
Solving and Verifying the boolean Pythagorean
Triples problem via Cube-and-Conquer

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek

The University of Texas at Austin, Swansea University, and University of Kentucky

Abstract. The boolean Pythagorean Triples problem has been a long-
standing open problem in Ramsey Theory: Can the set N = {1, 2, . . . }
of natural numbers be divided into two parts, such that no part contains
a triple (a, b, c) with a2 + b2 = c2 ? A prize for the solution was offered
by Ronald Graham over two decades ago. We solve this problem, prov-
ing in fact the impossibility, by using the Cube-and-Conquer paradigm,
a hybrid SAT method for hard problems, employing both look-ahead
and CDCL solvers. An important role is played by dedicated look-ahead
heuristics, which indeed allowed to solve the problem on a cluster with
800 cores in about 2 days. Due to the general interest in this mathemati-
cal problem, our result requires a formal proof. Exploiting recent progress
in unsatisfiability proofs of SAT solvers, we produced and verified a proof
in the DRAT format, which is almost 200 terabytes in size. From this we
extracted and made available a compressed certificate of 68 gigabytes,
that allows anyone to reconstruct the DRAT proof for checking.

1 Introduction

Propositional satisfiability (SAT, for short) is a formalism that allows for rep-
resentation of all finite-domain constraint satisfaction problems. Consequently,
all decision problems in the class NP, as well as all search problems in the class
FNP [9,29,35,19], can be polynomially reduced to SAT. Due to great progress
with SAT solvers, many practically important problems are solved using such
reductions. SAT is especially an important tool in hardware verification, for
example model checking [8] and reactive systems checking. In this paper we
are, however, dealing with a different application of SAT, namely as a tool in
computations of configurations in a part of Mathematics called Extremal Com-
binatorics, especially Ramsey theory. In this area, the researcher attempts to
find various configurations that satisfy some combinatorial conditions, as well as
values of various parameters associated with such configurations [49].

One important result of Ramsey theory, the van der Waerden Theorem [45],
has been studied by the SAT community, started by [14]. That theorem says
that for all natural numbers k and l there is a number n, so that whenever the
integers 1, . . . , n are partitioned into k sets, there is a set containing an arithmetic
progression of length l. A good deal of effort has been spent on specific values of
the corresponding number theoretic function, vdW(k, l). Two results on specific
values: vdW(2, 6) = 1132 and vdW(3, 4) = 293, were obtained by M. Kouril

2

[32,31] using specialized FPGA-based SAT solvers. Other examples include the
Schur Theorem [43] on sum-free subsets, its generalization known as Rado’s
Theorem [42], and a generalization of van der Waerden numbers [4]. In this
paper we investigate two areas:

1. We show the “boolean Pythagorean triples partition theorem” (Theorem 1),
or colouring of Pythagorean triples, an analogue of Schur’s Theorem.

2. We develop methods to compute numbers in Ramsey theory by SAT solvers.

A triple (a, b, c) ∈ N3 is called Pythagorean if a2 + b2 = c2. If for some n > 2
all partitions of the set {1, . . . , n} into two parts contain a Pythagorean triple in
at least one part, then that property holds for all such partitions of {1, . . . ,m}
for m ≥ n. A partition by Cooper and Overstreet [10] of the set {1, . . . , 7664}
into two parts, with no part containing a Pythagorean triple, was previously the
best result, thereby improving on earlier lower bounds [11,30,41].

Theorem 1. The set {1, . . . , 7824} can be partitioned into two parts, such that
no part contains a Pythagorean triple, while this is impossible for {1, . . . , 7825}.

Graham repeatedly offered a prize of $100 for proving such a theorem, and
the problem is explicitly stated in [10]. To emphasize, the situation of Theorem
1 is not as in previous applications of SAT to Ramsey theory, where SAT only
“filled out the numerical details”, but the existence of these numbers was not
known (and as such is a good success of Automated Theorem Proving). It is
natural to generalize our problem in a manner similar to the Schur Theorem:

Conjecture 1. For every k ≥ 1 there exist Ptn(k) ∈ N (the “Pythagorean triple
number”), such that {1, . . . ,Ptn(k)− 1} can be partitioned into k parts with no
part containing a Pythagorean triple, while this is impossible for {1, . . . ,Ptn(k)}.

We prove Theorem 1 by considering two SAT problems. One showing that
{1, . . . , 7824} can be partitioned into two parts such that no part contains a
Pythagorean triple (i.e., the case n = 7824 is satisfiable). The other one showing
that any partitioning of {1, . . . , 7825} into two parts contains a Pythagorean
triple (i.e., the case n = 7825 is unsatisfiable). Now a Pythagorean triple-free
partition for n = 7824 is checkable in a second, but the absence of such a partition
for n = 7825 requires a more “durable proof” than just the statement that we
run a SAT solver (in some non-trivial fashion!) which answered UNSAT — to
become a mathematically accepted theorem, our assertion for n = 7825 carries a
stronger burden of proof. Fortunately, the SAT community has spent a significant
effort to develop techniques that allow to extract, out of a failed attempt to get
a satisfying assignment, an actual proof of the unsatisfiability.

It is worth noting the similarities and differences to the endeavours of extend-
ing mathematical arguments into actual formal proofs, using tools like Mizar [1]
and Coq [2]. Cases, where intuitions (or convictions) about completeness of math-
ematical arguments fail, are known [47]. So T. Hales in his project flyspeck [3]
extracted and verified his own proof of the Kepler Conjecture. Now the core of
the argument in such examples has been constructed by mathematicians. Very

3

different from that, the proofs for unsatisfiability coming from SAT solvers are,
from a human point of view, a giant heap of random information (no direct
understanding is involved). But we don’t need to search for the proof — the
present generation of SAT solvers supports emission of unsatisfiability proofs
and standards for such proofs exist [48], as well as checkers that the proof is
valid. However the proof that we will encounter in our specific problem is of
very large size. In fact, even storing it is a significant task, requiring significant
compression. We will tackle these problems in this paper.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive
literal x and the negative literal x̄. A clause is a finite set of literals; so it may
contain complementary literals, in which case the clause is tautological. The
empty clause is denoted by ⊥. If convenient, we write a clause as a disjunction
of literals. Since a clause is a set, no literal occurs several times, and the order
of literals in it does not matter. A (CNF) formula is a conjunction of clauses,
and thus clauses may occur several times, and the order of clauses does matter;
in many situations these distinctions can be ignored, for example in semantical
situations, and then we consider in fact finite sets of clauses.

A partial assignment is a function τ that maps a finite set of literals to
{0, 1}, such that for v ∈ {0, 1} holds τ(x) = v if and only if τ(x̄) = ¬v. A
clause C is satisfied by τ if τ(l) = 1 for some literal l ∈ C, while τ satisfies
a formula F if it satisfies every clause in F . If a formula F contains ⊥, then
F is unsatisfiable. A formula F logically implies another formula F ′, denoted
by F |= F ′, if every satisfying assignment for F also satisfies F ′. A transition
F F ′ is sat-preserving, if either F is unsatisfiable or both F, F ′ are satisfiable,
while the transition if unsat-preserving if either F is satisfiable or both F, F ′

are unsatisfiable. Stronger, F, F ′ are satisfiability-equivalent if both formulas are
satisfiable or both unsatisfiable, that is, iff the transition F F ′ is both sat- and
unsat-preserving. We note that if F |= F ′, then F F ′ is sat-preserving, and
that F F ′ is sat-preserving iff F ′ F is unsat-preserving. Clause addition is
always unsat-preserving, clause elimination is always sat-preserving.

Resolution and Extended Resolution. The resolution rule (see [18, Sub-
sections 1.15-1.16]) infers from two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and C2 =
(x̄ ∨ b1 ∨ . . . ∨ bm) the resolvent C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), by resolv-
ing on variable x. C is logically implied by any formula containing C1 and C2.
For a given CNF formula F , the extension rule [44] allows one to iteratively
add definitions of the form x := a ∧ b by adding the extended resolution clauses
(x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F , where x is a new variable and a and b are
literals in the current formula. The addition of these clauses is sat-equivalent.

Unit Propagation. For a CNF formula F , unit propagation simplifies F based
on unit clauses; that is, it repeats the following until fixpoint: if there is a unit
clause {l} ∈ F , remove all clauses that contain the literal l from the set F

4

and remove the literal l̄ from the remaining clauses in F . This process is sat-
equivalent. If unit propagation on formula F produces complementary units {l}
and {l̄}, we say that unit propagation derives a conflict and write F `1 ⊥ (this
relation also holds if ⊥ is already in F).

Ordinary resolution proofs (or “refutations” – derivations of the empty clause)
just add resolvents. This is too inefficient, and is extended via unit propagation
as follows. For a clause C let ¬C denote the conjunction of unit clauses that
falsify all literals in C. A clause C is an asymmetric tautology with respect to
a CNF formula F if F ∧ ¬C `1 ⊥. This is equivalent to the clause C being
derivable from F via input resolution [20]: a sequence of resolution steps us-
ing for every resolution step at least one clause of F . So addition of resolvents
is generalised by addition of asymmetric tautologies (where addition steps al-
ways refer to the current (enlarged) formula, the original axioms plus the added
clauses). Asymmetric tautologies, also known as reverse unit propagation (RUP)
clauses, are the most common learned clauses in conflict-driven clause learning
(CDCL) SAT solvers (see [39, Subsection 4.4]). This extension is irrelevant from
the proof-complexity point of view, but for practical applications exploitation of
the power of fast unit propagation algorithms is essential.

RAT clauses. We are seeking to add sat-preserving clauses beyond logically
implied clauses. The basic idea is as follows (proof left as instructive exercise):

Lemma 1. Consider a formula F , a clause C and a literal x ∈ C. If for all
D ∈ F such that x̄ ∈ F it holds that F |= C ∪ (D \ {x̄}), then addition of C to
F is sat-preserving.

In order to render the condition F |= C ∪ (D \ {x̄}) polytime-decidable, we
stipulate that the right-hand clause must be derivable by input resolution:

Definition 1 ([28]). Consider a formula F , a clause C and a literal x ∈ C
(the “pivot”). We say that C has RAT (“Resolution asymmetric tautology”) on
x w.r.t. F if for all D ∈ F with x̄ ∈ D holds that F ∧ ¬(C ∪ (D \ {x̄})) `1 ⊥.

By Lemma 1, addition of RAT-clauses is sat-preserving. Every non-empty asym-
metric tautology C for F has RAT on any x ∈ C w.r.t. F . It is also easy to
see that the three extended resolution clauses are RAT clauses (using the new
variable for the pivot literals). All preprocessing, inprocessing, and solving tech-
niques in state-of-the-art SAT solvers can be expressed in terms of addition and
removal of RAT clauses [28].

3 Proofs of Unsatisfiability

A proof of unsatisfiability (also called a refutation) for a formula F is a sequence
of sat-preserving transitions which ends with some formula containing the empty
clause. There are currently two prevalent types of unsatisfiability proofs: resolu-
tion proofs and clausal proofs. Both do not display the sequence of transformed
formulas, but only list the axioms (from F) and the additions and (possibly) dele-
tions. Several formats have been designed for resolution proofs [50,17,5] (which

5

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 2 4 0

2 0

0

Fig. 1. Left, a formula in DIMACS CNF for-
mat, the conventional input for SAT solvers which
starts with p cnf to denote the format, followed
by the number of variables and the number of
clauses. Right, a DRAT refutation for that for-
mula. Each line in the proof is either an addition
step (no prefix) or a deletion step identified by
the prefix “d”. Spacing is used to improve read-
ability. Each clause in the proof must be a RAT
clause using the first literal as pivot, or the empty
clause as an asymmetric tautology.

only add clauses), but they all share the same disadvantages. Resolution proofs
are often huge, and it is hard to express important techniques, such as conflict
clause minimization, with resolution steps. Other techniques, such as bounded
variable addition [38], cannot be polynomially-simulated by resolution at all.
Clausal proof formats [48,46,23] are syntactically similar; they involve a sequence
of clauses that are claimed to be sat-preserving, starting with the given formula.
But now we might add clauses which are not logically implied, and we also might
remove clauses (this is needed now in order to enable certain additions, which
might depend on global conditions).

Definition 2 ([48]). A DRAT proof (“Deletion Resolution Asymmetric Tau-
tology”) for a formula F is a sequence of additions and deletions of clauses,
starting with F , such that each addition is the addition of a RAT clause w.r.t.
the current formula (the result of additions and deletions up to this point), or, in
case of adding the empty clause, unit-clause propagation on the current formula
yields a contradiction. A DRAT refutation is a DRAT proof containing ⊥.

DRAT refutations are correct proofs of unsatisfiability (based on Lemma 1
and the fact, that deletion of clauses is always sat-preserving; note that Definition
2 allows unrestricted deletions). Furthermore they are checkable in cubic time.
Since the proof of Lemma 1 is basically the same as the proof for [33, Lemma 4.1],
by adding unit propagation appropriately one can transfer [33, Corollary 7.2] and
prove that the power of DRAT refutations is up to polytime transformations the
same as the power of Extended Resolution.

Example 1. Figure 1 shows an example DRAT refutation. Consider the CNF
formula F = (a ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b ∨ c ∨ d̄) ∧ (b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨
c̄∨ d̄)∧ (ā∨ b∨ d)∧ (a∨ b̄∨ d̄), shown in DIMACS format in Fig. 1 (left), where
1 represents a, 2 is b, 3 is c, 4 is d, and negative numbers represent negation.
The first clause in the proof, (ā), is a RAT clause with respect to F because all
possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) `1 ⊥ using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) `1 ⊥ using (a ∨ c ∨ d)

F ∧ (a) ∧ (b) ∧ (d) `1 ⊥ using (a ∨ b̄ ∨ d̄)

6

4 Cube-and-Conquer Solving

Arguably the most effective method to solve many hard combinatorial prob-
lems via SAT technology is the cube-and-conquer paradigm [25], abbreviated
by C&C, due to strong performance and easy parallelization, which has been
demonstrated by the C&C solver Treengeling [6] in recent SAT Competitions.
C&C consists of two phases. In the first phase, a look-ahead SAT solver [26]
partitions the problem into many (potentially millions of) subproblems. These
subproblems, expressed as “cubes” (conjunctions) of the decisions (the literals
set to true), are solved using a CDCL solver, also known as the “conquer” solver.
The intuition behind this combination of paradigms is that look-ahead heuristics
focus on global decisions, while CDCL heuristics focus on local decisions. Global
decisions are important to split the problem, while local decisions are effective
when there exist a short refutation. So the idea behind C&C is to partition the
problem until a short refutation arises. C&C can solve hard problems much faster
than either pure look-ahead or pure CDCL. The problem with pure look-ahead
solving is that global decisions become poor decisions when a short refutation is
present, while pure CDCL tends to perform rather poor when there exist no short
refutation. We will demonstrate that C&C outperforms pure CDCL and pure
look-ahead in Section 6.2. Apart from improved performance on a single core,
C&C allows for easy parallelization. The subproblems are solved independently,
so they are distributed on a large cluster.

There are two C&C variants: solving one cube per solver and solving mul-
tiple cubes by an incremental solver. The first approach allows solving cubes
in parallel, while the second approach allows for reusing heuristics and learned
clauses while solving multiple cubes. The second approach works as follows: an
incremental SAT solver receives the input formula and a sequence of cubes1. Af-
ter solving the formula under the assumption that a cube is true, the solver does
not terminate, but starts working on a next cube. The heuristics and the learned
clause database are not reset when starting solving a new cube, but reused to
potentially exploit similarities between cubes.

In our computation we combined them, via a two-staged splitting, to exploit
both parallelism and reusage. First the problem is split into 106 cubes, and then
for each cube, the corresponding subproblem is split again creating billions of
sub-cubes. An incremental SAT solver solves all the sub-cubes generated from a
single cube sequentially.

5 Solving the boolean Pythagorean Triples Problem

Our framework for solving hard problems consists of five phases: encode, trans-
form, split, solve, and validate. The focus of the encode phase is to make sure
that representation of the problem as SAT instance is valid. The transform phase
reformulates the problem to reduce the computation costs of the later phases.

1 In practice this is done using a single incremental CNF file. For details about the
format, see http://www.siert.nl/icnf/.

http://www.siert.nl/icnf/

7

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

Fig. 2. Illustration of the framework to solve hard combinatorial problems. The phases
are shown in the rectangle boxes, while the input and output files for these phases are
shown in oval boxes.

The split phase partitions the transformed formula into many, possibly millions
of subproblems. The subproblems are tackled in the solve phase. The validation
phase checks whether the proofs emitted in the prior phases are a valid refuta-
tion for the original formula. Figure 2 shows an illustration of the framework.
The framework, including the specialized heuristics, have been developed by the
first author, who also performed all implementations and experiments.

5.1 Encode

The first phase of the framework focusses on making sure that the problem to be
solved is correctly represented into SAT. In the second phase the representation
will be optimized. The DRAT proof format can express all transformations.

Formula Fn expresses whether the natural numbers up to n can be partitioned
into two parts with no part containing a triple (a, b, c) such that a2 + b2 = c2.
One set will be called the positive part, while the other will be called the negative
part. Fn uses Boolean variables xi with i ∈ {1, . . . , n}. The assignment xi to true
/ false, expresses that i occurs in the positive / negative part, respectively. For
each triple (a, b, c) such that a2+b2 = c2, there is a constraint NotEqual(a, b, c)
in Fn, or in clausal form: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

5.2 Transform

The goal of the transformation phase is to massage the initial encoding to execute
the later phases more efficiently. A proof for the transformations is required
to ensure that the changes are valid. Notice that a transformation that would

8

be helpful for one later phase, might be harmful for another phase. Selecting
transformations is therefore typically a balance between different trade-offs. For
example, bounded variable elimination [16] is a preprocessing technique that
tends to speed up the solving phase. However, this technique is generally harmful
for the splitting phase as it obscures the look-ahead heuristics.

We applied two transformations. First, blocked clause elimination (BCE) [27].
BCE on F7824 and F7825 has the following effect: Remove NotEqual(a, b, c) if
a, b, or c occurs only in this constraint, and apply this removal until fixpoint.
Note that removing a constraint NotEqual(a, b, c) because e.g. a occurs once,
reduces the occurrences of b and c by one, and as a result b or c may occur only
once after the removal, allowing further elimination. We remark that a solution
for the formula after the transformation may not satisfy the original formula,
however this can be easily repaired [27]. The numerical effects of this reduction
are as follows: F7824 has 6492 (occurring) variables and 18930 clauses, F7825

has 6494 variables and 18944 clauses, while after BCE-reduction we get 3740
variables and 14652 clauses resp. 3745 variables and 14672 clauses.

The second transformation is symmetry breaking [12]. The Pythagorean
Triples encoding has one symmetry: the two parts are interchangeable. To break
this, we can pick an arbitrary variable xi and assign it to true (or, equivalently,
put in the positive part). In practice it is best to pick the variable xi that occurs
most frequently in Fn. For the two formulas used during our experiments, the
most occurring variable is x2520 which was used for symmetry breaking. Sym-
metry breaking can be expressed in the DRAT format, but it is tricky. A recent
paper [24] explains how to construct this part of the transformation proof.

Bounded variable elimination (a useful transformation in general) was not ap-
plied. Experiments showed that this transformation slightly increased the solving
times. More importantly, applying bounded variable elimination transforms the
problem into a non-3-SAT formula, thereby seriously harming the look-ahead
heuristics, as the specialized 3-SAT heuristics can no longer be used.

5.3 Split

Partitioning is crucial to solve hard combinatorial problems. Effective partition-
ing is based on global heuristics [25] — in contrast to the “local” heuristics used
in CDCL solvers. The result of partitioning is a binary branching tree of which
the leaf nodes represent a subproblem of the original problem. The subproblem
is constructed by adding the conjunction of decisions that lead to the leaf as unit
clauses. Figure 3 shows such a partitioning as a binary tree with seven leaf nodes
(left) and the corresponding list of seven cubes (right). The cubes are shown in
the inccnf format that is used for incremental solvers to guide their search.

Splitting heuristics are crucial in solving a problem efficiently. In practice, the
best heuristics are based on look-aheads [26,34]. In short, a look-ahead refers to
assigning a variable to a truth value followed by unit propagation and measuring
the changes to the formula during the propagation. It remains to find good
measures. The simplest measure is to count the number of assigned variables;
measures like that can be used for tie-breaking, but as has been realised in the

9

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

cube file in inccnf format

a 5 -3 0

a 5 3 7 0

a 5 3 -7 0

a -5 2 0

a -5 -2 3 -6 0

a -5 -2 3 6 0

a -5 -2 -3 0

Fig. 3. A binary branching tree (left) with the decision variables in the nodes and the
polarity on the edges. The corresponding cube file (right) in the inccnf format. The
prefix a denotes assumptions. Positive numbers express positive literals, while negative
numbers express negative literals. Each cube (line) is terminated with a 0.

field of heuristics [34], the expected future gains for unit-clause propagation,
given by new short clauses, are more important than the current reductions.
The default heuristic in C&C, which works well on most hard-combinatorial
problems, weighs all new clauses using weights based on the length of the new
clause (with an exponential decay of the weight in the length). However for
our Pythagorean Triples encoding, using a refinement coming from random 3-
SAT turned out to be more powerful. Here all newly created clauses are binary,
i.e., ternary clauses that become binary during the look-ahead. The weight of a
new binary clause depends on the occurrences of its two literals in the formula,
estimating how likely they become falsified. This better performance is not very
surprising as the formulas Fn exhibit somewhat akin behavior to random 3-
SAT formulas: i) all clauses have length three; and ii) the distribution of the
occurrences of literals is similar. On the other hand, Fn consists of clauses with
either only positive literal or only negative literals — in contrast to random
3-SAT.

5.4 Details regarding the heuristics

The heuristics used for splitting extends the recursive weight heuristics [40],
based on earlier work [37,36,15,13], by introducing minimal and maximal values
α, β, and choosing different parameters, optimized for the special case at hand.
A look-ahead on literal l measures the difference between a formula before and
after assigning l to true followed by simplification. Let F (or Fl) denote the
formula before (or after) the look-ahead on l, respectively. We assume that F
and Fl are fully simplified using unit propagation. Thus Fl \ F is the set of new
clauses, and the task is to weigh them; we note that each clause in Fl \ F is
binary. Each literal is assigned a heuristic value h(l) and the weight wy∨z for
(y ∨ z) ∈ Fl \ F is defined as h(ȳ) · h(z̄). The values of h(l) are computed using
multiple iterations h0(l), h1(l), . . . , choosing the level with optimal performance,
balancing the predictive power of the heuristics versus the cost to compute it.

10

The idea of the heuristic values hi(l) is to approximate how strongly the literal
l is forced to true by the clauses containing l (via unit propagation). First, for
all literals l, h0(l) is initialized to 1: h0(x) = h0(x̄) = 1. At each level i ≥ 0, the
average value µi is computed in order to scale the heuristics values hi(x):

µi =
1

2n

∑
x∈var(F)

(
hi(x) + hi(x̄)

)
. (1)

Finally, in each next iteration, the heuristic values hi+1(x) are computed in
which literals y get weight hi(ȳ)/µi. The weight γ expresses the relative impor-
tance of binary clauses. This weight could also be seen as the heuristic value of
a falsified literal. Additionally, we have two other parameters, α expressing the
minimal heuristic value and β expressing maximum heuristic value.

hi+1(x) = max(α,min(β,
∑

(x∨y∨z)∈F

(hi(ȳ)

µi
· hi(z̄)
µi

)
+ γ

∑
(x∨y)∈F

hi(ȳ)

µi
)). (2)

In each node of the branching tree we compute h(l) := h4(l) for all literals
occurring in the formula. We use α = 8, β = 550, and γ = 25. The “magic” con-
stants differ significantly compared to the values used for random 3-SAT formulas
where α = 0.1, β = 25, and γ = 3.3 appear optimal [40]. The branching variable
x chosen is a variable with maximal H(x)·H(x̄), where H(l) :=

∑
y∨z∈Fl\F wy∨z.

5.5 Solve

The solving phase is the most straightforward part of the framework. It takes the
transformed formula and cube files as input and produces a proof of unsatisfia-
bility of the transformed formula. Two different approaches can be distinguished
in general: one for “easy” problems and one for “hard” problems. A problem is
considered easy when it can be solved in reasonable time, say within a day on a
single core. In that case, a single cube file can be used and the incremental SAT
solver will emit a single proof file. The more interesting case is when problems
are hard and two levels of splitting are required.

The boolean Pythagorean triples problem F7825 is very hard and required two
level splitting: the total runtime was approximately 4 CPU years (21,900 CPU
hours for splitting and 13,200 CPU hours for solving). Any problem requiring
that amount of resources has to be solved in parallel. The first level consists of
partitioning the problem into 106 subproblems, which required approximately
1000 seconds on a single core; for details see Section 6.2. Each subproblem is
represented by a cube ϕi with i ∈ {1, . . . , 106} expressing a conjunction of deci-
sions. On the second level of splitting, each subproblem F7825 ∧ϕi is partitioned
again using the same look-ahead heuristics. In contrast to the first level, the
cubes generated on the second level are not used to create multiple subprob-
lems. Instead, the second level cubes are provided to an incremental SAT solver
together with a subproblem F7825 and assumptions ϕi. The second level cubes
are used to guide the CDCL solver. The advantage of guiding the CDCL solver

11

is that learned clauses computed while solving one cube and can be reused when
solving another cube.

For each subproblem F7825∧ϕi, the SAT solver produces a DRAT refutation.
Most state-of-the-art SAT solvers currently support the emission of such proofs.
One can check that the emitted proof of unsatisfiability is valid for F7825∧ϕi. In
this case, no changes to the proof logging of the solver are required. However, in
order to create an unsatisfiability proof of F7825 by concatenating the proofs of
subproblems, all lemmas generated while solving F7825 ∧ϕi need to be extended
with the clause ¬ϕi, and the SAT solver must not delete clauses from F7825.

5.6 Validate

The last phase of the framework validates the results of the earlier phases. First,
the encoding into SAT needs to be validated. This can be done by proving
that the encoding tool is correct using a theorem prover. Alternatively, a small
program can be implemented whose correctness can be checked manually. For
example, our encoding tool consists of only 19 lines of C code. For details and
validation files, check out http://www.cs.utexas.edu/~marijn/ptn/.

The second part consists of checking the three types of DRAT proofs pro-
duced in the earlier phases: the transformation, tautology, and the cube proofs.
DRAT proofs can be merged easily by concatenating them. The required order
for merging the proofs is: transformation proof, cube proofs, and tautology proof.

Transformation Proof The transformation proof expresses how the initial
formula, created by the encoder, is converted into a formula that is easier to solve.
This part of the proof is typically small. The latest version of the drat-trim

checker supports validating transformation proofs without requiring the other
parts of the proof, based on a compositional argument [22].

Cube Proofs The core of the validation is checking whether the negation of
each cube, the clause ¬ϕi, is implied by the transformed formula. Since we par-
titioned the problem using 106 cubes, there are 106 of cube proofs. We generated
and validated them all. However, their total size is too large to share: almost
200 terabyte in the DRAT format. We tried to compress the proof using a range
of dedicated clause compression techniques [21] combined with state-of-the-art
general purpose tools, such as bzip2 or 7z. After compression the total proof
size was still 14 terabytes. So instead we provide the cube files for the subprob-
lems as a certificate. Cube files can be compressed heavily, because they form
a tree. Instead of storing all cubes as a list of literals, shown as in Figure 3,
it is possible to store only one literal per cube. Storing the literal in a binary
format [21] followed by bzip2 allowed us to store all the cube files using “only”
68 gigabytes of disk space. We added support for the inccnf format to glucose

3.0 in order to solve the cube files. This solver can also reproduce the DRAT
proofs in about 13,000 CPU hours. Checking these proofs requires about 16,000
CPU hours, so reproducing the DRAT proofs almost doubles the validation ef-
fort. This is probably a smaller burden than downloading and decompressing
many terabytes of data.

http://www.cs.utexas.edu/~marijn/ptn/

12

Tautology Proof A cube partitioning is valid, i.e., covers the complete search
space, if the disjunction of cubes is a tautology. This needs to be checked during
the validation phase. Checking this can be done by negating the disjunction of
cubes and feed the result to a CDCL solver which supports proof logging. If
the solver can refute the formula, then the disjunction of cubes is a tautology.
We refer to the proof emitted by the CDCL solver as the tautology proof. This
tautology proof is part of the final validation effort.

6 Results

This section offers details of solving the boolean Pythagorean Triples problem2.
All experiments were executed on the Stampede cluster3. Each node on this
cluster consists of an Intel Xeon Phi 16-core CPU and 32 Gb memory. We used
cube solver march cc and conquer solver glucose 3.0 during our experiments.

6.1 Heuristics

In our first attempt to solve the Pythagorean triples problem, we partitioned
the problem (top-level and subproblems) using the default decision heuristic in
the cube solver march cc for 3-SAT formulas. After some initial experiments, we
estimated that the total runtime of solving (including splitting) F7825 would be
roughly 300,000 CPU hours on the Stampede cluster. To reduce the computation
costs, we (manually) optimized the magic constants in march cc, resulting in the
heuristic presented in Section 5.4. The new heuristics reduced the total runtime
to 35,000 CPU hours, so by almost an order of magnitude. Table 1 shows the
results of various heuristics on five randomly selected subproblems. Here, we
optimized march cc in favor of the other heuristics to make the comparison more
fair: we turned off look-ahead preselection, which is helpful for the new heuristics
(and thus used in the computation), but harmful for the other heuristics.

6.2 Cube and Conquer

The first step of the solving phase was partitioning the transformed formula into
many subproblems using look-ahead heuristics. Our cluster account allowed for
running on 800 cores in parallel. We decided to partition the problem into a
multiple of 800 to perform easy parallel execution: exactly 106. Partitioning the
formula into 106 subproblems ensured that the conquer time of solving most
subproblems is less than two minutes, a runtime with the property that proof
validating can be achieved in a time similar to the solving time.

A simple way of splitting a problem into 106 subproblems is to build a bal-
anced binary branching tree of depth 20. However, using a balanced binary
branching tree results in poor performance on hard combinatorial problems [25].
A more effective partitioning heuristic picks the leaf nodes such that the number
of assigned variables (including inferred variables) in those nodes are equal.

2 Files and tools can be downloaded at http://www.cs.utexas.edu/~marijn/ptn/
3 https://www.tacc.utexas.edu/systems/stampede

http://www.cs.utexas.edu/~marijn/ptn/
https://www.tacc.utexas.edu/systems/stampede

13

Table 1. Solving times for C&C using different look-ahead heuristics and pure CDCL.
The top left, bottom left, and right numbers expresses the cube, conquer, and their
sum times, respectively. Ptn 3-SAT is 3-SAT heuristics optimized for Pythagorean triple
problems; rnd 3-SAT is the 3-SAT heuristics optimized for random 3-SAT (default);
#bin is the sum of new binary clauses; and #var is the number of assigned variables.

cube # Ptn 3-SAT rnd 3-SAT #bin #var pure CDCL

104302
152.98

228.48
608.46

783.40
263.23

413.94
789.43

1053.22 1372.87
75.50 174.94 150.71 263.79

268551
74.03

107.86
92.09

140.91
98.93

154.76
487.45

707.72 150.06
33.83 48.82 55.83 220.27

934589
136.94

211.38
206.28

328.27
156.78

263.94
529.21

764.91 631.91
74.44 121.99 107.16 235.70

950025
143.69

217.78
152.49

252.16
203.18

341.27
550.47

777.46 330.61
74.09 99.67 138.09 226.99

980757
112.22

142.63
170.34

224.24
181.14

241.67
685.04

845.97 155.57
30.41 53.90 60.53 160.93

Based on some initial experiments, we observed that the best heuristics for
Pythagorean Triples formulas however is to count the number of binary clauses
in each node. Recall that all clauses in the transformed formula are ternary. Se-
lecting nodes in the decision tree that have about 3, 000 binary clauses resulted
in 106 subproblems. Figure 4 (left) shows a histogram of the depth of the branch-
ing tree (or, equivalently, the size of the cube) of the selected nodes. Notice that
the smallest cube has size 12 and the largest cubes have size 49.

Figure 4 (right) shows the time for the cube and conquer runtimes averaged
per size of the cubes. The peak average of the cube runtime is around size 24,
while the peak of the conquer runtime is around size 26. The cutoff heuristics of
the cube solver for second level splitting were based on the number of unassigned
variables, 3450 variables to be precise.

A comparison between the cube, conquer, and validation runtimes is shown
in Figure 5. The left scatter plot compares cube and conquer runtimes. It shows
that within our experimental setup the cube computation is about twice as
expensive compared to the conquer computation. The right scatter plot compares
the validation and conquer runtimes. It shows that these times are very similar.
Validation runtimes grow slightly faster compared to conquer runtimes. The
average cube, conquer, and validation times for the 106 subproblems are 78.87,
47.52, and 60.62 seconds, respectively.

Figure 6 compares the cube+conquer runtimes to solve the 106 subproblems
with the runtimes of pure CDCL (using glucose 3.0) and pure look-ahead (using
march cc). The plot shows that cube+conquer clearly outperforms pure CDCL.
Notice that no heuristics of glucose 3.0 were changed during all experiments
for both cube+conquer and pure CDCL. In particular, a variable decay of 0.8
was used throughout all experiments as this is the glucose default. However,
we observed that a higher variable decay (in between 0.95 and 0.99) would
improve the performance of both cube+conquer and pure CDCL. We did not

14

Fig. 4. Left, a histogram (logarithmic) of the cube size of the 106 subproblems. Right,
average runtimes per size for the split (cube) and solve (conquer) phases.

Fig. 5. Left, a scatter plot comparing the cube (split) and conquer (solve) time per
subproblem. Right, a scatter plot comparing the validation and conquer time.

Fig. 6. Scatterplots comparing cube-and-conquer to pure CDCL (left) and pure look-
ahead (right) solving methods on the Pythagorean Triples subproblems.

15

optimize glucose to keep it simple, and because the conquer part is already
the cheapest phase of the framework (compared to split and validate); indeed
frequently speed-ups of two orders or magnitude could be achieved on the harder
instances. Pure look-ahead is also slower compared to cube+conquer, but the
differences are smaller: on average cube+conquer is about twice as fast.

6.3 Extreme Solutions

Of the 106 subproblems that were created during the splitting phase, only one
subproblem is satisfiable for the extreme case, i.e., n = 7824. This suggests that
the formula after symmetry breaking has a big backbone. A variable belongs
to backbone of a formula if it is assigned to the same truth value in all solu-
tions. We computed the backbone of F7824, which consists of 2304 variables.
The backbone reveals why it is impossible to avoid Pythagorean Triples indef-
initely when partitioning the natural numbers into two parts: variables x5180
and x5865 are both positive in the backbone, forcing x7825 to be negative due
to 51802 + 58652 = 78252. At the same time, variables x625 and x7800 are both
negative in the backbone forcing x7825 to be positive due to 6252+78002 = 78252.

A satisfying assignment does not necessarily assign all natural numbers up
to 7824 that occur in Pythagorean Triples. For example, we found a satisfying
assignment that assigns only 4925 out of the 6492 variables occurring in F7824.
So not only is F7824 satisfiable, but it has a huge number of solutions.

7 Conclusions

We solved and verified the boolean Pythagorean Triples problem using C&C.
The total solving time was about 35,000 hours and the verification time about
16,000 hours. Since C&C allows for massive parallelization, resulting in almost
linear-time speedups, the problem was solved altogether in about two days on
the Stampede cluster. Apart from strong computational resources, dedicated
look-ahead heuristics were required to achieve these results. In future research
we want to further develop effective look-ahead heuristics that will work for such
hard combinatorial problems out of the box. We expect that parallel computing
combined with look-ahead splitting heuristics will make it feasible to solve many
other hard combinatorial problems that are too hard for existing techniques.
Moreover, we argue that solutions to such problems require certificates that can
be validated by the community — similar to the certificate we provided for the
boolean Pythagorean Triples problem. A fundamental question is whether The-
orem 1 has a “mathematical” (human-readable) proof, or whether the gigantic
(sophisticated) case-distinction, which is at the heart of our proof, is the best
there is? It is conceivable that Conjecture 1 is true, but for each k has only proofs
like our proof, where the size of these proofs is growing so quickly, that Conjec-
ture 1 is actually not provable in current systems of foundations of Mathematics
(like ZFC).

Acknowledgements The authors acknowledge the Texas Advanced Comput-
ing Center (TACC) at The University of Texas at Austin for providing grid re-
sources that have contributed to the research results reported within this paper.

16

References

1. Mizar proof checker, accessed: November 2015.

2. Coq proof manager, accessed: November 2015.

3. The site of flyspeck project, the formal verification of the proof of Kepler Conjec-
ture, accessed: November 2015.

4. Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily. On the van der Waerden
numbers w(2; 3, t). Discrete Applied Mathematics, 174:27–51, September 2014.

5. Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.

6. Armin Biere. Lingeling, Plingeling and Treengeling entering the SAT competition
2013. Proceedings of SAT Competition 2013, page 51, 2013.

7. Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, February 2009.

8. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

9. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
3rd Annual ACM Symposium on Theory of Computing (STOC ’71), pages 151–158,
1971.

10. Joshua Cooper and Ralph Overstreet. Coloring so that no Pythagorean triple is
monochromatic. 2015. arXiv:1505.02222.

11. Joshua Cooper and Chris Poirel. Note on the Pythagorean triple system, 2008.

12. James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proc. KRö96, 5th Int. Conf. on Knowl-
edge Representation and Reasoning, pages 148–159. Morgan Kaufmann, 1996.

13. Gilles Dequen and Olivier Dubois. kcnfs: An efficient solver for random k-SAT
formulae. In Theory and Applications of Satisfiability Testing 2003, pages 486–
501, 2003.

14. Michael R. Dransfield, Victor W. Marek, and Miros law Truszczyński. Satisfiability
and computing van der Waerden numbers. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing: 6th Interna-
tional Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Se-
lected Revised Papers, pages 1–13, Berlin, Heidelberg, 2004. Springer Berlin Hei-
delberg.

15. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-SAT formulae. In International Joint Conferences on Artificial Intelli-
gence (IJCAI), pages 248–253, 2001.

16. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In SAT 2005, volume 3569 of LNCS, pages 61–75. Springer,
2005.

17. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of LNCS, pages 502–518.
Springer, 2003.

18. John Franco and John Martin. A history of satisfiability. In Biere et al. [7],
chapter 1, pages 3–74.

19. Michael R. Garey and David S. Johnson. Computers and Intractability / A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

20. Lawrence J. Henschen and Lawrence Wos. Unit refutations and Horn sets. Journal
of the Association for Computing Machinery, 21(4):590–605, October 1974.

17

21. Marijn J. H. Heule and Armin Biere. Clausal proof compression. In 11th Interna-
tional Workshop on the Implementation of Logics, 2015.

22. Marijn J. H. Heule and Armin Biere. Compositional propositional proofs. In
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning: 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, pages
444–459, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

23. Marijn J. H. Heule, Warren A. Hunt, Jr, and Nathan Wetzler. Verifying refuta-
tions with Extended Resolution. In CADE, volume 7898 of LNAI, pages 345–359.
Springer, 2013.

24. Marijn J. H. Heule, Warren A. Hunt, Jr, and Nathan Wetzler. Expressing symmetry
breaking in DRAT proofs. In CADE-25, volume 9195 of LNCS, pages 591–606.
Springer, 2015.

25. Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and
conquer: Guiding CDCL SAT solvers by lookaheads. In Hardware and Software:
Verification and Testing - 7th International Haifa Verification Conference, HVC
2011, Haifa, Israel, December 6-8, 2011, Revised Selected Papers, pages 50–65,
2011.

26. Marijn J. H. Heule and Hans van Maaren. Look-ahead based SAT solvers. In Biere
et al. [7], chapter 5, pages 155–184.

27. Matti Järvisalo, Armin Biere, and Marijn J. H. Heule. Blocked clause elimination.
In Javier Esparza and Rupak Majumdar, editors, TACAS, volume 6015 of LNCS,
pages 129–144. Springer, 2010.

28. Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard
Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR, volume 7364 of LNCS,
pages 355–370. Springer, 2012.

29. Richard M. Karp. Reducibility among combinatorial problems. In R.E. Miller
and J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

30. William Kay. An overview of the constructive local lemma. Master’s thesis, Uni-
versity of South Carolina, 2009.

31. Michal Kouril. Computing the van der Waerden number W (3, 4) = 293. INTE-
GERS: Electronic Journal of Combinatorial Number Theory, 12(A46):1–13, 2012.

32. Michal Kouril and Jerome L. Paul. The van der Waerden number W (2, 6) is 1132.
Experimental Mathematics, 17(1):53–61, 2008.

33. Oliver Kullmann. On a generalization of extended resolution. Discrete Applied
Mathematics, 96-97:149–176, October 1999.

34. Oliver Kullmann. Fundaments of branching heuristics. In Biere et al. [7], chapter 7,
pages 205–244.

35. Leonid Levin. Universal search problems. Problemy Peredachi Informatsii, 9:115–
116, 1973.

36. Chu Min Li. A constraint-based approach to narrow search trees for satisfiability.
Information Processing Letters, 71(2):75–80, 1999.

37. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proceedings of 15th International Joint Conference on Artificial
Intelligence (IJCAI’97), pages 366–371. Morgan Kaufmann Publishers, 1997.

38. Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated reencoding
of boolean formulas. In Proceedings of Haifa Verification Conference 2012, 2012.

39. Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learn-
ing SAT solvers. In Biere et al. [7], chapter 4, pages 131–153.

18

40. Sid Mijnders, Boris de Wilde, and Marijn J. H. Heule. Symbiosis of search and
heuristics for random 3-SAT. In David Mitchell and Eugenia Ternovska, editors,
Third International Workshop on Logic and Search (LaSh 2010), 2010.

41. Kellen John Myers. Computational advances in Rado numbers. PhD thesis, Rutgers
University, 2015.

42. Richard Rado. Some partition theorems. In Colloquia mathematica Societatis
János Bolyai 4, Combinatorial theory and its applications III, pages 929–936.
North-Holland, Amsterdam, 1970.

43. Issai Schur. Über die Kongruenz xm + ym = zm (mod p). Jahresbericht der
Deutschen Mathematikervereinigung, 25:114–117, 1917.

44. Grigori S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of Reasoning 2, pages 466–483. Springer, 1983.

45. Bartel L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Archief
voor Wiskunde, 15:212–216, 1927.

46. Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In ISAIM,
2008.

47. Vladimir Voevodski. Lecture at ASC 2008, How I became interested in foundations
of mathematics, accessed: November 2015.

48. Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In Carsten Sinz and Uwe
Egly, editors, SAT 2014, volume 8561 of LNCS, pages 422–429. Springer, 2014.

49. Hantao Zhang. Combinatorial designs by SAT solvers. In Biere et al. [7], chapter 17,
pages 533–568.

50. Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In
DATE, pages 10880–10885, 2003.

