described by the program P . To get the answer to such query, say p (where p)
is an atom, we must check if all D-atoms dt(p) succeed. It turns out that we do not need
to check all atoms dt(p). It follows immediately from the basic property (7) of T -realities
(see Section 2) that it is enough to check if the queries dt(p) succeed for all the maximal

elements t of T . Similarly, if a query dw(p) fails for every minimal element s of T then the
T -reality described by our program P satisfies ¬p.

At a bigger cost we can now process an arbitrary consensus query. Given a propositional
formula ϕ, the formula ϕ is satisfied in the least T -reality MT satisfying the program P
if and only if all formulas dt(ϕ) are satisfied in MT . Assume for a moment that ϕ does
not contain the implication functor, and that the negation functor appears only in front of
expression of the form ds(ψ). Clearly, the formula dt(ϕ) is logically equivalent to a set of
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D-clauses. Thus we need to be able to check whether a D-clause is satisfied in MT . But
such D-clause C is satisfied inMT if and only if one of D-literals in C is satisfied inMT .
This, together with the above remarks on testing the validity of D-literals inMT , gives a
method for testing consensus for arbitrary propositional formulas.

Finally, if ϕ does contain implication and unrestricted negation, then, again, we can test
the consensus about ϕ, but now the cost is bigger. This happens because in the recursive
definition of satisfaction we need to consult the perception of less perceptive agents.

5 Predicate T -resolution and T -programs

Let us now look at the predicate case. The T -resolution is similar to the ordinary resolution
in that the propositional Herbrand refutations can be lifted to the full predicate case.
Specifically, we have

Proposition 8 Let S be a set of predicate D-clauses. Let S+ be the set of ground substi-

tutions of D-clauses from S. Then, if τ+ is a T -resolution proof of a D-clause C+ from

S+ then there is a D-clause C and a T -resolution proof τ of the D-clause C from S and

there exists a substitution Θ such that τΘ = τ+ and CΘ = C+.

Proof: The usual proof by induction on the depth of resolution tree is easily adopted to
our case. 2

Corollary 3 ([Ra91]) Let S be a set of D-clauses. Then there is no T -reality satisfying

S if and only if 2 ∈ RT (S).

Proof: Clearly, S is T -satisfiable if and only if there is a Herbrand T -reality satisfying T
(the usual argument can be used in this case). This implies that 2 /∈ RT .

Conversely, if 2 /∈ RT (S) then by lifting (Proposition 8), 2 /∈ RT (S+). Then, by
Corollary 1 there is a propositional T -reality satisfying S+. We can read off from such
T -reality a (predicate) Herbrand T -reality satisfying S. 2

Next, we look at the predicate T -programs. Since the “lifting” operation does not
change the form of the resolution tree, the linear input T -resolution with unification is
sound and complete for processing the goals in T -programs.

As in the case of ordinary predicate resolution the T -predicate resolution can be applied
only if the D-atom dw(p) selected for expansion unify with a head dt(q) of a T program
clause in P . The unification requires now that two facts happen:

1. p unifies with q
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2. w ≤T t

The first requirement can be processed by means of the usual unification algorithm (see
[NS93]). The second requires maintaining a database of the diagram of T and checking
against it for applicability.

Large body of Logic Programming lifts to the context of T -resolution and and T -
programs. We will not develop such theory in this paper, but will quote just one result,
indicative to the flavor of many facts that can be proven.

Proposition 9 Let dtp(s1, . . . , sk) be a ground D-atom of L. Let P be a T -program.

Then the query ← dtp(s1, . . . , sk) succeeds if and only if the least Herbrand T -reality for P
satisfies dtp(s1, . . . , sk).

6 Conclusions and further research

So far we were able to study the automated theorem proving for the perception part of the
logic of perception and knowledge introduced in [RM89]. Extending these results to the
general case (the presence of knowledge modality) requires overcoming of serious technical
obstacles. We hope that this will become possible during further investigations. Especially
important would be incorporation of knowledge modality to the Horn fragment of the
perception logic without forfeiting nice processing capabilities of that fragment.
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