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Abstract: A fact apparently not observed earlier in the literature of nonmonotonic
reasoning is that Reiter, in his default logic paper, did not directly formalize informal
defaults. Instead, he translated a default into a certain natural language proposition
and provided a formalization of the latter. A few years later, Moore noted that propo-
sitions like the one used by Reiter are fundamentally different than defaults and exhibit
a certain autoepistemic nature. Thus, Reiter had developed his default logic as a for-
malization of autoepistemic propositions rather than of defaults.

The first goal of this paper is to show that some problems of Reiter’s default logic
as a formal way to reason about informal defaults are directly attributable to the au-
toepistemic nature of default logic and to the mismatch between informal defaults and
the Reiter’s formal defaults, the latter being a formal expression of the autoepistemic
propositions Reiter used as a representation of informal defaults.

The second goal of our paper is to compare the work of Reiter and Moore. While
each of them attempted to formalize autoepistemic propositions, the modes of rea-
soning in their respective logics were different. We revisit Moore’s and Reiter’s in-
tuitions and present them from the perspective of autotheoremhood, where theories
can include propositions referring to the theory’s own theorems. We then discuss the
formalization of this perspective in the logics of Moore and Reiter, respectively, using
the unifying semantic framework for default and autoepistemic logics that we devel-
oped earlier. We argue that Reiter’s default logic is a better formalization of Moore’s
intuitions about autoepistemic propositions than Moore’s own autoepistemic logic.

1 Introduction
In this volume we celebrate the publication in 1980 of the special issue of the Ar-
tificial Intelligence Journal on Nonmonotonic Reasoning that included three seminal
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papers: Logic for Default Reasoning by Reiter (1980), Nonmonotonic Logic I by Mc-
Dermott and Doyle (1980), and Circumscription — a form of nonmonotonic reasoning
by McCarthy (1980). While the roots of the subject go earlier in time, these papers
are universally viewed as the main catalysts for the emergence of nonmonotonic rea-
soning as a distinct field of study. Soon after the papers were published, nonmono-
tonic reasoning attracted widespread attention of researchers in the area of artificial
intelligence, and established itself firmly as an integral sub-area of knowledge rep-
resentation. Over the years, the appeal of nonmonotonic reasoning went far beyond
artificial intelligence, as many of its research challenges raised fundamental questions
to philosophers and mathematical logicians, and stirred substantial interest in those
communities.

The groundbreaking paper by McCarthy and Hayes (1969) about ten years before
had captured the growing concern with the logical representation of common sense
knowledge. Attention focused on the representation of defaults, propositions that are
true for most objects, that commonly assume the form “most A’s are B’s.”1 Defaults
arise in all applications involving common sense reasoning and require specially tai-
lored forms of reasoning. For instance, a default “most A’s are B’s” under suitable
circumstances should enable one to infer from the premise “x is an A” that “x is a
B.” This inference is defeasible. Its consequent “x is a B” may be false even if its
premise “x is an A” is true. It may have to be withdrawn when new information is
obtained. Providing a general, formal, domain independent and elaboration tolerant
representation of defaults and an account of what inferences can be rationally drawn
from them was the artificial intelligence challenge of the time.

The logics proposed by McCarthy, Reiter, and McDermott and Doyle were devel-
oped in an attempt to formalize reasoning where defaults are present. They went about
it in different ways, however. McCarthy’s circumscription extended a set of first-order
sentences with a second-order axiom asserting minimality of certain predicates, typi-
cally of abnormality predicates that capture the exceptions to defaults. This reflected
the assumption that the world deviates as little as possible from the “normal” state.
Circumscription has played a prominent role in nonmonotonic reasoning. In particu-
lar, it has been a precursor to preference logics (Shoham, 1987) that provided further
important insights into reasoning about defaults.

Reiter (1980) and McDermott and Doyle (1980), on the other hand, focused on the
inference pattern “most A’s are B’s.” In Reiter’s words (Reiter, 1980, p. 82):

‘We take it [that is, the default “Most birds can fly” — DMT to mean
something like “If an x is a bird, then in the absence of any information
to the contrary, infer that x can fly.”’

Thus, Reiter (and also McDermott and Doyle) quite literally equated a default “most
A’s are B’s” with an inference rule that involves, besides the premise “x is an A”,
an additional premise “there is no information to the contrary” or, more specifically,
“there is no information indicating that “x is not a B.” The role of this latter premise,
a consistency condition, is to ensure the rationality of applying the default. In logic,
inference rules are meta-logical objects that are not expressed in a logical language.

1In this paper, we interpret the term “default” as an informal statement “most A’s are B’s” (Reiter,
1980). The term is sometimes interpreted more broadly to capture communication conventions, frame
axioms in temporal reasoning, or statements such as “normally or typically, A’s are B’s”.
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Reiter, McDermott and Doyle sought to develop a logic in which such meta-logical
inference rules could be stated in the logic itself. They equipped their logics with a
suitable modal operator (in the case of Reiter, embedded within “his” default expres-
sion) to be able to express the consistency condition and, in place of a default “most
A’s are B’s”, they used the statement “if x is an A and if it is consistent (with the
available information) to assume that x is a B, then x is a B.” We will call this latter
statement the Reiter-McDermott-Doyle (RMD, for short) proposition associated with
the default.

Moore (1985) was one of the first, if not the first, who realized that defaults and
their RMD propositions are of a different nature. This is how Moore (1985, p. 76)
formulated RMD propositions in terms of theoremhood and non-theoremhood:

‘[In the approaches of McDermott and Doyle, and of Reiter — DMT] the
inference that birds can fly is handled by having, in effect, a rule that says
that, for any X, “X can fly” is a theorem if “X is a bird” is a theorem and
“X cannot fly” is not a theorem.’

Moore then contended that RMD propositions are autoepistemic statements, that is,
introspective statements referring to the reasoner’s own belief or the theory’s own the-
orems. He pointed out fundamental differences between the nature of default propo-
sitions and autoepistemic ones and argued that the logics developed by McDermott
and Doyle (1980) and, in the follow-up paper, by McDermott (1982), are attempts at
a logical formalization of of autoepistemic statements and not of defaults. Not finding
the McDermott and Doyle formalisms quite adequate as autoepistemic logics, Moore
(1984, 1985) proposed an alternative, the autoepistemic logic.

Unfortunately, Moore did not refer to the paper by Reiter (1980) but only to those
by McDermott and Doyle (1980) and McDermott (1982), and his comments on this
topic were not extrapolated to Reiter’s logic. Neither did Moore explain what could
go wrong if a default is replaced by its RMD proposition. Yet, if Moore is right
then given the close correspondence between Reiter’s and McDermott and Doyle’s
views on defaults, also Reiter’s logic is an attempt at a formalization of autoepistemic
rather than of default propositions. Moreover, if defaults are really fundamentally
different from autoepistemic propositions, as Moore claimed, it should be possible to
find demonstrable defects of Reiter’s default logic for reasoning about defaults that
could be attributed to the different nature of a default and of its Reiter’s autoepistemic
translation.

Our main objective in Section 2 is to argue that Moore was right. We show there
two forms of such defects that (1) the RMD proposition is not always sound in the
sense that inferences made from it are not always rational with respect to the origi-
nal defaults, and (2) the RMD proposition is not always complete, that is, there are
sometimes rational inferences from the original defaults that are not covered by this
particular inference rule. In fact, both types of problems can be illustrated with exam-
ples long known in the literature.

In the remaining sections, we explain Reiter’s default logic as a formalization of
autoepistemic propositions and show that in fact, Reiter’s default logic is a better for-
malization of Moore’s intuitions than Moore’s own autoepistemic logic. On a formal
level, our investigations exploit the results on the unifying semantic framework for
default logic and autoepistemic logic that we proposed earlier (Denecker, Marek, and
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Truszczyński, 2003). That work was based on a algebraic fixpoint theory for non-
monotone operators (Denecker, Marek, and Truszczyński, 2000). We show that the
different dialects of autoepistemic reasoning stemming from our informal analysis can
be given a principled formalization using these algebraic techniques. In our overview,
we will stress the view on autoepistemic logic as a logic of autotheoremhood, in which
theories can include propositions referring to the theory’s own theorems.

Some history. We mentioned that Moore’s comments concerning the RMD propo-
sition and the formalisms by McDermott and Doyle (1980) and McDermott (1982)
have never been applied to Reiter’s logic. For example, Konolige (1988), who was the
first to investigate the formal link between autoepistemic reasoning and default logic,
wrote that “the motivation and formal character of these two systems [Reiter’s default
and Moore’s autoepistemic logics – DMT] are different”. This bypasses the fact that
Reiter, as we have seen, starts his enterprise of building default logic after translating
a default into a proposition which Moore later identified as an autoepistemic proposi-
tion.

There may be several reasons why Moore’s comments have never been extrapo-
lated to Reiter’s logic. As mentioned before, one is that Moore did not refer to the
paper by Reiter (1980) but only to the papers by McDermott and Doyle (1980) and
McDermott (1982). In addition, the logics of Reiter and, respectively, McDermott and
Doyle were quite different; the formal connection was not known at that time (mid
1980s) and was established only about five years later (Truszczyński, 1991). Also au-
toepistemic and default logics seemed to be quite different (Marek and Truszczyński,
1989), and eventually turned out to be different in a certain precise sense (Gottlob,
1995). Moreover, the intuitions underlying the nonmonotonic logics of the time had
not been so clearly articulated, not even in Moore’s work as we will see later in the
paper, and were not easy to formalize. This was clearly demonstrated about ten years
later by Halpern (1997), who reexamined the intuitions presented in the original papers
of default logic, autoepistemic logic and Levesque’s (1990) related logic of only know-
ing and showed gaps and ambiguities in these intuitions, and various non-equivalent
ways in which they could be formalized.

As a result, the nature of autoepistemic propositions, its relationship to defaults
and what may go wrong when the latter are encoded by the first, was never well un-
derstood. The relevance of Moore’s claims for Reiter’s default logic has never become
generally acknowledged. Reiter’s logic has never been thought of and has never been
truly analyzed as a formalization of autoepistemic reasoning. The influence of Re-
iter’s paper has been so large, that even today, the default “most A’s are B’s” and
the statement “if x is an A and if it is consistent to assume that x is a B, then x is
a B”2 are still considered synonymous in some parts of the nonmonotonic reason-
ing community. Yet, in fact, they are quite different and, more importantly, a logical
representation of the second is unsatisfactory for reasoning about the first.

2Or its propositional version“if A and if it is consistent to assume B, then B”.
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2 Reiter’s Defaults Are Not Defaults But Autoepistemic
Statements

Our goal below is to justify the claim in the title of the section. To avoid confusion,
we emphasize that by a default we mean an informal expression of the type most A’s
are B’s. In Reiter’s approach (similarly in that of McDermott and Doyle), the default
is first translated into an RMD proposition if x is an A and if it is consistent with the
available information to assume that x is a B, then x is a B, which is then expressed
by a Reiter’s default expression in default logic:

A(x) : M B(x)
B(x)

.

To explain the section title, let us assume a setting in which a human expert has
knowledge about a domain that consists of propositions and defaults. In the approach
of Reiter (the same applies to McDermott and Doyle), the expert builds a knowledge
base T by including in T formal representations of the propositions (given as formulas
in the language of classical logic) and of RMD propositions of the defaults (given
by the corresponding Reiter’s default expressions). The presence of Reiter’s default
expressions in T means that T contains propositions referring to its own information
content, i.e., to what is consistent with T , or dually to what T entails or does not
entail. Moore (1985) called such reflexive propositions autoepistemic and argued that
they statements could be phrased in terms of theorems and non-theorems of T .

Reiter developed a default expression as a formal expression of the RMD proposi-
tion rather than of the default itself (the same holds for McDermott and Doyle). This
is why this logic expression does not capture the full informal content of the default.
When considered more closely, it indeed becomes apparent that a default and its RMD
proposition are not equivalent or even related in a strict logical sense. A straightfor-
ward possible-world analysis reveals this. The default might be true in the actual world
(say 95% of the A’s are B’s) but if there is just one x that is an A and not a B, and
for which T has no evidence that it is not a B, the RMD proposition is false in this
world and x is a witness of this. Thus, it is obvious that in many applications where
a default holds, its RMD proposition does not. Conversely, the default might not hold
in the actual world (few A’s are in fact B’s) yet the expert knows all x’s that are not
B’s, in which case the RMD proposition is true.

A fundamental difference pointed out by Moore between defaults and autoepis-
temic propositions, is that the latter are naturally nonmonotonic but inference rules
used for reasoning with them are not defeasible. For example, extending the knowl-
edge base T containing an RMD proposition with new information, e.g., that some x is
not aB, may indeed have a nonmonotonic effect and delete some previous inferences,
e.g., that x is a B. The initial inference of x is a B, resulted in a fact that was false.
However, that inference was not defeasible. The essential property of a defeasible in-
ference is that it may derive a false conclusion from premises that are true in the actual
world. For instance, the inference from most A’s are B’s and x is an A that x is a B
is defeasible as its consequent may be false while the premises are true. In the context
of our example above the theory, say T , entailed the false fact that x is a B from the
premises (i) the RMD proposition, (ii) x is anA and (iii) T contained no evidence that
x is not a B. It was not defeasible since one of its premises was false. Indeed, the
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RMD proposition was false and x was a witness. The inference rules applied are not
defeasible (they are, essentially, the introduction of conjunction and modus ponens).
To sum up, an inference from a knowledge base involving an RMD proposition may
be false but only if the RMD proposition itself is false.

To emphasize further consequences of equating defaults and RMD propositions we
will look at well-known examples from the literature. First, we turn our attention to
the question whether there are cases when applying the RMD proposition leads to in-
ferences that do not seem rational (lack of “soundness” with respect to understood in-
formally “rationality”). The Nixon Diamond example by Reiter and Criscuolo (1981)
and reasoning problems with related inheritance networks illustrate the problems that
arise.

Example 1 Richard M. Nixon, the 37th president of the United States, was a Re-
publican and a Quaker. Most Republicans are hawks while most Quakers are doves
(pacifists). Nobody is a hawk and a dove. Some people are neither hawks nor doves.
Encoding the Reiter-McDermott-Doyle proposition of these defaults in default logic,
we obtain the following theory:

Republican(Nixon) ∧Quaker(Nixon)
∀x(¬Dove(x) ∨ ¬Quaker(x))

Republican(x) : M Hawk(x)
Hawk(x)

Quaker(x) : M Dove(x)
Dove(x)

.

In default logic, this theory gives rise to two extensions. In one of them Nixon is
believed to be a hawk and not a dove, in the other one, a dove and not a hawk. But
is this rational? As we mentioned above, the use of an RMD-proposition is rational
when it is expected to hold for most x, and hence, in absence of information, it is
likely to hold for some specific x. But in the case of Nixon, we know in advance that
at least one of the two “Nixon” instances of the RMD propositions has to be wrong.
As to which one is wrong, without further information one could as well throw a
coin. Moreover, it is not unlikely that they are both wrong and that in fact, Nixon is
neither dove nor hawk. And in fact, it seems more rational not to apply any of the
defaults, leading to a situation where it is not known whether Nixon is a dove, a hawk
or neither. The rationale of using the RMD proposition as a substitute for the default
does not hold for Nixon or any other republican quaker for that matter. 2

Example 2 Let us assume now that all quakers are republicans. In this case, the
default that most quakers (say 95%) are doves is more specific than and overrules
the default that most republicans (say 95%) are hawks. It is rational here to give
priority to the quaker default, leading to the defeasible conclusion that Nixon is a dove.
However, this conclusion cannot be derived from the RMD propositions because their
consistency premise “it is consistent to assume that x is a dove (respectively a hawk)”
is too general to take such information into account. 2

Such scenarios were studied in the context of inheritance hierarchies (Touretzky,
1986). To reason correctly on this sort of applications using Reiter’s logic, the consis-
tency condition of the RMD propositions has to be tweaked to take the hierarchy into
account and give priority to the quaker default. For example, we can reformulate the
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RMD proposition of the default “most republicans are hawks” as “if x is known to
be a republican and it is consistent to assume that he is a hawk and it is consistent to
assume that he is not a quaker, then x is a hawk”, which takes additional information
into account. Such modified rules can of course be represented in default logic. After
all, the logic was developed for representing (defeasible) inference rules. But, as in
the examples above, they cannot be inferred from the RMD propositions. And the
inferences that can be drawn from the RMD propositions are not always the rational
ones.

The next problem that arises is of a complementary nature and concerns (lack of)
completeness with respect to “rational” inferences. Are there cases where rational
albeit defeasible inferences can be drawn from defaults that cannot be inferred from
RMD propositions? As suggested above by our general discussion, the answer is
indeed positive. After all, the RMD proposition expresses only a single and quite
specific type of inference that might be associated with a default.

Example 3 As an illustration, let us consider the defaults most Swedes are blond and
most Japanese have black hair. Nobody is both Swede and Japanese, or has both blond
and black hair. If we learn know that Boris is a Swede or a Japanese then, given that
he cannot be both Swede and Japanese, it seems rational to conclude defeasibly that
Boris’s hair is blond or black. In other words, defaults can (sometimes) be combined
and together give rise to defeasible inference rules like:

Boris is Swede or Japanese: M Boris’s hair is blond or black
Boris’s hair is blond or black

.

If all we know is that Boris is Swede or Japanese, the conclusion of this rule cannot
be drawn from the two original RMD propositions for the simple reason that for each,
one of their premises is not satisfied: it is not known that Boris is a Swede, and neither
is it known that he is Japanese. For instance, in the logic of Reiter, the two defaults
would be encoded as

Swede(x) : M Blond(x)
Blond(x)

and
Japanese(x) : M Black(x)

Black(x)
.

If we only know Swede(Boris) ∨ Japanese(Boris), then neither Swede(Boris)
nor Japanese(Boris) can be established. Therefore, the premises of neither rule are
established and no inference can be made. Even more, if we accept Reiter’s logic as a
logic of autoepistemic propositions, these conclusions should not be drawn from these
expressions. 2

This example shows a clear case of a desired defeasible inference that cannot be
drawn from the rules expressed in the two RMD propositions. A default expression in
Reiter’s logic that would do the job has to encode explicitly the combined inference
rule:

Swede(x) ∨ Japanese(x) : M(Blond(x) ∨Black(x))
Blond(x) ∨Black(x)

.

This expresses an inference rule which is not derivable from the original RMD propo-
sitions in the logics of Reiter, McDermott, Doyle, or Moore. Default logic does not
support such reasoning unless the combined inference rule is explicitly encoded as
well.
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Example 4 Assume that we now find out that Boris has black hair. Given that he is
Japanese or Swede, and given the defaults for both, it seems rational to assume that he
is Japanese. Can we infer this from the combined inference rules expressed above and
given that nobody can be blond and black, or Swede and Japanese? The answer is no
and, consequently, yet another inference rule should be added to obtain this inference.

2

Problems of these kind were reported many times in the NMR literature and
prompted attempts to “improve” Reiter’s default logic so as to capture additional de-
feasible inferences of the informal default. This is, however, a difficult enterprise,
as it starts from a logic whose semantical apparatus is developed for a very specific
form of reasoning, namely autoepistemic reasoning. And while at the formal level
the resulting logics (Brewka, 1991; Schaub, 1992; Lukaszewicz, 1988; Mikitiuk and
Truszczyński, 1995) capture some aspects of defaults that Reiter’s logic does not, also
they formalize a small fragment only of what a default represents and, certainly, none
has evolved into a method of reasoning about defaults. In the same time, theories in
these logics entail formulas that cannot be justified from the point of view of default
logic as an autoepistemic logic.

To summarize, an RMD proposition expresses one defeasible inference rule as-
sociated with a default. It often derives rational assumptions from the default but
not always, and it may easily miss some useful and natural defeasible inferences. The
RMD proposition is autoepistemic in nature; Reiter’s original default logic is therefore
a formalism for autoepistemic reasoning. As a logic in which inference rules can be
expressed, default logic is quite useful for reasoning on defaults. The price to be paid
is that the human expert is responsible for expressing the desired defeasible inference
rules stemming from the defaults and for fine-tuning the consistency conditions of the
inference rules in case of conflicting defaults. This may require substantial effort and
leads to a methodology that is not elaboration tolerant.

While our discussion shows that in general, RMD propositions and Reiter’s de-
faults do not align well with the informal concept of a default of the form most A’s
are B’s, there are other nonmonotonic reasoning patterns that are correctly expressed
through Reiter’s defaults. In particular, patterns such as communication conventions,
database or information storage conventions and policy rules in the typology of Mc-
Carthy (1986), can be expressed well by true autoepistemic propositions and, conse-
quently, are correctly formalized in Reiter’s logic. E.g., the convention that an airport
customs database explicitly contains the nationality of only non-American passengers,
is correctly specified by the Reiter default

: MNationality(x) = USA
Nationality(x) = USA

.

Similarly, the policy rule that the departmental meetings are normally held on Wednes-
days at noon, is correctly formalized by

: MTime(meeting) = ”Wed, noon”
Time(meeting) = ”Wed, noon”

.

In spite of such examples, the fact remains that default logic is not a logic of
defaults. Are there other logics that could be regarded as such? There have been sev-
eral interesting attempts at formalizing defaults most A’s a re B’s. Most important of
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them focused on defaults as conditional assertions and on abstract nonmonotonic con-
sequence relations (Makinson, 1989; Lehmann, 1989; Pearl, 1990; Kraus, Lehmann,
and Magidor, 1990; Lehmann and Magidor, 1992). This research direction resulted
in elegant mathematical theories and deep insights into the nature of some forms of
nonmonotonic reasoning. However, it is not directly related to our effort here. Thus,
rather than to discuss it we refer to the papers we cited.

Instead, in the remainder of the paper, we focus on the second objective identified
in the introduction. That is, we provide an informal basis to autoepistemic reason-
ing, we place Reiter’s default logic firmly among dialects of autoepistemic reasoning,
and show that Reiter’s logic was a watershed point that pinpointed one of the most
fundamental and most important forms of autoepistemic reasoning.

3 Studies of Relationships Between Default Logic and
Autoepistemic Logic

Konolige (1988) was the first to investigate a formal link between default and au-
toepistemic logic. He proposed the following translation Kon from default logic to
autoepistemic logic:

α : Mβ1, . . . , βn
γ

7→ Kα ∧ ¬K¬β1 ∧ · · · ∧ ¬K¬βn → γ

and argued that Kon was equivalence preserving in the sense that default extensions
of the default theory were exactly the autoepistemic expansions of its translation. This
translation is intuitively appealing, essentially expressing formally the RMD proposi-
tion of the default in modal logic, and it indeed plays an important role in the story.
Nevertheless, it turned out that this translation was only partially correct (Konolige,
1989). Later, Gottlob (1995) presented a correct translation from default logic to au-
toepistemic logic but also proved that no modular translation exists. The latter result
showed that these two logics are essentially different in some important aspect. As a
result, the autoepistemic nature of default logic, which Moore had implicitly pointed
at, and his implicit criticism on default logic as a logic of defaults were never widely
acknowledged.

But Reiter’s logic is just that — a logic of autoepistemic reasoning. Moreover, in
many respects it is a better logic of autoepistemic reasoning than the one by Moore.
Our goal now is to reconsider the intuitions of autoepistemic reasoning, to distinguish
between different dialects of it and to develop principled formalizations for these di-
alects. In particular, we relate Reiter’s and Moore’s logics, and explain in what sense
Reiter’s logic is better than Moore’s. Our discussion uses the formal results we devel-
oped in an earlier paper (Denecker et al., 2003). There we used the algebraic fixpoint
theory for arbitrary lattice operators (Denecker et al., 2000) to define four different
semantics of default logic and of autoepistemic logic. This theory can be summarized
as follows.

A complete lattice 〈L,≤〉 induces a complete bilattice 〈L2,≤p〉, where ≤p is the
precision order on L2 defined as follows: (x, y) ≤p (u, v) if x ≤ u and v ≤ y.
Tuples (x, x) are called exact. For any ≤p-monotone operator A : L2 → L2 that is
symmetric, that is, A(x, y) = (u, v) if and only if A(y, x) = (v, u), we can define
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A : L2 → L2 Kripke-Kleene least fixpoint
OA : L→ L OA(x) = A1(x, x) Supported fixpoints
SA : L→ L SA(x) = lfp(A1(·, x)) Stable fixpoints
SA : L2 → L2 SA(x, y) = (SA(y), SA(x)) Well-founded least fixpoint

Table 1: Lattice operators and the corresponding semantics

three derived operators. These four operators identify four different types of fixpoints
or least fixpoints (when the derived operator is monotone). They are summarized in
Table 1 (where the operator A1(·, ·) used to define OA is the projection of A on the
first coordinate).

By assumption, A is a ≤p-monotone operator on L2 and its ≤p-least fixpoint is
called the Kripke-Kleene fixpoint of A. Fixpoints of the operator OA correspond to
exact fixpoints of A (x is a fixpoint of OA if and only if (x, x) is a fixpoint of A) and
are called supported fixpoints of A. The operator SA is an anti-monotone operator
on L. Its fixpoints yield exact fixpoints of A (if x is a fixpoint of SA then (x, x) is
a fixpoint of A). They are called stable fixpoints of the operator A. It is clear that
stable fixpoints are supported. The operator SA is a ≤p-monotone operator on L2

and its ≤p-least fixpoint is called the well-founded fixpoint of A (fixpoints of SA are
also fixpoints of A). The names of these fixpoints reflect the well-known semantics of
logic programming, where they were first studied by means of operators on lattices.
Taking Fitting’s four-valued immediate consequence operator (Fitting, 1985) for A,
we proved (Denecker et al., 2000) that the four different types of fixpoint correspond
to four well-known semantics of logic programming: Kripke-Kleene semantics (Fit-
ting, 1985), supported model semantics (Clark, 1978), stable semantics Gelfond and
Lifschitz (1988) and well-founded semantics (Van Gelder et al., 1991).

This elegant picture extends to default logic and autoepistemic logic Denecker
et al. (2003). In that paper, we identified the semantic operator E∆ for a default the-
ory ∆, and the semantic operator DT for an autoepistemic theory T . Both operators
where defined on the bilattice of possible-world sets, which we introduce formally in
the following section. Just as for logic programming, each operator determines three
derived operators and so, for each logic we obtain four types of fixpoints, each in-
ducing a semantics. Some of these semantics turned out to correspond to semantics
proposed earlier; other semantics were new. Importantly, it turned out that the op-
erators E∆ and DKon(∆) are identical. Hence, Konolige’s mapping turned out to be
equivalence preserving for each of the four types of semantics! Table 2 summarizes
the results. The first two lines align the theories and the corresponding operators. The
last four lines describe the matching semantics (the new semantics for autoepistemic
and default logics obtained from this operator-based approach Denecker et al. (2000)
are in bold font).

From this purely mathematical point of view Konolige’s intuition seems basically
right. His mapping failed to establish a correspondence between Reiter extensions
and Moore expansions only because they are on different levels in the hierarchy of the
semantics. Once we correctly align the dialects, his transformation works perfectly.
Conversely, we also proved that the standard method to eliminate nested modalities in
the modal logic S5 can be used to translate any autoepistemic logic theory T into a
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default theory ∆
Kon−→ autoepistemic theory T

semantic operator E∆
Kon−→ semantic operator DT

KK-extension Kon−→ KK-extension
(Denecker et al., 1998)

Weak extensions Kon−→ Moore expansions
(Marek and Truszczyński, 1989) (Moore, 1984)

Reiter extensions Kon−→ Stable extensions
(Reiter, 1980)

Well-founded extension Kon−→ Well-founded extension
(Baral and Subrahmanian, 1991)

Table 2: The alignment of default and autoepistemic logics

default theory that is equivalent to T under each of the four semantics.
While the non-modularity result by Gottlob (1995) had shown that default logic

and autoepistemic logic are essentially different logics, our results summarized above
unmistakenly point out that default and autoepistemic logics are tightly connected
logical systems. They suggest that the four semantics formalize different dialects
of autoepistemic reasoning and that Reiter and Moore formalized different dialects.
Therefore, in the rest of the paper, we will view Reiter’s logic simply as a fragment of
modal logic, as identified by Konolige’s mapping.

4 Formalizing Autoepistemic Reasoning — an Infor-
mal Perspective

In our paper (Denecker et al., 2003) we developed a purely algebraic, abstract study
of semantics. The study identified the (nonmonotone) operators of autoepistemic and
default logic theories, and applied the different notions of fixpoints to them. What that
paper was missing was an account of what these fixpoint constructions mean at the
informal level and how the different dialects in the framework differ. Being as clear
as possible about the informal semantics of autoepistemic theories is essential, as it is
there where problems with formal accounts start.

This is the gap that we close in the rest of this paper. To this end we first return to
the original concern of Reiter, and of McDermott and Doyle. Let us suppose that we
have incomplete knowledge about the actual world, represented in, say, a first order
theory T , and that we know that most A’s are B’s. Following the Reiter, McDermott
and Doyle approach, we would like to assert the following proposition:

If for some x, T |= A(x) and B(x) is consistent with T (that is, T 6|=
¬B(x)), then B(x).

In fact, we would like to express this statement in the logic and, moreover, to add
this proposition, with its references to what T entails or does not entail, to T itself.
What we obtain is a theory T that refers to its own theorems. In this view then,
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modal literals Kϕ in an autoepistemic theory T = {. . . F [Kϕ] . . . } are to be inter-
preted informally as statements T |= ϕ, and the theory T itself as having the form
T = {. . . F [T |= ϕ] . . . }, emphasizing the intuition of the self-referential nature of
autoepistemic theories.

This view reflects what seems to us the most precise intuition that Moore proposed:
to view autoepistemic propositions as inference rules. Specializing the discussion
above to the autoepistemic formula

Kα1 ∧ · · · ∧Kαn ∧ ¬Kβ1 ∧ · · · ∧ ¬Kβm → γ (1)

we can write it (informally) as:

T |= α1 ∧ · · · ∧ T |= αn ∧ T 6|= β1 ∧ · · · ∧ T 6|= βm → γ,

and understand it (informally) as an inference rule:

if α1, . . . , αn are theorems and β1, . . . , βm are not theorems (2)
then γ holds.

which is consistent with Moore’s (1985, p. 76) position we cited earlier. Alterna-
tively,Kϕ can be read as “ϕ can be derived, or proven” (again, from the theory itself),
which amounts at the informal level just to a different wording. We will refer to this
notion of theorem and derivation as autotheorem and autoderivation, respectively.
Accordingly, we will call the basic Moore’s perspective as that of autotheoremhood.

The autotheoremhood view can be seen as a special case of a more generic view,
also proposed by Moore, based on autoepistemic agents. In this view which, inci-
dentally, is the reason behind the name autoepistemic logic, an autoepistemic theory
is seen as a set of introspective propositions, believed by the agent, about the actual
world and his own beliefs about it. The crucial assumption is the one which Levesque
(1990) dubbed later the All I Know Assumption: the assumption that all that is known
by the agent is grounded in his theory, in the sense that it belongs to it or can be de-
rived from it. In the case of the autotheoremhood view, the agent is nothing else than
a personification of the theory itself, and what it knows is what it entails. We discuss
alternative instances of this agent-based view in the next section.

But let us now focus on developing the autotheoremhood perspective. We regard
it as a more precise intuition that is more amenable to formalization despite the fact
that self-reference, which is evidently present in the notion of autotheoremhood, is a
notoriously complex phenomenon. It plagued, albeit in a different form, the theory of
truth in philosophical logic with millennia-old paradoxes (Tarski, 1983; Kripke, 1975;
Barwise and Etchemendy, 1987). The best known example is the famous liar paradox:

“This sentence is false.”

An autoepistemic theory that is clearly reminiscent of this paradox is:

Tliar = {¬KP → P}.

In the autotheoremhood view, this theory states that if it does not entail P then P
holds. However, if P is not entailed, then we have an argument for P , and if P is
entailed, the unique proposition of the theory is trivially satisfied; no argument for
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P can be constructed. This is mutatis mutandis the argument for the inconsistency
of the liar sentence. In view of the difficulties that self-reference has posed to the
development of the theory of truth, it would be naive to hope that a crisp, unequivocal
formalization of autoepistemic logic existed.

Moore (1985, p. 82) explained the difficulty of defining the semantics for au-
toepistemic inference rules (2) as follows. When the inference rules are monotonic,
that is, when m = 0,

‘once a formula has been generated at a given stage, it remains in the gen-
erated set of formulas at every subsequent stage. [...] The problem with
attempting to follow this pattern with nonmonotonic inference rules [that
is, when m > 0 (note of the authors)] is that we cannot draw nonmono-
tonic inferences reliably at any particular stage, since something inferred
at a later stage may invalidate them.’

To put it differently, the problem is that when a rule (2) is applied to derive γ at some
stage when all αi’s have been inferred to be theorems and none of the βj’s has been
derived, later inferences may derive some βj and hence, invalidate the derivation of γ.
In such case, Moore argues, all we can do is to characterize the desired result as the
solution of a fixpoint equation instead of computing it by a fixpoint construction:

‘Lacking such an iterative structure, nonmonotonic systems often use
nonconstructive “fixed point” definitions, which do not directly yield al-
gorithms for enumerating the “derivable” formulas, but do define sets of
formulas that respect the intent of the nonmonotonic inference rules.’

This was an extremely clear and compelling representation of intuitions behind not
only the Moore’s own autoepistemic logic, but also behind the formalisms of McDer-
mott and Doyle, and of Reiter, too, for that matter.

It is useful now to look at these ideas from a more formal point of view. Let us
consider a modal theory T over some vocabulary Σ. Let T consist of “inference rules”
of the form (2), where for simplicity we assume that all formulasαi, βj , γ are objective
(that is, contain no modal operator).3 The inference processes that Moore had in mind
are syntactic in nature and are derivations of formulas. Yet, it is straightforward to
cast these inference processes in semantical terms.

LetW be the set of all Σ-interpretations. A state of belief is represented as a set
B ⊆ W of possible worlds.4 Intuitively, each element w ∈ B represents a possible
world, a state of affairs that satisfies the agent’s beliefs. A world w 6∈ B represents
an impossible world, a state of affairs that violates at least one proposition of the
agent. Given a set B representing the worlds held possible by an agent, the following,
standard, definition formalizes which (modal) formulas the agent believes (or knows
— we do not distinguish between these two modalities in our discussion).

Definition 1 We define the satisfiability relation B,w |= ϕ as in the modal logic
S5 by the standard recursive rules of propositional satisfaction augmented with one
additional rule:

B,w |= Kϕ if for every v ∈ B,B, v |= ϕ.

3Our approach works equally well for arbitrary modal theories.
4A possible-world set is a special Kripke structure in which the accessibility relation is total.
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We then define B |= Kϕ (ϕ is believed or known in state B) if for every w ∈ B,
B,w |= ϕ.

This definition extends the standard definition of truth in the sense that if ϕ is an ob-
jective formula then B,w |= ϕ if and only if w |= ϕ. We define Th(B) = {ϕ | B |=
Kϕ} and Thobj(B) the restriction of Th(B) to objective formulas. These sets repre-
sent all modal formulas and all objective formulas, respectively, known in the state of
belief B.

It is natural to order belief states according to “how much” they believe or know.
For two belief states B1 and B2, we define B1 ≤k B2 if Thobj(B1) ⊆ Thobj(B2)
or, equivalently, if B2 ⊆ B1. The ordering ≤k is often called the knowledge ordering.
We observe that B1 ≤k B2 does not entail Th(B1) ⊆ Th(B2), due to the nonmono-
tonicity of modal literals ¬Kϕ expressing ignorance, some of which may be true in
B1 and false in B2.

We can see Moore’s inference processes as sequences (Bi)
λ
i=0 of possible-world

sets such that B0 = W , the possible-world set of maximum ignorance in which only
tautologies are known. In each derivation step Bi → Bi+1, some worlds w ∈ Bi
might be found to be impossible and eliminated in Bi+1; other worlds w 6∈ Bi might
be established to be possible and added to Bi+1. This process is described through
Moore’s semantic operator DT , which maps a possible-world set B to the possible-
world set {w | B,w |= T}. For theories consisting of formulas (1),DT (Bi) is exactly
the set of all possible worlds that satisfy the conclusions γ of all inference rules that
are “active” in Bi, that is, for which Bi |= Kαj , 1 ≤ j ≤ n, and Bi 6|= Kβj ,
1 ≤ j ≤ m.

Let us come back to Moore’s claims. The nonmonotonicity of the inference rules
(2), or more precisely, formulas (1) is due to the negative conditions ¬Kβj (βi not
known, not proved, not a theorem). So let us assume that m = 0 for all inference
rules in T .5 One can show that under this assumptionDT is a monotone operator with
respect to ⊆: if B1 ⊆ B2, then DT (B1) ⊆ DT (B2). This can be rephrased in terms
of knowledge ordering: if B1 ≤k B2, then DT (B1) ≤k DT (B2). In other words,
the operator DT is also monotone in terms of the knowledge ordering ≤k. Moore’s
inference process (Bi)

λ
i=0 is now an increasing sequence in the knowledge order ≤k.

It yields a least fixpoint BT in the knowledge order (equivalently, the greatest fixpoint
of DT in the subset order ⊆). Every other fixpoint of DT contains more knowledge
than BT . The fixpoint BT is the intended belief state associated with the theory T of
monotonic inference rules.

In the general case of nonmonotonic inference rules (m > 0, for some rules),
the operator DT may not be monotone. The inference process constructed with DT

may oscillate and never reach a fixpoint, or may reach an unintended fixpoint due to
the fact that it may derive that a world is impossible on the basis of an assumption
¬Kβi which is later withdrawn. In such case, stated Moore, all we can do is to focus
on possible-world sets that “respect the intent of the nonmonotonic inference rules”
as expressed by a fixpoint equation associated to T , rather than being the result of
a fixpoint construction. In this way Moore arrived at his semantics of autoepistemic
logic, summarized in the following definition.

5For arbitrary theories T , the corresponding assumption is that there are no modal literals Kϕ occurring
positively in T .
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Definition 2 An autoepistemic expansion of a modal theory T over Σ is a possible-
world set B ⊆ W such that B = DT (B).

We agree with Moore that the condition of being a fixpoint of DT is a necessary
condition for a belief state to be a possible-world model of T . However, it is obvi-
ously not a sufficient one, at least not in the autotheoremhood view on T . This is
obvious, as this semantics does not coincide with Moore’s own ideas on the semantics
of monotonic inference rules. A counterexample is the following theory:

T = {KP → P}.

This theory consists of a unique monotonic inference rule, albeit a rather useless one as
it says “if P is a theorem then P holds”. According to Moore’s account of monotonic
inference rules, the intended possible-world model of this theory is W = {∅, {P}}
(we assume that Σ = {P}). Yet, T has two autoepistemic expansions, the second
being the self-supported possible-world set {{P}}.

It is worth noting that this theory is related to yet another famous problematic
statement in the theory of truth, namely the truth sayer:

“This sentence is true.”

The truth value of this statement can be consistently assumed to be true, or equally
well, to be false. Therefore, in Kripke’s (1975) three-valued truth theory, the truth
value of the truth sayer is undetermined u. In case of the related autoepistemic theory
{KP → P}, also Moore’s semantics does not determine whether P is known or
not. But in the autotheoremhood view, it is clear that P should not be known and
this transpires from Moore’s own explanations on monotonic inference rules.6 We
come back to the issue of self-supported expansions in Section 5, where we explore
alternative perspectives on autoepistemic propositions, in which such self-supported
expansions might be acceptable.

The main question then is: Can we improve Moore’s method to build inference
processes in the presence of nonmonotonic inference rules in T ? In this respect, the
situation has changed since 1984. The algebraic fixpoint theory for nonmonotone
lattice operators (Denecker et al., 2000), which we developed and then used to build
the unifying semantic framework for default and autoepistemic logics (Denecker et al.,
2003), gives us new tools for defining fixpoint constructions and fixpoint equations
which can be applied to Moore’s problem.

We illustrate now these tools in an informal way and refer to these intuitions later
when we introduce major concepts for a formal treatment. Let us consider the theory:

T = {P, ¬KP → Q, KQ→ Q}.

Informally, the theory expresses that P holds, that if P is not a theorem then Q holds,
and that if Q is a theorem, then Q holds. Intuitively, it is clear what the model of this
theory should be: P is a theorem, hence the second formula cannot be used to derive

6There does not seem to be an analogous strong argument why the truth sayer sentence should be false.
Yet, Fitting (1997) proposed a refinement of Kripke’s theory of truth in which truth is minimized and the
truth sayer statement is false. For this, he used the same well-founded fixpoint construction that we will use
below to obtain a semantics that minimizes knowledge for autotheoremhood theories.
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Q and neither can the truth sayer proposition KQ → Q. Therefore, the intended
possible-world set is BT = {{P}, {P,Q}}, that is, P is entailed, Q is unknown.

It is easily verified that BT is a fixpoint of DT . Yet DT has a second, unintended
fixpoint {{P,Q}} which contains more knowledge than BT . This is a problem as it is
this unintended fixpoint that is obtained by iterating DT starting withW . The reason
for this mistake is that the second, nonmonotonic inference rule applies in the initial
stage B0 = W when ¬KP holds. Later, when P is derived, the conclusion that Q is
a theorem continues to reproduce itself through the third truth sayer rule.

The problem above is that at each step and for each worldw an assumption is made
of whether w is possible or impossible. Each such an assumption might be right or
wrong. These assumptions are revised by iterated application of DT . In the context of
monotonic inference rules, the only wrong assumptions that might be made during the
monotonic fixpoint construction starting inW are that some world is possible, while
in fact it turns out to be impossible. But these wrong assumptions can never lead to
an erroneous application of an inference rule: if a condition Kϕ of an inference rule
holds when w is assumed to be possible, then it will still hold when w turns out to be
impossible. But in the context of nonmonotonic inference rules, an inference rule may
fire due to an erroneous assumption and its conclusion might be maintained through
a circular argument in all later iterations. In our scenario, it is the initial assumption
that worlds in which P is false are possible that lead to the assumption that worlds in
which Q is false are impossible, and this assumption is later reproduced by a circular
reasoning using the third truth sayer proposition for Q.

The solution to this problem is very simple: never make any unjustified assumption
about the status of a world. Start without any assumption about the status of any
worlds and only assign a specific status when certain. We will elaborate this idea in
two steps. In the first step, we illustrate this idea for a simplification T ′ of T , in which
the third axiom KQ→ Q has been deleted.

1. Initially, no world is known to be possible or impossible. At this stage, the truth
value of the unique modal literalKP in T ′ cannot be established. Yet, some things are
clear. First, all worlds in which P is false, that is, ∅ and {Q}, are certainly impossible
since they violate the first formula, P , of T ′. Second, the world {P,Q} is definitely
possible since no matter whether P is a theorem or not, this world satisfies the two
formulas of T ′. All this can be established without making a single unsafe assumption.
Thus, the only world about which we are uncertain at this stage is the world {P} in
which Q is false. Due to the second axiom, this world is possible if P is known and
impossible otherwise.

2. In the next pass, we first use the knowledge that we gained in the previous step
to re-evaluate the modal literal KP . In particular, it can be seen that P is true in all
possible worlds and in the last remaining world of unknown status, {P}. This suffices
to establish that P is a theorem, that is, that KP is true.

With this newly gained information, we can establish the status of the last world
and see that {P} satisfies the two axioms of T . Hence this world is possible.

The construction stops here. The next pass will not change anything, and we
obtain the possible-world set BT ′ = {{P}, {P,Q}}. Now, let us add the third axiom
KQ→ Q back and consider the full theory T .
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1. The first step of the construction is identical to the one above and determines the
status for all worlds except {P}: {P,Q} is possible, and ∅ and {Q} are impossible.

2. As before, in the second pass, KP can be established to be true. The second modal
literal KQ in T cannot be established yet since its truth depends on the status of the
world {P}. The literal would be false if {P} is possible, and true otherwise. Thus the
truth of the third axiom in {P} is still undetermined. We are blocked here.

3. But there is a way out of the deadlock. So far, the methods to determine whether
a world is possible or impossible were perfectly symmetrical. The solution lies in
breaking this symmetry. In T , we have a truth-sayers axiom: it is consistent to assume
that Q is a theorem, and also to assume that Q is not a theorem. In semantical terms,
both assumptions on world {P} are consistent: if this world is chosen possible, then
KQ is false and all axioms are satisfied in {P}; if it is chosen impossible, then KQ
is true. Since we want to interpret the modal operator as a theoremhood modality,
it is clear what assumption to make: that Q is not a theorem. We should make the
assumption of ignorance and take it that the world is possible (andQ is not a theorem).
Thus, we obtain again the possible world model BT = {{P}, {P,Q}}.

From these two examples, we can extract the concepts necessary to formalize the
above informal reasoning processes. At each step, we have partial information about
the status of worlds that was gained so far. This naturally formalizes as a 3-valued
set of worlds. We call such a set a partial possible-world set. Formally, a partial
possible-world set B is a function

B :W → {t, f,u},

where W is the collection of all interpretations. Standard, total possible-world sets
can be viewed as special cases, where the only two values in the range of the function
are t and f. In the context of a partial possible world B, we call a world w certainly
possible if B(w) = t and potentially possible if B(w) = t or u. Likewise, we call
a world w certainly impossible if B(w) = f and potentially impossible if B(w) = f
or u. If B(w) = u, w is potentially possible and potentially impossible. We define
CP (B) as the set of certainly possible worlds of B, PP (B) as the set of potentially
possible worlds, and likewise, CI(B) and PI(B) as the sets of certainly impossible,
respectively potentially impossible worlds of B.

At each inference step Bi → Bi+1, we evaluated the propositions of T in one
or more unknown worlds w, given the partial information available in Bi. When all
propositions of T turned out to be true in w, w was derived to be possible; if some
evaluated to false, w was inferred to be impossible. To capture this formally, we need
a three-valued truth function to evaluate theories in the context of a world w, the one
we are examining, and a partial possible-world set B. The value of this truth function
on a theory T , denoted as |T |B,w, is selected from {t, f,u}. There are some obvious
properties that this function should satisfy.

1. The three-valued truth function should coincide with the standard (implicit) truth
function for modal logic in total possible-world sets. In particular, when B is a total
possible-world set, that is, B has no unknown worlds, then |T |B,w should be true
precisely when B, w |= T (and false, otherwise).
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2. The three-valued truth function should be monotone with respect to the precision of
the partial possible-world sets. A more precise partial possible-world set is one with
fewer (with respect to inclusion) unknown worlds.

The intuition presented in (2) can be formalized as follows. We define B ≤p B′
if B(w) ≤p B′(w), where the latter (partial) order ≤p on truth values is the one
generated by u ≤p t and u ≤p f.

A three-valued truth function |T |B,w is monotone in B if B′ ≤p B′′ implies that
|T |B

′,w ≤p |T |B
′′,w. In particular, if |T |B,w is monotone inB andB is a total possible-

world set such that B′ ≤p B, then |T |B
′,w

= t implies thatB,w |= T , and |T |B
′,w

= f
implies that B,w 6|= T .

Designing such a three-valued truth function is routine, the problem is that there
is more than one sensible solution. One approach, originally proposed by Denecker
et al. (1998), extends Kleene’s (1952) three-valued truth evaluation to modal logic.

Definition 3 For a formula ϕ, world w ∈ W and partial possible-world set B, we
define |ϕ|B,w using the standard Kleene truth evaluation rules of three-valued logic
augmented with one additional rule:

|Kϕ|B,w =


f if |ϕ|B,w

′
= f, for some w′ such that B(w′) = t

t if |ϕ|B,w
′

= t, for all w′ such that B(w′) = t or u
u otherwise.

For a theory T , we define |T |B,w in the standard way of three-valued logic:

|T |B,w =

 f if |ϕ|B,w = f, for some ϕ ∈ T
t if |ϕ|B,w = t, for all ϕ ∈ T
u otherwise.

To illustrate the use of this truth function, let us evaluate the formula Kϕ, where
ϕ is objective, in the context of a partial possible-world set B and an arbitrary world
w. We have |Kϕ|B,w = t if PP (B) |= Kϕ, that is, if all potentially possible worlds
satisfy ϕ. Likewise, we have |Kϕ|B,w = f if CP (B) 6|= Kϕ, that is, at least one
certainly possible world violates ϕ. Let B be a more precise total possible world set;
that is, B ≤p B or equivalently, PP (B) ⊇ B ⊇ CP (B). Then, obviously, if Kϕ
holds true in B, the formula is true in B, and if Kϕ is false in B then it is false in B as
well. In general this truth function is conservative (that is, ≤p-monotone) in the sense
that if a formula evaluates to true or false in some partial possible-world set, then it
has the same truth value in every more precise possible-world set thus, in particular,
in every total possible-world set B such that B ≤p B.

It is easy to see (and it was proven formally by Denecker et al. (2003)) that this
truth function satisfies the two desiderata listed above. We also note that this is not the
only reasonable way in which the three-valued truth function can be defined. We will
come back on this topic in Section 4.5.

We now review the framework of semantics of autoepistemic reasoning we in-
troduced in our study of the relationship between the default logic of Reiter and the
autoepistemic logic of Moore (Denecker et al., 2003). We listed these semantics in
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the previous section. All semantics in the framework require that a (partial) possible-
world model B of an autoepistemic theory be justified by some type of an inference
process:

B0 → B1 → . . .→ Bn = B.

At each step i, modal literals Kϕ appearing in T are evaluated in Bi. When such
literals are derived to be true or false, this might lead to further inferences in Bi+1.
Taking the semantic point of view, we understand an inference here as a step in which
some worlds of undetermined status are derived to be possible and some others are
derived impossible.

Dialects of autoepistemic logic, and so of default logic, too, differ from each other
in the nature of the derivation step Bi → Bi+1, and in initial assumptions B0 they
make. Some dialects make no initial assumptions at all; in some others making certain
initial “guesses” is allowed. In this way, we obtain autoepistemic logics of different
degrees of groundedness. In the following sections, we describe inference processes
underlying each of the four semantics in the framework described in Section 3.

Finally, we link the above concepts with the algebraic lattice theoretic concepts
sketched in the previous section and used in the semantic framework of Denecker
et al. (2003). There, the different semantics of an autoepistemic theory T emerged as
different types of fixpoints of a ≤p-monotone operator DT on the bilattice consisting
of arbitrary pairs (B,B′) of possible-world sets. The partial possible-world sets B
correspond to the consistent pairs (PP (B), CP (B)) in this bilattice; a pair (B,B′)
is consistent if B ⊇ B′, that is, certainly possible worlds are potentially possible.
Inconsistent pairs give rise to possible-world sets that in addition to truth values t, f
and u require the fourth one i for “inconsistency”. The Kleene truth function defined
above can be extended easily to a four-valued truth function on the full bilattice.

The operator DT on that bilattice was then defined as follows:

DT (B) = B′, if for every w ∈ W , B′(w) = |T |B,w.

We observe that this operator maps partial possible-world sets into partial possible-
world sets and that it coincides with Moore’s derivation operator DT when applied on
total possible-world sets.

In the sequel, we will often represent a partial possible-world set B in its bilattice
representation, as the pair (PP (B), CP (B)) of respectively potentially possible and
certainly possible worlds. For example, the least precise partial possible-world set
⊥p for Σ = {P,Q} will be written as ({∅, {P}, {Q}, {P,Q}}, ∅): all worlds are
potentially possible; no world is certainly possible.

We will now discuss the four semantics discussed above that define different di-
alects of autoepistemic reasoning.

4.1 The Kripke-Kleene semantics
This semantics is a direct formalization of the discussion above. We are given a finite
modal theory T (we adopt the assumption of finiteness to simplify presentation, but it
can be omitted). A Kripke-Kleene inference process is a sequence

B0 → . . .→ Bn
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of partial possible-world sets such that:

1. B0 is the totally unknown partial possible-world set. That is, for every w ∈ W ,
B0(w) = u. We denote this partial possible-world set by ⊥p. This choice of the
starting point indicates that Kripke-Kleene inference process does not make any initial
assumptions.
2. For each i = 0, . . . , n − 1, there is a set of worlds U such that for every w ∈ U ,
Bi(w) = u, |T |Bi,w 6= u and Bi+1(w) = |T |Bi,w, and for every w /∈ U , Bi(w) =
Bi+1(w). Thus, in each step of the derivation the status of the worlds that are certainly
possible and certainly impossible does not change. All that can change is the status of
some worlds of unknown status (worlds, that are potentially possible and potentially
impossible). This set is denoted by U above. It is not necessary that U contains
all worlds that are unknown in Bi. In the derivation, worlds in U become certainly
possible or certainly impossible, depending on how the theory T evaluates in them.
If for such a potentially possible world w ∈ U , |T |Bi,w = t, w becomes certainly
possible. If |T |Bi,w = f, w becomes certainly impossible. Otherwise, the status of w
does not change. As such a derivation starts from the least precise, hence assumption-
free, partial possible-world set ⊥p, all these derivations are assumption-free.
3. The halting condition: no more inferences can be made once we reach the state Bn.
Here this means that for each unknownw ∈ W , |T |Bn,w = u. The process terminates.

This precise definition formalizes and generalizes the informal construction we
presented in the previous section. When applied to the theory we considered there,

T ′ = {P,¬KP → Q},

one Kripke-Kleene inference process that might be produced is (we represent here
worlds, or interpretations, as sets of atoms they satisfy, and partial possible-world sets
B as pairs (PP (B), CP (B))):

⊥p → B1 = ({∅, {P}, {P,Q}}, ∅) {Q} certainly impossible
→ B2 = ({{P}, {P,Q}}, ∅) ∅ certainly impossible
→ B3 = ({{P}, {P,Q}}, {{P,Q}}) {P,Q} certainly possible
→ B4 = ({{P}, {P,Q}}, {{P}, {P,Q}}) {P} certainly possible.

The first derivation can be made since |P ∧ (¬KP → P )|⊥p,w = f, for w = {Q}
(in fact, for every w, in which P is false). The second derivation is justified similarly
as the first one. The third derivation follows as |P ∧ (¬KP → Q)|B2,w = t, for
w = {P,Q}, and the forth one as |P ∧ (¬KP → Q)|B3,w = t, for w = {P}. Let us
explain one more detail of the last of these claims. Here, |P |B3,w = t holds because
P holds in w = {P}. Moreover, |KP |B3,w = t as P holds in every world that is
potentially possible in B3. Thus, |¬KP |B3,w = f and so indeed, |¬KP → Q|B3,w =
t.

The shortest derivation sequence that corresponds exactly to the informal con-
struction of the previous section is:

⊥p → ({{P}, {P,Q}}, {{P,Q}})→ ({{P}, {P,Q}}, {{P}, {P,Q}}).

The fact that there may be multiple Kripke-Kleene inferences processes is not a prob-
lem as all of them end in the same partial possible-world.
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Proposition 1 For every modal theory T , all Kripke-Kleene inference processes con-
verge to the same partial possible-world set, which is the ≤p-least fixpoint of the
operator DT .

We call this special partial possible-world set the Kripke-Kleene extension of the
modal theory T .

While the Kripke-Kleene construction is an intuitively sound construction, it has
an obvious disadvantage: in general, its terminating partial belief state may not match
the intended belief state even if T consists of “monotonic” inference rules (no negated
modal atoms in the antecedents of formulas of the form (1)). An example where this
happens is the truth sayer theory:

T = {KP → P}.

It consists of a single monotonic inference rule, and its intended total possible-world
set is {{∅, {P}}, which in the current (PP,CP ) notation corresponds to

({{∅, {P}}, {{∅, {P}}).

However, the one and only Kripke-Kleene construction is

⊥p → ({∅, {P}}, {{P}}).

Then the construction halts. No more Kripke-Kleene inferences on the status of worlds
can be made and the intended possible-world set is not reached.

We conclude with a historical note. The name Kripke-Kleene semantics was used
for the first time in the context of the semantics of logic programs by Fitting (1985).
Fitting built on ideas in an earlier work by Kleene (1952), and on Kripke’s (1975)
theory of truth, where Kripke discussed how to handle the liar paradox.

4.2 Moore’s autoepistemic logic
Moore’s autoepistemic logic has a simple formalization in our framework. A possible-
world set B is an autoepistemic expansion of T if there is a one-step derivation for
it:

B0 → B1,

where B0 = B1 = B. Clearly, here we allow the inference process to make initial
assumptions. Moreover, in the derivation step B0 → B1 we simply verify that we
made no incorrect assumptions and that no additional inferences can be drawn. The
inference (more accurately here, the verification) process works as follows:

1. A world w is derived to be possible if B0, w |= T .
2. A world w is derived to be impossible if B0, w 6|= T .

Thus, formally, B1 = {w | B0, w |= T} = DT (B0). Consequently, the limits of
this derivation process are indeed precisely the fixpoints of the Moore’s operator DT

(we stress that we talk here only about total possible-world sets).
Since DT coincides with DT on total possible-world sets, all autoepistemic ex-

pansions are fixpoints of DT . Thus, we have the following result.
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Proposition 2 The Kripke-Kleene extension is less precise than any other autoepis-
temic expansion of T . If the Kripke-Kleene extension is total, then it is the unique
autoepistemic expansion of T .

The weakness of Moore’s logic from the point of view of modeling the autotheo-
remhood view has been argued above. In Section 5, we will discuss another interpre-
tation of autoepistemic logic in which his semantics may be more adequate.

4.3 The well-founded knowledge derivation
The problem with the Kripke-Kleene derivation is that it treats ignorance and knowl-
edge in the same way. Ignorance is reflected by the presence of possible worlds.
Knowledge is reflected by the presence of impossible worlds. In the Kripke-Kleene
derivation, both possible and impossible worlds are derived in a symmetric way, by
evaluating the theory T in the context of a world w, given the partial knowledge B.

What we would like to do is to impose ignorance as a default. That a world is
possible should not have to be derived. A world should be possible unless we can
show that it is impossible. In other words, we need to impose a principle of maximiz-
ing ignorance, or equivalently, minimizing knowledge. Under such a principle, it is
obvious that the possible-world set {{P}} cannot be a model of the truth sayer theory
T = {KP → P}. It does not minimize knowledge while the other candidate for a
model, the possible-world set {∅, {P}}, does.

To refine the Kripke-Kleene construction of knowledge, we need an additional
derivation step that allows us to introduce the assumption of ignorance. Intuitively, in
such a derivation step, we consider a set U of unknown worlds, which are turned into
certainly possible worlds to maximize ignorance.

Formally, a well-founded inference process is a derivation processB0 → . . .→ Bn
that satisfies the same conditions as a Kripke-Kleene inference process except that
some derivation steps Bi → Bi+1 may also be justified as follows (by the maximize-
ignorance principle):

MI: There is a set U of worlds such that Bi+1(w) = Bi(w) for all w 6∈ U and for all
w ∈ U , Bi(w) = u,Bi+1(w) = t and |T |Bi+1,w = t.

In other words, in such a step we pick a set U of unknown words, assume that they
are certainly possible, and verify that this assumption was justified, that is, under the
increased level of ignorance, all of them turn out to be certainly possible. To put
it yet differently, we select a set U of unknown worlds, for which it is consistent
to assume that they are certainly possible, and we turn them into certainly possible
worlds (increasing our ignorance). By analogy with the notion of an unfounded set of
atoms (Van Gelder et al., 1991), we call the set of worlds U , with respect to which the
maximize-ignorance principle applies at the partial belief state Bi, an unfounded set
for Bi.

We also note that the halting condition of a well-founded inference process is
stronger than that for a Kripke-Kleene process. This means that for each unknown
world w of Bn, |T |Bn,w = u and in addition, Bn does not allow a MI inference step,
that is, it has no non-empty unfounded set.

There are two properties of well-founded inference processes that are worth not-
ing.
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Proposition 3 All well-founded inference processes converge to the same (partial)
possible-world set.

This property gives rise to the well-founded extension of the modal theory T de-
fined as the limit of any well-founded inference process. This limit can be shown to
coincide with the well-founded fixpoint of DT , that is, the ≤p-least fixpoint of the
operator SDT

defined in the previous section.
Another important property concerns theories with no positive occurrences of the

modal operator (for instance, theories consisting of formulas (1) with no modal literals
¬Kβj in the antecedent).

Proposition 4 If T contains only negative occurrences of the modal operator, then
the well-founded extension is the ≤k-least fixpoint of DT .

This property shows that the well-founded extension semantics has all key proper-
ties of the desired semantics of sets of “monotonic inference rules.” Let us revisit the
truth sayer theory:

T = {KP → P}.

The Kripke-Kleene construction is

⊥p → ({∅, {P}}, {{P}}).

The inference that {P} is possible is also sanctioned under the rules of the well-
founded inference process. However, while there is no Kripke-Kleene derivation that
applies now, the maximize-ignorance principle does apply and the well-founded infer-
ence process can continue. Namely, in the belief state given by ({∅, {P}}, {{P}}),
there is one world of unknown status (neither certainly impossible, nor certainly pos-
sible): ∅. Taking U = {∅} and applying the maximize-ignorance principle to U , we
see that the well-founded inference process extends and yields ({∅, {P}}, {∅, {P}}).
This possible-world set is total and so, necessarily, the limit of the process. Thus,
this (total) possible-world set {∅, {P}} is the well-founded extension of the theory
{KP → P}.

The well-founded extension is total not only for monotonic theories. For instance,
let us consider the theory:

T = {KP ↔ Q} or equivalently, {KP → Q,¬KP → ¬Q}.

Intuitively, there is nothing known about P , hence Q should be false. The unique
Kripke-Kleene inference process ends where it starts, that is, with ⊥p. Indeed, when
KP is unknown, no certainly possible or certainly impossible worlds can be derived.
However, the possible-world set U = {∅, {P}} is unfounded with respect to ⊥p.
Indeed, if both worlds are assumed possible, KP evaluates to false, and both worlds
satisfy T . Thus, in the well-founded derivation we can establish that and then, in the
next two steps, we can derive the impossibility of the two remaining unknown worlds,
first of {Q} and then of {P,Q}. This yields the following well-founded inference
process:

⊥p → B1 = ({∅, {P}, {Q}, {P,Q}}, {∅, {P}})
→ B2 = ({∅, {P}, {P,Q}}, {∅, {P}})
→ B3 = ({∅, {P}}, {∅, {P}}).
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In other cases, the well-founded extension is a partial possible-world set. An ex-
ample is the theory:

{¬KP → Q,¬KQ→ P}}.
In this case, there is only one well-founded inference process, which derives that
{P,Q} is a certainly possible world and derives no certainly impossible worlds. That
is, the well-founded extension is: ({∅, {P}, {Q}, {P,Q}}, {{P,Q}}).

4.4 Stable possible-world sets
We recall that a partial possible-world set B corresponds to the pair of total possible-
worlds sets: (PP (B), CP (B)), where PP (B) is the set of potentially possible worlds
and CP (B) is the set of certainly possible worlds.

We now define a stable derivation for a possible-world set B as a sequence of
partial belief states of the form:

(W, B)→ (PP1, B)→ . . .→ (PPn−1, B)→ (PPn, B),

where:

1. PPn = B

2. For every i = 0, . . . , n − 1, and for every w ∈ PPi \ PPi+1, |T |(PPi,B),w
= f.

That is, some worlds w in which T is false with respect to Bi = (PPi, B) become
certainly impossible and are removed from PPi to form PPi+1.

3. Halting condition: for every w ∈ PPn, |T |(PPn,B),w
= t or u.

If a total belief set B has a stable derivation then we call B a stable extension.
This concept captures the idea of the Reiter’s extension of a default theory.

We recall that an inference rule (1) evaluates to false in world w with respect
to (PPi, B) if w 6|= γ, PPi |= Kαi, for all i, 0 ≤ i ≤ n, and B 6|= Kβj , for
all j, 0 ≤ j ≤ m. We see here an asymmetric treatment of prerequisites αi and
justifications βj which are evaluated in two different possible world sets. The same
feature shows up, not coincidentally, in Reiter’s definition of extension of a default
theory.

The intuition underlying a stable derivation comes from a different implementation
of the idea that ignorance does not need to be justified and that only knowledge must
be justified. In a partial possible-world set B, the component sets PP (B) and CP (B)
have different roles. Since PP (B) determines the certainly impossible worlds, this is
the possible-world set that determines what is definitely known. On the other hand the
set CP (B) of certainly possible worlds determines what is definitely not known by B.

A stable derivation for B is a justification for each impossible world of B (each
world is initially potentially possible but eventually determined not to be in B, that
is, determined impossible in B). The key point is that this justification may use the
assumption of the ignorance inB. By fixing CP (Bi) to beB, it takes the ignorance in
B for granted. What is justified in a stable inference process is the impossible worlds
of B, not the possible worlds.

We saw above that the theory

{¬KP → Q,¬KQ→ P}
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has a partial well-founded extension. It turns out that it has two stable extensions
{{P}, {P,Q}} and {{Q}, {P,Q}}. For instance, the following stable derivation re-
constructs B = {{P}, {P,Q}}. Note that in any partial possible-world set (·, B)
(that is, where the worlds of B are certainly possible), KQ evaluates to false. In all
such cases, T evaluates to false in any world in which P is false. Hence we have the
following very short stable derivation:

(W, B) → (B,B).

We now have two key results. The first one links up well-founded and stable
extensions.

Proposition 5 If the well-founded extension is a total possible-world set, it is the
unique stable extension.

The second result shows that indeed, the Konolige’s translation works if the se-
mantics of default logic of Reiter and the autoepistemic logic of Moore are correctly
aligned. Here we state the result for the most important case of default extensions and
stable extensions, but it extends, as we noted earlier, to all semantics we considered.

Proposition 6 For every default theory ∆, B is an extension of ∆ if and only B is a
stable extension of Kon(∆).

4.5 Discussion
We have obtained a framework with four different semantics. This framework is pa-
rameterized by the truth function. We have concentrated on the Kleene truth function
but other viable choices exist. One is super-valuation (van Fraassen, 1966) which
defines |T |B,w in terms of the evaluation of T in all possible world sets B ≥P B
approximated by B. In particular,

|T |B,w = Min≤p{|T |
B,w | B ≤p B}.

In this way we obtain another instance of the framework, the family of ultimate se-
mantics (Denecker et al., 2004). For many theories, the corresponding semantics of
the two families coincide but ultimate semantics are sometimes more precise. An
example is the theory {KP ∨ ¬KP → P}. It’s Kripke-Kleene and well-founded
extension is the partial possible world set ({∅, {P}}, {{P}}) and there are no stable
extensions. But the premiseKP ∨¬KP is a propositional tautology, making |T |⊥p,w

true if w |= P and false otherwise. As a consequence, the ultimate Kripke-Kleene,
well-founded and unique stable extension is {{P}}.

For a scientist interested in the formal study of the informal semantics of a certain
type of (informal) propositions this diversity is troubling. Indeed, what is then the
nature of autoepistemic reasoning, and which of the semantics that we defined and that
can be defined by means of other truth functions is the “correct” one? It is necessary
to bring some order to this diversity.

In the autotheoremhood view, the formal semantics should capture the information
content of an autoepistemic theory T that contains propositions referring to T ’s own
information content; the semantics should determine whether a world is possible or
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impossible, or equivalently, whether a formula is or is not entailed by T . As we
saw, Moore’s semantics of expansions and the Kripke-Kleene extension semantics are
arguably less suited in the case of monotonic inference rules with cyclic dependencies
(cf. the truth sayer theory). This leaves us with four contenders only: the well-founded
and the stable extension semantics and their ultimate versions. All employ a technique
to maximize ignorance and correctly handle autoepistemic theories with monotonic
inference rules. Which of these semantics is to be preferred?

Let us first consider the choice of the truth function. The semantics based on
the Kleene truth function and the ones induced by super-valuation make different
trade-offs: the higher precision of the ultimate semantics, which is good, comes at
the price of higher complexity of reasoning, which is bad (Denecker et al., 2004).
When there is a trade-off between different desired characteristics, there is per defi-
nition no best solution. Yet, when looking closer, the question of the choice between
these two truth functions turns out to be largely academic and without much practical
relevance. There are classes of autoepistemic theories for which the Kleene and the
super-valuation truth functions coincide, and hence, so do the semantics they induce.
Denecker et al. (2004, Proposition 6.14) provide an example of such a class. Even
more importantly, the semantics induced by Kleene’s truth function and by super-
valuation differ only when case-based reasoning on modal literals is necessary to make
certain inferences. Except for our own artificial examples introduced to illustrate the
formal difference between both semantics (Denecker et al., 2004), we are not aware of
any reasonable autoepistemic or default theory in the literature where such reasoning
would be necessary. They may exist, but if they do, they will constitute an insignif-
icant fringe. The take-home message here is that in all practical applications that we
are aware of, the Kleene truth function suffices and there is no need to pay for the in-
creased complexity of super-valuation. This limits the number of semantics still in the
running to only two. Of the remaining two, the most faithful formalization of the au-
totheoremhood view seems to be the well-founded extension semantics. As we view
a theory as a set of inference rules, the construction of the well-founded extension
formalizes the process of the application of the inference rules more directly than the
construction of the stable extension semantics.

Nevertheless, there are some commonsense arguments for not overemphasizing
the differences between these semantics. First, we should keep in mind that theories
of interest are those that are developed by human experts, and hence, are meaning-
ful to them. What are the meaningful theories in the autotheoremhood? Not every
syntactically correct modal theory makes sense in this view. “Paradoxical” theories
such as the liar theory Tliar can simply not be ascribed an information content in a
consistent manner and are not a sensible theory in the autotheoremhood view. For
theories T viewed as sets of inference rules, the inference process associated with the
theory should be able to determine the possibility of each world and hence, for each
proposition, whether it is a theorem or not of T . In particular, this is the case when
the well-founded extension is total. We view theories with theorems that are subject
to ambiguity and speculation with suspicion. And so, methodologies based on the au-
totheoremhood view will naturally tend to produce theories with a total well-founded
extension. From a practical point of view, the presence of a unique, constructible
state of belief for an autoepistemic theory is a great advantage. For instance, un-
less the polynomial hierarchy collapses, for such theories the task to construct the
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well-founded extension and so, also the unique stable expansion, is easier than that of
computing a stable expansion of an arbitrary theory or to determine that none exists.
Further, for such theories, skeptical and credulous reasoning (with respect to stable
extension) coincide and are easier, again assuming that the polynomial hierarchy does
not collapse, than they are in the general case.

For all the reasons above, a human expert using autoepistemic logic in the autothe-
oremhood view, will be naturally inclined to build an autoepistemic knowledge base
with a well-founded extension that is total. When the well-founded semantics induced
by the Kleene truth function is total, the four semantics — the two stable semantics
and the two well-founded semantics — coincide! It is so, in particular for the class
of theories built of formulas (1) with no recursion through negated modal literals (the
so-called stratified theories (Gelfond, 1987)). Hence, such a methodology could be
enforced by imposing syntactical conditions.

All these arguments notwithstanding, the fact is that many default theories dis-
cussed in the literature or arising in practical settings do not have a unique well-
founded extension and that the stable and well-founded extension semantics do not
coincide7. We have seen it above in the Nixon Diamond example. More generally, it
is the case whenever the theory includes conflicting defaults and no guidance on how
to resolve conflicts. Such conflicts may arise inadvertently for the programmer, in
which case a good strategy seems to be to analyze the conflicts (potentially by study-
ing the stable extensions) and to refine the theory by building in conflict-resolution in
the conditions of default rules. Otherwise, when conflicts are a deliberate decision of
the programmer who indeed does not want to offer rules to resolve conflicts, all we
can do is to accept each of the multiple stable extensions as a possible model of the
theory and also accept that none of them is in any way preferred to others.

In conclusion, rather than pronouncing a strong preference for the well-founded
extension over stable extensions or vice versa, what we want to point out is the attrac-
tive features of theories for which these two semantics coincide, and advantages of
methodologies that lead to such theories.

5 Autoepistemic Logics in a Broader Landscape
In this section, we use the newly gained insights on the nature of autoepistemic reason-
ing to clarify certain aspects of autoepistemic logic and its position in the spectrum of
logics, in particular in the families of logics of nonmonotonic reasoning and classical
modal logics.

A good start for this discussion is Moore’s “second” view on autoepistemic logic.
Later in his paper, when developing the expansion semantics, Moore rephrased his
views on autoepistemic reasoning in terms of the background concept of an autoepis-
temic agent. Such an agent is assumed to be ideally rational and have the powers of
perfect introspection. An autoepistemic theory T is viewed as a set of propositions

7Some researchers believe that multiple extensions are needed for reasoning in the context of incomplete
knowledge. Our point of view is different. The essence of incomplete knowledge is that different states
of affairs are possible. Therefore, the natural — and standard — representation of a belief state with
incomplete knowledge is by one possible-world set with multiple possible worlds, and not by multiple
possible-world sets, which to us would reflect the state of mind of an agent that does not know what to
believe.
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that are known by this agent. Modal literals Kϕ in T now mean “I (that is, the agent)
know ϕ”. The most important assumption, the one on which this informal view of
autoepistemic logic largely rests, is that the agent’s theory T represents all the agent
knows (Levesque, 1990) or, in Moore’s terminology, what the agent knows is grounded
in the theory. We will call this implicit assumption the All I Know Assumption.

Without the All I Know Assumption, the theory T would be just a list of believed
introspective propositions. The state of belief of the agent might then correspond to
any possible-world set B such that B |= Kϕ, for each ϕ ∈ T (where B |= Kϕ if for
allw ∈ B,B,w |= ϕ). But in many such possible-world setsB, the agent would know
much more than what can be derived from T . In this setting, nonmonotonic inference
rules such as KA(x)∧¬K¬B(x)→ B(x) would not be useful for default reasoning
since conclusions drawn from them would not be derived from the information given
in T . So the problem is to model the All I Know Assumption in the semantics. Moore
implemented this condition by imposing that for any model B, if B,w |= T , then w is
possible according to B, i.e., w ∈ B. Combining both conditions, models that satisfy
the All I Know Assumption are fixpoints of DT , that is Moore’s expansions.

Moore’s expansion semantics does not violate the assumptions underlying the au-
toepistemic agent view. Expansions do correspond to belief states of an ideally ratio-
nal, fully introspective agent that believes all axioms in T and, in a sense, does not
believe more that what he can justify from T . But the same can be said for the autothe-
oremhood view as implemented in the well-founded and stable extension semantics.
We may identify the theory with what the agent knows, and the theoremhood operator
with the agent’s epistemic operator K, and see the well-founded extension (if it is
total) or stable extensions as representing belief states of an agent that can be justified
from T .

As we stated in the previous section, Moore’s expansion semantics does not for-
malize the autotheoremhood view, but it formalizes a dialect of autoepistemic reason-
ing, based on an autoepistemic agent that accepts states of belief with a weaker notion
of justification, allowing for self-supporting states of belief. While not appropriate for
modeling default reasoning, the semantics may work well in other domains. Indeed,
humans sometimes do hold self-supporting beliefs. For example, self-confidence, or
lack of self-confidence often are to some extend self-supported. Believing in one’s
own qualities makes one perform better. And a good performance supports self-
confidence (and self-esteem). Applied to a scientist, this loop might by represented by
the theory consisting of the following formulas:

K(ICanSolveHardProblems)→ Happy
Happy → Relaxed
Relaxed→ ICanSolveHardProblems.

Along similar lines, the placebo effect is a medically well-researched fact often at-
tributed to self-supporting beliefs. The self-supporting aspect underlying the placebo-
effect can be described by the theory consisting of the rules:

K(IGetBetter)→ Optimistic
Optimistic→ IGetBetter.

Taking a placebo just flips the patients into the belief that they are getting better. In
this form of autoepistemic reasoning of an agent, self-supporting beliefs are justified
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and Moore’s expansion semantics, difficult to reconcile with the notion of derivation
and theorem, may be suitable.

There are yet other instances of the All I Know Assumption in the autoepistemic
agent view. For example, let us consider the theory T = {KP}. In the autotheorem-
hood view, this theory is clearly inconsistent, for there is no way this theory can prove
P . The situation is not so clear-cut in the agent view. We see no obvious argument
why the agent could not be in a state of belief in which he believes P and its conse-
quences and nothing more than that. In fact, the logic of minimal knowledge (Halpern
and Moses, 1984) introduced as a variant of autoepistemic logic accepts this state of
belief for T .

What our discussion shows is that the All I Know Assumption in Moore’s au-
toepistemic agent view is a rather vague intuition, which can be worked out in more
than one way, yielding different formalizations and different dialects. It may explain
why Moore built a semantics that did not satisfy his own first intuitions (inference
rules) and why Halpern (1997) could build several formalizations for the intuitions
expressed by Reiter and Moore. In contrast, the autotheoremhood view eliminates the
agent from the picture and hence, the difficult tasks to specify carefully the key con-
cepts such as ideal rationality, perfect introspection and, most of all, the All I Know
Assumption. Instead, it builds on more solid concepts of inference rules, theoremhood
and entailment which yields a more precise intuition.

6 Conclusions

We presented here an analysis of informal foundations of autoepistemic reasoning.
We showed that there is principled way to arrive at all major semantics of logics of
autoepistemic reasoning taking as the point of departure the autotheoremhood view of
a theory. We see the main contributions of our work as follows.

First, extending Moore’s arguments we clarified the different nature of defaults
and autoepistemic propositions. Looking back at Reiter’s intuitions, we now see that,
just as Moore had claimed about McDermott and Doyle, also Reiter built an autoepis-
temic logic and not a logic of defaults. We showed that some long-standing problems
with default logic can be traced back to pitfalls of using the autoepistemic propositions
to encode defaults. On the other hand, we also showed that once we focus theories
understood as consisting of autoepistemic propositions and adopt the autotheorem-
hood perspective, we are led naturally to the Kripke-Kleene semantics, the semantics
of expansions by Moore, the well-founded semantics and the semantics of extensions
by Reiter.

Second, we analyzed what can be seen as the center of autoepistemic logic: the
All I Know Assumption. We showed that this rather fuzzy notion leads to multiple
perspectives on autoepistemic reasoning and to multiple dialects of the autoepistemic
language, induced by different notions of what can be derived from (or is grounded
in) a theory. One particularly useful informal perspective on autoepistemic logic goes
back to Moore’s truly insightful view of autoepistemic rules as inference rules. This
view, which we called the autotheoremhood view, was the main focus of our discus-
sion. In this view, theories “contain” their own entailment operator and “I” in the
All I Know Assumption is understood as the theory itself. The most faithful formal-
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ization of this view is the well-founded extension semantics but the stable-extension
semantics, which extends Reiter’s semantics to autoepistemic logic, coincides with
the well-founded extension semantics wherever the autotheoremhood view seems to
make sense. Thus, it was Reiter’s default logic that for the first time incorporated into
the reasoning process the principle of knowledge minimization, resulting in a better
formalization of Moore’s intuitions than Moore’s own logic.

Fifteen years ago Halpern (1997) analyzed the intuitions of Reiter, McDermott and
Doyle, and Moore, and showed that there are alternative ways, in which they could be
formalized. Halpern’s work suggested that the logics proposed by Reiter, McDermott
and Doyle, and Moore are not necessarily “determined” by these intuitions. We argue
here that by looking more carefully at the informal semantics of those logics, they
do indeed seem “predestined” and can be derived in a systematic and principled way
from a few basic informal intuitions.
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