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Abstract. Investigations of default logic have been so far mostly con-

cerned with the notion of an extension of a default theory. It turns out,

however, that default logic is much richer. Namely, there are other nat-

ural classes of objects that might be associated with default reasoning.

We study two such classes of objects with emphasis on their relations

with modal nonmonotonic formalisms.

First, we introduce the concept of a weak extension and study its proper-

ties. It has long been suspected that there are close connections between

default and autoepistemic logics. The notion of weak extension allows us

to precisely describe the relationship between these two formalisms. In

particular, we show that default logic with weak extensions is essentially

equivalent to autoepistemic logic, that is, nonmonotonic logic KD45.

In the paper we also study the notion of a set of formulas closed under a

default theory. These objects are shown to correspond to stable theories

and to modal logic S5. In particular, we show that skeptical reasoning

with sets closed under default theories is closely related with provability

in S5.

As an application of our results we determine the complexity of reasoning

with weak extensions and sets closed under default theories.

1 Introduction

Default logic is an extension of classical propositional logic tailored to handle situa-
tions where information is incomplete and the agent is arriving at conclusions using
both presence and absence of information. In this paper we study two classes of
objects that can be associated with a default theory: weak extensions and closed
theories. We will investigate connections of these classes with expansions in modal
nonmonotonic logics and with models of logic programs.

Let us assume that an agent is to reason about a certain domainD. It is commonly
accepted that an inference engine of an agent should include propositional calculus in
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the language generated by the set of propositional variables relevant to the domain
D. We will denote this language by L. In addition, an agent’s reasoning mechanism
should contain some domain-specific rules describing what is known about the domain
D. These rules are of the form

ϕ1, . . . , ϕn

ϑ
(1)

where ϕ1, . . . , ϕn, ϑ are formulas of the underlying language L. A rule of the form (1)
works as follows: once all the premises ϕ1, . . . , ϕn of the rules are derived, the agent
concludes ϑ. Due to assumed omniscience of agents, theories we will consider in this
paper are closed under propositional provability. Thus, without loss of generality, we
will restrict to rules with only one premise, that is, to rules of the form

ϕ

ϑ
(2)

The difference between a rule of the form (2) and the implication

ϕ ⊃ ϑ

is that although both permit the derivation of ϑ out of ϕ, the rule of the form (1)
has no side-effects. For instance, the formula ¬ϑ ⊃ ¬ϕ cannot be derived from the
rule (1). On the other hand, it can certainly be derived from the implication ϕ ⊃ ϑ.
Speaking informally, using rules rather than implications allows us to control the flow
of information more tightly.

Let D be a collection of rules of the form (2). A large part of the theory of
propositional logic as well as the theory of formal systems can be lifted to the proof
system which allows to derive formulas using the rules fromD along with propositional
calculus. We will denote such a proof system by PC +D. The system PC +D can
be formally specified by the following definition of the notion of a proof or derivation.
A proof of a formula ϕ from W in the system PC+D is a finite sequence of formulas
ϕ1, . . . , ϕn such that ϕn = ϕ and for every i, 1 ≤ i ≤ n,

P1 ϕi is a tautology, or ϕi ∈W

P2 ϕi follows by modus ponens from some formulas ϕi1 , ϕi2 , i1, i2 < i or

P3 there is a rule
ϕ

ϕi

in D, such that ϕ = ϕj for some j < i.

By CnD(W ) we will denote the set of all formulas possessing a proof from W in
PC +D.

While the notion of a proof yields a “bottom-up” description of CnD(W ), there
is another, “top-down”, characterization. A theory U ⊆ L is closed under a rule ϕ

ϑ

if ϑ ∈ U whenever ϕ ∈ U . Similarly, a theory U is closed under modus ponens if for
every formula ψ and ϕ, ψ ∈ U whenever ϕ ∈ U and ϕ ⊃ ψ ∈ U . A theory U is closed
under the system PC +D if

1. U is closed under the rules from D,

2. U is closed under modus ponens,



3. U contains all tautologies.

By taking the intersection of all theories containing a theory W ⊆ L and closed under
the system PC + D, we obtain the least theory with these properties. It is easy to
see that this least theory containing W and closed under PC +D is exactly equal to
CnD(W ). Hence, the closure approach yields an equivalent “top-down” description
of the set CnD(W ). We will see later in the paper that once we extend the concept
of a rule to capture incomplete information, the equivalence of the “bottom-up” and
“top-down” approaches will no longer hold.

Default logic can be viewed as a generalization of the concepts described above.
Specifically, by a default we mean an object of the form

α:Mβ1, . . . ,Mβk

ϑ
(3)

where α, β1, . . . , βn, ϑ ∈ L. A most commonly accepted interpretation of a rule of the
form (3) is: “If α has been established, and β1, . . . , βk are consistent, then derive ϑ”.

This is the approach taken by Reiter in his important paper [Rei80]. But in order
to obtain the Reiter’s approach, one has to clarify two concepts appearing in our
informal understanding of the meaning of a default. One needs to say what is meant
by “established” and the word “consistent” must get a precise meaning. A trick to
obtain Reiter’s default logic is to select a theory S ⊆ L. This theory S is used to
control consistency. That is, “consistency” is interpreted as “consistency with S”.
Next, to make precise the meaning of the word “established”, the notion of an S-
proof is introduced. Namely, given a set of defaults D, a formula ϕ ∈ L and a set
of formula W ⊆ L, a sequence ϕ1, . . . , ϕn is an S-proof of ϕ from W by means of
defaults in D if ϕ if ϕn = ϕ and for every i ≤ n:

DP1 ϕi is a tautology, or ϕi ∈ W or

DP2 ϕi follows by modus ponens from some formulas ϕi1 , ϕi2 , i1, i2 < i or

DP3 there is a rule
ϕi1 : Mβ1, . . . ,Mβk

ϕi

with i1 < i,¬β1 /∈ S, . . . ,¬βk /∈ S.

By CnD,S(W ) we will denote the set of all formulas possessing an S-proof from W
by means of defaults in D. A formula is “established” if it has an S-proof.

A pair (D,W ), where D is a set of defaults and W is a subset of , is called a default
theory. A theory S ⊆ L is called an extension (the notion was introduced by Reiter
[Rei80]) of a default theory (D,W ) if S is precisely the set of formulas possessing an
S-proof from W by means of defaults in D. That is, S is an extension of (D,W ) if
S = CnD,S(W ).

Reiter’s extensions turned out to have numerous applications. For example, they
capture such concepts as stability in logic programming ([BF91, MT89]), abduction
([KKT92]) and truth maintenance ([RDB89, MT93]). But the enormous success
of Reiter’s approach had also the effect of narrowing the scope of investigations in
default logic to extensions and their properties. Only recently, along with better
understanding of nonmonotonicity of commonsense reasoning, new versions of default
logic have been proposed: cumulative default logic by Brewka [Bre91] and default logic



with well-founded semantics by Baral and Subrahmanian [BS91]. It is quite obvious
that there will be many others to follow.

In this paper we will introduce and investigate two classes of objects that can
be associated with default theories. Each yields an interesting version of the default
logic. These classes arise as generalizations of “bottom-up” and “top-down” charac-
terizations of the operator CnD of the system PC + D. We have already presented
one generalization of the “bottom-up” approach. The notion of an S-proof generalizes
the notion of a proof in a system PC+D and was used as the basis for our definition
of extensions. But it turns out that the notion of a proof can be generalized in more
than one way. Another possibility is obtained by weakening the condition DP3. In
this manner we get the concepts of weak S-proof and of weak extension.

We study the properties of these notions in our paper. We prove that an extension
of (D,W ) is a weak extension of (D,W ), but not necessarily conversely. Thus, the
structure of weak extensions captures Reiter’s extensions but provides additional
“points of view” that can be associated with a default theory. We investigate the
relationship between weak extensions and expansions in modal nonmonotonic logics.
We show that weak extensions are in a perfect correspondence with autoepistemic
expansions. Hence, default logic with a slightly changed set of structures allows us to
capture autoepistemic logic (or, equivalently, the nonmonotonic modal logic KD45).

Another class of objects that can be associated with default theories can be ob-
tained by generalizing the notion of a closure under a rule, that is, by adopting the
“top-down” approach. This leads us to the notion of sets of formulas closed under
default theories. These objects are also investigated in the paper. As pointed above,
for a set D of monotone rules and a subset W ⊆ L, there exists the least set of
formulas containing W and closed under D and propositional provability. It is no
longer the case when D consists of defaults. It is easy to construct default theories
with more than one minimal theory closed under a default theory (D,W ). In contrast
with extensions and weak extensions sets of formulas closed under a default theory
always exist. For example, the whole language L is closed under any default theory.
Moreover, by an easy application of a Zorn lemma one can show that for every default
theory there exist minimal sets of formulas closed under it. These minimal sets of for-
mulas appeared for the first time in the paper by Hanks and McDermott [HM86]. The
problem of existence of a consistent set of formulas closed under a default theory is
less trivial. We show in this paper that it is equivalent to the problem of satisfiability
in the modal logic S5.

In this paper we concentrate on the question of interpretability of the notions of
weak extensions and sets closed under default theories within modal nonmonotonic
systems. We show that default logic with weak extensions can be embedded into
autoepistemic logic (that is, nonmonotonic logic KD45) and that the notion of a
closed theory is related to a class of theories closed under modal logic S5. Rather
surprisingly, our results have corresponding converse versions. Speaking informally,
it turns out that autoepistemic logic can be expressed within default logic with weak
extensions and modal-free S5-consequences of modal theories are expressible within
default logic by means of closed theories.

We also briefly discuss relations between weak extensions and closed theories and
objects studied in logic programming. We point out that, under a natural translation,
weak extension define supported Herbrand models of the completion of the program,
and closed theories correspond to Herbrand models of the completion.



2 Preliminaries from modal logic

In this section we recall some basic facts on modal logic and its nonmonotonic versions.
By the language of modal logic we mean an extension of the propositional language
L by one modal operator L. We call this language LL. An intuitive interpretation
of Lϕ is ϕ is known or Lϕ is believed. A formula ¬L¬ϕ will often be abbreviated to
Mϕ

A theory T ⊆ LL is stable if it satisfies the following conditions:

St1 T is closed under propositional provability;

St2 ϕ ∈ T implies Lϕ ∈ T ;

St3 ϕ /∈ T implies ¬Lϕ ∈ T .

A stable theory is uniquely determined by its subset consisting of modal-free (or
objective) formulas, that is T ∩L. For a theory S ⊆ L, by ST(S) we denote the stable
theory T such that T ∩ L = Cn(S).

Given a formula ϕ ∈ LL, we say that ϕ is an autoepistemic clause (ae-clause for
short) if ϕ is of the form

Lα ∧Mβ1 ∧ . . . ∧Mβm ⊃ γ (4)

with γ ∈ L. We allow a possibility that in an ae-clause of the form (4) the conjunct
Lϕ or all conjuncts of the form Mβi are missing. In particular, every formula γ ∈ L
is an ae-clause.

The restriction to just one conjunct of the form Lα is not restrictive since a formula

L(α1 ∧ . . . ∧ αk) ≡ (Lα1 ∧ . . . ∧ Lαk)

is a theorem of every normal modal logic.
It is easy to see that for every theory I ⊆ LL there exists a theory I ′ consisting

of ae-clauses such that Cn(I) = Cn(I ′).
We say that an ae-clause is simple if α, β1, . . . , βm ∈ L.
We will deal with two normal modal logics in this paper: KD45, which is based

on the schemata K, D, 4 and 5, and S5 based on the schemata K, T, 4 and 5. Since
the axiom schema D holds in S5, S5 is an extension of KD45. We refer the reader
to the monograph by Hughes and Cresswell [HC84] for more details.

Following Moore ([Moo85]), we call a theory T ⊆ LL an autoepistemic or stable
expansion of a theory I if

T = Cn(I ∪ {Lϕ : ϕ ∈ T} ∪ {¬Lψ : ψ /∈ T}) (5)

It is easy to see that a stable expansion of any theory must itself be a stable theory
(that is must satisfy conditions (St1)-(St3)). Moreover, if T = ST(S) then T is a
stable expansion of S.

Given a modal logic S, and a theory I ⊆ LL, a theory T ⊆ LL is called an
S-expansion of I if

T = CnS(I ∪ {¬Lψ : ψ /∈ T}) (6)

Here, by CnS we mean the consequence operator permitting application of the ne-
cessitation rule of proof to all formulas, not only the axioms of S.



As long as I is S-consistent (that is CnS(I) 6= LL), S-expansions of I are stable
and consistent.

The solutions to the equation (5), that is stable expansions “almost” coincide with
KD45-expansions. Speaking formally, we have the following result.

Proposition 2.1 (Schwarz, [Shv90]) Consistent autoepistemic expansions coincide
with KD45-expansions. That is, if I ⊆ LL, then a consistent theory T is a solution
to equation (5) if and only if T is a solution to equation (6) with S = KD45. 2

Logic KD45 permits to reduce in a formula the degree of nesting of the operator
L to at most 1. This property implies the following “normal form” result.

Proposition 2.2 (Konolige, [Kon88]) For every theory I ⊆ L there is a theory I ′

consisting of simple ae-clauses such that CnKD45(I) = CnKD45(I
′). Consequently,

I and I ′ have precisely the same consistent autoepistemic expansions, and they are
included in the same stable theories. 2

Let I ⊆ LL be a set of ae-clauses. Let T ⊆ LL be a stable theory. We say that
the ae-clause

Lα ∧Mβ1 ∧ . . . ∧Mβm ⊃ γ

from I is a generating formula for T if

α ∈ T and ¬β1, . . . ,¬βm /∈ T (7)

By GF (I, T ) we denote the set of all ae-clauses from I that are generating for T .
Finally, c(GF (I, T )) is the set of all consequents of the ae-clauses from GF (I, T ).
Notice that by the definition of ae-clauses c(GF (I, T )) ⊆ L.

We have the following description of autoepistemic expansions of theories consist-
ing of ae-clauses ([MT91]).

Proposition 2.3 Let I ⊆ LL be a theory consisting of ae-clauses and let T be a
stable theory. Then T is a stable expansion of I if and only if

T = ST(c(GF (I, T ))) (8)
2

Stable theories can be characterized as solutions of the equation (6) with S = S5.
Specifically, we have the following result.

Proposition 2.4 (McDermott [McD82]) A theory T is stable and consistent if
and only if T = CnS5({¬Lψ : ψ /∈ T}). That is, if and only if T is an S5-expansion
of ∅. For a theory I which is S5-consistent, consistent S5-expansions of I are precisely
stable and consistent theories containing I. 2

With every modal logic S we assign a nonmonotonic version of S (nonmonotonic
S for short) as follows. We define the nonmonotonic S-consequences (or skeptical
consequences) of I as

Cnn
S
(I) =

⋂
{T : T is an S-expansion of I}

In the case of S = S5, Proposition 2.4 implies that Cnn
S
(I) = CnS(I) for every

I ⊆ LL.



The skeptical mode of reasoning can be introduced in a much more general setting.
Suppose that we have an operator E which assigns to theories (modal, default, propo-
sitional, etc.) a family of theories (expansions, extensions, weak extensions, models).
Then, the skeptical reasoning consequence operator with respect to the mapping E can
be defined by

CONSE(I) =
⋂
{T : T ∈ E(I)}.

In the paper we will discuss properties of skeptical reasoning with respect to weak
extensions and sets closed under default theories.

As mentioned in the introduction, in this paper we study the relationship between
versions of default logic and modal nonmonotonic logics. To this end we need a
way of translating default theories into theories in the modal language LL. One
such interpretation was proposed by Konolige [Kon88]. According to his approach, a
default

d =
α:Mβ1, . . . ,Mβk

γ

is assigned a simple ae-clause

emb(d) = Lα ∧Mβ1 ∧ . . . ∧Mβk ⊃ γ. (9)

and a default theory (D,W ) is assigned a modal theory

emb(D,W ) = W ∪ {emb(d): d ∈ emb(d)}.

Other interpretations are also possible, for instance we can assign to the same default
the formula

Lα ∧ LMβ1 ∧ . . . ∧ LMβk ⊃ γ. (10)

This second approach was introduced and studied in [Tru91]. In particular, it was
shown there that by means of such interpretation default logic with extensions can
faithfully be represented within the nonmonotonic logic S4F.

In this paper, we focus on the translation proposed by Konolige. In addition to
the interpretation emb, we consider also the inverse operator emb−1. It is defined for
an arbitrary simple ae-clause ϕ. If ϕ ∈ L, emb−1(ϕ) = ϕ. If L appears in a simple
ae-clause ϕ, say ϕ is of the form (4), then

emb−1(ϕ) =
α:Mβ1, . . . ,Mβk

γ
.

Finally, for a theory I consisting of simple ae-clauses we define emb−1(I) = (D,W ),
where W = I ∩ L} and D = {emb−1(ϕ):ϕ ∈ I \ L}.

3 Weak extensions

In this section we will introduce another variant of a context-dependent proof. This
time a context will be used not only to check consistency of the justifications of a
default but also the validity of its prerequisite. The resulting notion of a weak S-proof
will then be used as the basis for our definition of another class of objects, called weak
extensions, that can be associated with default theories.



Definition 3.1 Let W and S be subsets of L, D a set of defaults and ϕ a formula
in L. By a weak S-proof of ϕ from W by means of defaults in D (or, simply a weak
S-proof of ϕ, if W and D are understood) we mean a sequence ϕ1, . . . , ϕn of formulas
from L such that ϕ = ϕn and for every i, 1 ≤ i ≤ n,

WDP1 ϕi is a tautology,

WDP2 ϕi follows by modus ponens from formulas ϕj1 and ϕj2 , for some j1, j2 < i,

WDP3 there is a default
α : Mβ1, . . . ,Mβm

ϕi

in D such that α ∈ S and, for every j, 1 ≤ j ≤ m, ¬βj /∈ S. 2

The set of all formulas possessing a weak S-proof from a theory W by means of
defaults in D will be denoted by CnD,S

weak(W ). It has a nice description in terms of the
propositional consequence operator Cn. Consider a default

α : Mβ1, . . . ,Mβm

γ
.

Let us call it d. The default d is called generating with respect to a context S if

1. α ∈ S, and

2. ¬βi /∈ S, for all i, 1 ≤ i ≤ m.

By GD(D,S) we will denote the subset of D consisting of defaults generating with
respect to S. It easily follows by induction on the length of proof that a formula ϕ
has a weak S-proof from W by means of defaults in D if and only if

ϕ ∈ Cn(W ∪ c(GD(D,S))).

In other words, the set of all formulas having a weak S-proof from W by means of
defaults in D, CnD,S

weak(W ), satisfies

CnD,S
weak(W ) = Cn(W ∪ c(GD(D,S))). (11)

As we have seen the notion of an S-proof gives rise to the concept of extension.
In a similar way another class of objects can be defined by means of weak S-proofs.

Definition 3.2 Let (D,W ) be a default theory and let S be a subset of L. The
theory S is a weak extension of (D,W ) if S is precisely the set of formulas possessing
a weak S-proof from W by means of defaults from D. That is, S is a weak extension
of (D,W ) if and only if

S = Cn(W ∪ c(GD(D,S))). (12)
2

Let us compare the definitions of S-proof and weak S-proof. Clearly, conditions
DP1 and WDP1 as well as DP2 and WDP2 coincide. The only difference is in the third
condition. In the case of weak S-proofs we no longer require that the prerequisite of a
default be proven prior to the application of the default. It is enough that it belongs



to the context S. This modification of the third condition introduces a possibility of
“circular” proofs. For example, given a default

p : Mq

p
,

where p and q are two different propositional variables, if an agent chooses to consider
a context containing p (chooses to have p in its knowledge set), then it can provide an
a posteriori justification for its choice by means of a weak S-proof of p. A very similar
reasoning pattern is possible in autoepistemic logic, which suggests the existence of
close connections between the notions of weak extension and autoepistemic expansion.
Indeed, such connections can be found and we will discuss them in detail below.

Weak extensions behave, in general, nonmonotonically. In classical logic, when a
formula is added to a theory, the class of models of the resulting theory is a subset
of the class of models of the original one. It is not so for weak extensions of default
theories. For example, consider a theory (D,W ), where W = ∅ and D = { :Mp

⊥
}.

This theory has no weak extension. Let us define now W ′ = W ∪ {¬p}. It is easy to
see that the new default theory has one weak extension, Cn({¬p}). In particular, it
follows that the skeptical reasoning associated with weak extensions is nonmonotonic:

CONSw.ext(D,W ) 6⊆ CONSw.ext(D,W ′).

Let us also observe that weak extensions for a default theory, unlike extensions,
do not in general form an antichain. It is easy to see that a default theory (D,W ),
where W = ∅ and D = p:Mq

p
} has two weak extensions Cn(∅) and Cn({p}).

Next, we will show now that every weak extension is an extension. To this end, we
will first investigate the relationship between S-proofs and weak S-proofs. The term
weak S-proof may be somewhat misleading. In general, it is not the case that every
S-proof is a weak S-proof. However, for some contexts S, in particular for those that
are extensions, it is so.

Proposition 3.1 Let W and S be subsets of L and D a set of defaults. If

(1) S contains every formula that has an S-proof from W by means of defaults in D

then every S-proof is a weak S-proof. In particular, the condition (1) is satisfied if S
is an extension of (D,W ). 2

Proof: In our argument by an S-proof (weak S-proof) we mean an S-proof (weak
S-proof) from W by means of defaults in D. Let us consider an S-proof ϕ1, . . . , ϕn.
Assume that every S-proof of length less than n is a weak S-proof. In particular,
it follows that ϕ1, . . . , ϕn−1 is a weak S-proof. Hence, it is enough to show that at
least one of the conditions WDP1 - WDP3 is satisfied for ϕn. If ϕn is a tautology
or belongs to W , the condition WDP1 holds. If ϕn follows from some ϕi, ϕj, where
i, j < n, by modus ponens, then the condition WDP2 holds. The last possibility is
that there is a default

α : Mβ1, . . . ,Mβm

ϕn

such that α = ϕj for some j < n and ¬βk /∈ S, for every k, 1 ≤ k ≤ m. Since α has
an S-proof, by the condition (1) it follows that α ∈ S. Consequently, the condition
WDP3 is satisfied for ϕn.



Suppose now that S is an extension for (D,W ). Then, by the definition, S is
exactly the set of formulas possessing an S-proof from W by means of defaults from
D. Hence, (1) holds. 2

As a corollary, we obtain the property that every extension of a default theory is
a weak extension of this default theory, too.

Corollary 3.2 Let (D,W ) be a default theory. For every theory S ⊆ L, if S is an
extension for (D,W ) then S is a weak extension of (D,W ).

Proof: Assume that S is an extension of (D,W ). Then, every formula in S has an
S-proof from W by means of defaults in D. By Proposition 3.1, every element in
S has a weak S-proof from W by means of defaults in D. Hence, S ⊆ CnD,S

weak(W ).
On the other hand, one can easily show that since S is an extension, S contains the
consequents of all defaults in D that are generating with respect to S. In addition,
S contains W and is closed under propositional provability. Hence S ⊇ Cn(W ∪
c(GD(D,S))) = CnD,S

weak(W ). Consequently, S = CnD,S
weak(W ), that is, S is a weak

extension of (D,W ). 2

The converse statement is not true. Consider a default theory ∆ = ({p:

p
}, ∅). It is

not hard to see that ∆ has two weak extensions: Cn(∅) and Cn({p}). Only the first
of them is an extension for ∆. The other one is not.

To conclude this section, let us note that if all the defaults in D are prerequisite-
free then, clearly, the notions of an S-proof and a weak S-proof by means of defaults
from D coincide. Consequently, we obtain the following result.

Theorem 3.3 Let D be a set of prerequisite-free defaults. Then, for every theory
W ⊆ L, a theory S ⊆ L is an extension for (D,W ) if and only if S is a weak
extension for (D,W ). 2

4 Weak extensions and autoepistemic logic

The existence of close connections between default and autoepistemic logics has been
suspected for a long time. Most of the effort has been focused on relating extensions
and expansions (see, for example, [Kon88]). This has proved to be a difficult task
and no simple modal interpretation of defaults is known under which there would
be a one-to-one correspondence between these two concepts. The reason seems to
be, speaking informally, that extensions do not allow “circular” justifications while
expansions do. The results of this section show that our modification of the notion
of an extension so that “circular” arguments become possible, is precisely what is
needed in order to obtain a version of default logic equivalent with autoepistemic
logic.

We will show that default logic with weak extensions can be represented as a
fragment of autoepistemic logic concerned with theories without nested modalities.
Quite surprisingly, the converse result is also true. We will show that default logic with
weak extensions is powerful enough to represent full autoepistemic logic (with one,
rather minor caveat to be discussed in detail below). In particular, no restrictions on
the depth of nesting of the modality are needed. As the basis of our representability
results we choose the modal interpretation of defaults by means of the formula (9).
However, we would like to stress that our results remain valid for other natural modal
interpretations of defaults, for example, for the interpretation given by (10).



First, we show that weak extensions can be represented as autoepistemic expan-
sions.

Theorem 4.1 Let (D,W ) be a default theory. Let S ⊆ L be closed under proposi-
tional consequence. The theory S is a weak extension for (D,W ) if and only if ST(S)
is an autoepistemic expansion for emb(D,W ).

Proof: It is easy to see that a default d is generating with respect to S if and only if
the formula emb(d) is generating with respect to ST(S). Indeed, say

d =
α:Mβ1 . . . ,Mβm

γ
.

Assume that d is generating with respect to S. Then, α ∈ S and βi /∈ S, for every
i, 1 ≤ i ≤ m. Since S is closed under propositional provability, S = ST(S) ∩ L.
Hence, α ∈ ST(S) and βi /∈ ST(S), for every i, 1 ≤ i ≤ m. Consequently, the formula
emb(d) is generating with respect to ST(S). The converse implication can be proved
in a similar way.

In addition, every element of W is a generating formula with respect to ST(S).
Hence, we have that

W ∪ c(GD(D,S)) = GF (emb(D,W )). (13)

The assertion is now a direct consequence of (12), (13) and Theorem 2.3, 2

Theorem 4.1 has an immediate corollary about expressibility of autoepistemic logic
in default logic, by means of weak extensions, if one restricts attention to theories
consisting of simple ae-clauses.

Corollary 4.2 Let I ⊆ LL consist of simple ae-clauses. A stable theory T ⊆ LL is
an autoepistemic expansion of I if and only if T ∩L is a weak extension of emb−1(I).

2

The proof of Proposition 2.2 (see [Kon88]) implies, in fact, that there is an algo-
rithm that for every modal theory I produces a modal theory I ′ consisting of simple
ae-clauses with exactly the same consistent autoepistemic expansions as I. Com-
bining this result with Corollary 4.2 implies an algorithm which assigns to every
autoepistemic theory I without inconsistent expansions a default theory ∆I in such
a way that autoepistemic expansions of I correspond to weak extensions of ∆I .

Theorem 4.3 A consistent stable theory T is an autoepistemic expansion of a modal
theory I if and only if T ∩ L is a consistent weak extension of the default theory
∆I = emb−1(I ′), where I ′ is as in Proposition 2.2. 2

This result says that full autoepistemic logic can be represented within default
logic with weak extensions. There is only one minor restriction. The algorithm
implied by the proof of Proposition 2.2 does not preserve inconsistent expansions.
That is, the inconsistent expansion of a modal theory I may no longer be an expansion
of I ′. Consequently, under our translation I 7→ ∆I , the inconsistent expansion of I
may not have a corresponding inconsistent weak extension of ∆I . In all other cases
the correspondence is perfect.

The situation is even nicer in the case of skeptical mode of reasoning. Namely, it
turns out that modal-free consequences of a theory I under the skeptical autoepistemic
mode of reasoning are exactly the consequences of the default theory ∆I under the
skeptical reasoning with weak extensions.



Corollary 4.4 For every modal theory I

L ∩
⋂
{T :T is an expansion of I} =

⋂
{S:S is a weak extension of ∆I}.

Proof: Notice that the intersection of all members of the empty family of theories
equals LL. Hence,

⋂
{T :T is an expansion of I} =

⋂
{T :T is a consistent expansion of I}.

Thus, the assertion follows from Theorem 4.3. 2

5 Closure under defaults and logic S5

In this paper we regard default logic as a generalization of formal proof systems PC+
D containing propositional logic and some additional (monotone) rules of inference.
Reasoning in such systems can equivalently be defined by means of the concept of a
proof and by means of the notion of the closure under the rules of proof in D. The
first approach can be generalized to the case of default logic in at least two ways.
The notion of an S-proof leads to extensions and the notion of a weak S-proof yields
weak extensions studied in the previous section. We will investigate now the second
approach. A theory S ⊆ L is closed under a default

α:Mβ1, . . . ,Mβm

γ

if α ∈ S and ¬βi /∈ S, 1 ≤ i ≤ m, implies that γ ∈ S. A theory S is closed under a
default theory (D,W ) if

C1 W ⊆ S;

C2 S is closed under propositional provability;

C3 S is closed under every default in D.

First, we will show that every extension of a default theory (D,W ) is a minimal
theory closed under (D,W ).

Theorem 5.1 Let (D,W ) be a default theory. I a theory S ⊆ L is an extension of
(D,W ) then S is a minimal theory closed under (D,W ).

Proof: Since S is an extension of (D,W ), W ⊆ S and S is closed under propositional
provability. To verify the condition C3, consider a default

d =
α:Mβ1, . . . ,Mβm

γ
.

Assume that α ∈ S and ¬βi /∈ S, 1 ≤ i ≤ m. Since S is an extension of (D,W ), α
has an S-proof from W by means of defaults in D. Hence, γ has an S-proof from W
by means of defaults in D. Thus, γ ∈ S.

To prove minimality, consider a theory U closed under (D,W ) and assume that
U ⊆ S. It is easy to prove by induction on the length of a proof that

U ⊇ CnD,U(W ).



In addition, since U ⊆ S,

CnD,U(W ) ⊇ CnD,S(W ).

Since S is an extension, U ⊇ S follows. Hence, U = S. 2

The converse of the statement of Theorem 5.1 is not true. Consider a default
theory (D,W ), where W = ∅ and D = { :Mq

p
}. Clearly, Cn({¬q}) is a minimal

theory closed under (D,W ). On the other hand, Cn({¬q}) is not an extension (not
even a weak extension) of (D,W ).

The assertion of Theorem 5.1 fails if extensions are replaced by weak extensions.
As we have seen weak extensions do not form an antichain, in general, while minimal
closed theories obviously form one.

Our results in the remainder of this section relate sets of formulas which are
closed under a default theory (D,W ) with stable theories containing emb(D,W ). In
particular, we will show that skeptical reasoning with closed theories is related to
monotonic reasoning in modal logic S5

Theorem 5.2 Let (D,W ) be a default theory. A theory S ⊆ L is closed under
(D,W ) if and only if S is closed under propositional provability and emb(D,W ) ⊆
ST(S).

Proof: Suppose that S is closed for (D,W ). Then, S is closed under propositional
provability and W ⊆ S. Let d be a default from D, say

d =
α:Mβ1 . . . ,Mβm

γ
.

We need to show that

emb(d) = Lα ∧Mβ1 ∧ . . . ∧Mβm ⊃ γ

belongs to ST(S).
First, assume that α /∈ S. Then, since S is closed under propositional provability,

¬Lα ∈ ST(S). Since ST(S) is closed under propositional provability, emb(d) ∈
ST(S). Next, assume that ¬βi ∈ S, for some i, 1 ≤ i ≤ m. Then, L¬βi ∈ ST(S).
As before, since ST(S) is closed under propositional provability, emb(d) ∈ ST(S).
Finally, assume that α ∈ S and, for every i, 1 ≤ i ≤ m, ¬βi /∈ S. ince S is closed
under the defaults fromD, it follows that γ ∈ S. Hence, γ ∈ ST(S) and, consequently,
emb(d) ∈ ST(S). Thus, emb(D,W ) ⊆ ST(S).

The converse implication can be proved in a similar fashion. 2

Theorem 5.2 allows us to relate skeptical reasoning by means of theories closed for
a default theory (D,W ) with monotonic consequence operator for the modal logic S5.
It follows from Proposition 2.4 that the intersection of all stable theories containing a
given modal theory I coincides with the set of S5-consequences of I. Hence, Theorem
5.2 implies the following result.

Theorem 5.3 Let (D,W ) be a default theory. A formula ϕ ∈ L belongs to the
intersection of all theories closed for (D,W ) if and only if ϕ is an S5-consequence of
emb(D,W ). 2



Let us denote by CONS the consequence operator for the skeptical reasoning with
closed theories. That is, given a default theory (D,W ), we denote

CONS(D,W ) =
⋂
{S: S is closed for (D,W )}

It follows from Theorem 5.3 that CONS is monotonic both in D and W . Since
the definition of CONS does not change if the intersection of all closed theories is
replaced by the intersection of minimal closed theories, it follows from our results
that the skeptical mode of reasoning corresponding to the class of minimal closed
theories of Hanks and McDermott is monotone.

As in the case of weak extensions we have the following two results on expressibility
the concept of stability by means of closed theories.

Corollary 5.4 Let I ⊆ LL consist of simple ae-clauses. A stable theory T contains
I if and only if T ∩ L is closed for emb−1(I). 2

Theorem 5.5 Let I ⊆ LL be an arbitrary modal theory. A stable theory T contains
I if and only if T ∩ L is closed for the default theory ∆I = emb−1(I ′), where I ′ is as
in Proposition 2.2. 2

Theorem 5.5 implies the converse result to Theorem 5.3. Namely, it shows that
computing modal-free S5-consequences of an arbitrary modal theory I can be per-
formed in default logic by means of theories closed for a certain default theory.

Theorem 5.6 Let I ⊆ LL be an arbitrary modal theory. A formula ϕ ∈ L is an
S5-consequence of I if and only if ϕ is in the intersection of all theories closed for
emb−1(I ′), where I ′ is as in Proposition 2.2. 2

6 Complexity issues

In this section we will briefly discuss complexity issues related to weak extensions
and closed theories. For all the undefined notions on complexity theory the reader
is referred to the monograph by Garey and Johnson [GJ79] and to the papers by
Gottlob [Got92] and Niemelä [Nie92], where the questions of complexity of problems
involving extensions of default theories and autoepistemic expansions are studied.

First, we will deal with the case of weak extensions. We will consider the following
five problems:
(PR1) given a finite default theory (D,W ), decide if (D,W ) has a weak extension.
(PR2) given a finite default theory (D,W ) and a formula ϕ decide if there is a weak
extension of (D,W ) which contains ϕ.
(PR3) given a finite default theory (D,W ) and a formula ϕ decide if there is a weak
extension of (D,W ) which does not contain ϕ.
(PR4) given a finite default theory (D,W ) and a formula ϕ decide whether ϕ belongs
to all weak extensions of (D,W ).
(PR5) given a finite default theory (D,W ) and a formula ϕ decide whether ϕ is in
no extension of (D,W ).

It is evident that problems PR1 - PR3 are in ΣP
2
. For example, let us consider

problem PR2. To prove that PR2 is in ΣP
2

we need to show that there is a polynomial-
time nondeterministic Turing machine with an oracle for a problem from the class NP



which decides PR2. It is indeed the case. Such a machine would first (nondetermin-
istically) guess a subset D′ of defaults and then would check, using the propositional
satisfiability oracle that

GD(D,Cn(W ∪ {c(d): d ∈ D′})) = D′,

that is, that Cn(W ∪ {c(d): d ∈ D′}) is a weak extension, and that

ϕ /∈ Cn(W ∪ {c(d): d ∈ D′}).

Clearly, only polynomially many calls to the oracle are needed.
Since problems PR4 and PR5 are the complements of the problems PR3 and

PR2, respectively, they both are in ΠP
2
. Completeness of the problems PR1 - PR3

in ΣP
2

and PR4 and PR5 in ΠP
2

follows from the corresponding results on extensions
[Got92]. All default theories constructed in the proofs given by Gottlob in [Got92]
contain only prerequisite-free defaults and for such theories the notions of extension
and weak extension coincide (Theorem 3.3). Hence, we obtain the following result.

Theorem 6.1 Problems PR1 - PR3 are ΣP
2
-complete. Problems PR4 and PR5 are

ΠP
2
-complete. 2

Let us pass on to the case of closed theories. Here, the existence problem is trivial.
Namely, for every default theory (D,W ) there exists a theory closed for (D,W ).
If we ask for the existence of a consistent closed theory for (D,W ), by Theorem
5.3, it is equivalent to S5-consistency of emb(D,W ) an thus, it is NP-complete (the
satisfiability problem for the logic S5 is NP-complete, see [Lad77]). Similarly, the
problem whether a formula ϕ ∈ L is in all closed theories for (D,W ) is equivalent to
the question whether ϕ is an S5-consequence of emb(D,W ), which is the complement
of the S5-satisfiability problem and, hence, is co-NP-complete. Summarizing, we get
the following theorem.

Theorem 6.2 Given a finite default theory (D,W ) it is NP-complete to decide if
there is a consistent theory closed for (D,W ). Given a formula ϕ ∈ L and a finite
default theory (D,W ) it is co-NP-complete to decide if ϕ is in all theories closed for
(D,W ). 2

7 Models and supported models of logic programs

In this section we will briefly discuss connections of weak extensions and closed the-
ories with models of propositional logic programs.

By a (propositional) logic program we mean a set P of program clauses, that is,
expressions of the form

C = p← q1, . . . , qn,not(s1), . . . ,not(sm) (14)

where p, qi and si are atomic formulas of our propositional language L.
There are several ways in which a clause of the form (14) can be interpreted as a

default. Following [BF91, MT89] we assign to a clause of the form (14) the default

d(C) =
q1 ∧ . . . ∧ qn:M¬s1, . . . ,M¬sm

p
(15)



We assign to a program P a default theory

dt(P ) = (d(P ), ∅), (16)

where d(P ) = {d(C) : C ∈ g(P )}. In [BF91, MT89] it has been proved that M
is a stable model of P if and only if Cn(M) is a default extension of dt(P ). Weak
extensions of dt(P ) have also a clear interpretation in this context. Recall that a
supported model of a program P is a set M of atoms such that M is a model of P
and, in addition, whenever an atom p belongs to M then there is a clause C of the
form (14) in P such that p is the head of P , and M satisfies the body of C.

Not only we can interpret logic programs as default theories. We have seen that
default theories can be interpreted as modal theories. Combining these embeddings
yields a modal interpretation of logic programs. Namely, for a clause C of the form
(14) we define

modal(C) = L(q1 ∧ . . . ∧ qn) ∧M¬s1 ∧ . . . ∧M¬sm ⊃ p. (17)

For a program P , we define

modal(P ) = {modal(C):C ∈ P}.

Reasoning as in the proof of Theorem 4.1 we obtain the following result.

Proposition 7.1 Let M be a set of atoms. The following conditions are equivalent:

1. M is a supported model of P .

2. Cn(M) is a weak extension of dt(P ).

3. ST(M) is an autoepistemic expansion of modal(P ). 2

The equivalence of (1) and (3) is related to a result in [MS89], where modal
characterization of supported models has been first investigated. The advantage
of our approach over that of [MS89] is that the translation modal(P ) used here is
modular (see [Imi87]) whereas the translation considered in [MS89] is not modular.

A similar result can be obtained for the class of all models of a program P which
turn out to correspond to closed theories and S5-expansions.

Proposition 7.2 Let M be a set of atoms. The following conditions are equivalent:

1. M is a model of P .

2. Cn(M) is closed under dt(P ).

3. ST(M) contains modal(P ).

4. ST(M) is a S5-expansion of modal(P ). 2
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[MT89] W. Marek and M. Truszczyński. Stable semantics for logic programs and
default theories. In E.Lusk and R. Overbeek, editors, Proceedings of the
North American Conference on Logic Programming, pages 243–256. MIT
Press, 1989.
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