
On Truth Maintenance with Literals.

Wiktor Marek1 and Miroslaw Truszczynski2

1 Introduction

By a truth-maintenance system (TMS) over a collection of atoms At, we mean a

collection of justification rules of form r =< A|B → c > , where A,B ⊆ At and

c ∈ At. Such collection of rules S can be assigned an TMS-extension (c.f. [Dr88]).

Such extension may be represented either by means of objects that possess a derivation

(c.f. [MT89], [RDB89]) or by means of a nonmonotonic operator, essentially due to

Reiter ([Re80]) as follows:

Γ(Z) =
⋂
{U :∀r∈S(((r =< A|B → c >) ∧ A ⊆ U ∧B ∩ Z = ∅)⇒ c ∈ U))}

One can prove that Z is an TMS-extension of S if and only if Γ(Z) = Z. In par-

ticular this definition is equivalent to one given in [RDB89], where an extension is

characterized as the collection of atoms with the groundedness property and closed

under derivation. This, in tutn, is equivalent to one given, for default logic, in [MT89]

1Department of Computer Science, University of Kentucky, Lexington, KY 40506, currently with

Mathematical Sciences Institute, Cornell University
2Department of Computer Science, University of Kentucky, Lexington, KY 400506

1

where an extension is characterized by means of fixpoints of parametrized monotone

operators (with the condition that fixpoint is identical with the parameter). Re-

cently, Gelfond and Lifschitz in [GL89] indicated how to introduce classical negation

into logic programming. Here, modifying their approach by means of introduction of

inconsistency spreading rules, we show how to extend the construction of the TMS

extensions to the situation when - instead of atoms - we deal with literals.

2 Construction

Let At be a collection of atoms. A corresponding collection of literals LitAt (de-

noted below by Lit) consists of signed objects < ε, a >, where a ∈ At, ε ∈ {0, 1}.

Customarily we abbreviate < o, a > as a and < 1, a > as ¬a.

A collection of literals C is inconsistent if for some a ∈ At, both a and ¬a belong

to C. Otherwise it is called consistent.

We introduce now the notion of a justification rule in the same way as it was

done above, except that now we allow A,B to be subsets of Lit rather than At and

c belonging to Lit.

If we do so, however, and proceed with definition of Γ above, some unexpected

phenomenon happens:

Example 2.1 Let S be the following system: < | >→ a, < | >→ c, < a | >→ d,

< c | b >→ e, < a | f >→ ¬d.

With the underlying collection of atoms consisting of {a, , b, c, d, e, f}.

2

It is easy to see that the collection C = {a, c, d,¬d, e} satisfies definition of extension.

Clearly C is inconsistent. Yet, in opposition to the intuition from logic, namely that

an inconsistent collection entails everything, here an inconsistent collection does not

entail every literal.

Some may find this situation appealing, arguing that the inconsistency with respect

to an atom a witnesses only to incoherence of a part of the system (see for instance

[BS90] for a specific examples and an argument). We adopt here an opposite position,

namely that once an inconsistency has been detected, every literal follow. In the logic

programming context the same position is taken by [GL89].

Thus, instead of accepting a partial inconsistency like one in our example, or

simply arbitrary assigning to S the collection Lit as an extension (cf [GL89]) we

introduce additional processing rules, called inconsistency spreading rules of form:

< {a,¬a} | >→ c

For every a ∈ At and c ∈ Lit. Let ISRLit be the collection of inconsistency spreading

rules associated with Lit. We have the following theorem:

Theorem 2.1 Let S be a truth maintenance system with the collection of literals Lit.

Let C be a consistent subset of Lit. Then C is an extension of S if and only if C is

an extension of S ∪ ISRLit.

Proof: Consider Γ1, Γ2 the Reiter operators for S, and S ∪ ISRLit respectively. We

show that consistent fixpoints of Γ1 and Γ2 coincide.

3

(a) Assume Γ1(R) = R, and R consistent. Then R is closed under rules from ISRLit.

These rules have no negative part and so their applicability does not depend negatively

on R at all. Now, the inclusion Γ2(R) ⊆ Γ1(R) is obvious. As concerns the converse

inclusion Γ1(R) ⊆ Γ2(R), notice that the family whose intersection is Γ2(R) may have

only one more object, namely all Lit. But all the sets in Γ2(R) are included in Lit,

so the intersection is preserved.

Implication Γ2(R) = R and R consistent implies Γ1(R) = R follows a similar line. 2

Proposition 2.2 If C is an extension of S ∪ ISRLit then C is inconsistent if and

only if C = Lit.

Proof: Only the implication ⇐ is nontrivial, and follows immediately from the effect

of closure C under ISR.

The construction we gave equally applies to logic programming with classical

negation. Here the collection of inconsistency spreading clauses, ISC, takes form:

a← q,¬q

for every literal a and atom q. Notice that negation ¬ is different from additional

epistemic negation not. We have then the following:

Proposition 2.3 Let P be a logic program with classical negation. Then a consistent

set of literals is an answer set of P if and only if it is an answer set of P ∪ ISC.

Thus we have the following choice while processing: we can either adopt additional
clauses ISC or else introduce additional atoms which code negative literals.

4

References

[BS90] C. Baral and V.S. Subrahmanian Stable Classes for Logic Programs. Unpub-
lished Notes.

[Do80] J. Doyle. A Truth Maintenance System. Artificial Intelligence Journal 12:231–
272, 1979.

[Dr88] O. Dressler. An Extended Basic ATMS In: Non-Monotonic Reasoning Lecture

Notes in Computer Science 346:143-163, Springer Verlag, 1988.

[Kl86] J. de Kleer. An Assumption-based TMS. Artificial Intelligence 28:127 – 162,
1986.

[GL88] M. Gelfond, V. Lifschitz. The Stable Model Semantics for Logic Program-
ming. In: R. Kowalski and K. Bowen, eds., Proceedings of 5th International

Symposium Conference on Logic Programming, Seattle, 1988.

[GL89] M. Gelfond, V. Lifschitz. Logic Programming with Classical Negation. Un-
published Notes.

[MT89] W. Marek and M. Truszczyński. Relating Autoepistemic and Default Logics,
In: Principles of Knowledge Representation and Reasoning, pages 276 – 288,
Morgan Kaufman, San Mateo, 1989.

[RDB89] M. Reinfrank, O. Dressler and G. Brewka. On the Relation between Truth
Maintenance and Non-Monotonic Logics Proceedings of IJCAI, 1989.

[Re80] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence Journal,
13:81–132, 1980.

5

