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Abstract. We investigate the operators associated with approximations in the
rough set theory introduced by Pawlak in his [Paw82,MP84] and extEnstud-

ied by the Rough Set community [RS06]. We use universal algebraitpats to
establish a natural characterization of operators associated with retggh s

1 Introduction

The concept ofough set determined by an equivalence relatidhas been introduced
by Pawlak [Paw82,MP84] in his studies of data mining. It isadunal extension of a
model of database introduced in [MP76] that treats recosdshbgects which may be
indiscernible in the language (i.e. the tables are bagssetst of records). Rough sets
and a set of associated numerical measures allow for cagtuairious degrees of simi-
larity of objects such as records, documents, or other data. 0 he point of departure
of Pawlak was the realization that the descriptive langsage often inadequate to
correctly describe concepts (i.e. — in set-theoretic terragbsets of the domain). The
express goal of rough sets was to operate in the followinasan: we have a collec-
tion of objectsX and some description languaieWe have some collection of objects
Y C X. We would like to describ&” in the languagd.. That is we would like to find
a formulay of L so that

Y={zeX:p]}

We call such sety” definable While usually the number of available definitions is
infinite, even in the situation whek is finite, not every subset has to be definable. Yet
another point, made in [MT99], is that a $étmay be definable in the languagebut
all the definitions are prohibitively large. In such circuareces we may want to find a
smaller languagé’ whereY is notdefinableL’, but the approximations are definable
in L’ by short formulas. This is certainly the case in various radapplications.

In his analysis, Pawlak observed that in the case of finiteXsahere is dargest
subset ofY” that is definable, andlaastsuperset ot” that is definable. There is a way



to compute these largest and least definable subsetstbht are associated wifti.
Specifically, this is done with thiadiscernibility relationassociated with the language

L. In finite case, there is always a formula definintgast definable setontaining a
given objectz. Let us call these setaonadg(for the lack of better name, and for the
fact that they resemble Leibniz monads). Then, it turnsloaitthe largest definable set
included inY is the union of monads that are entirely includedvinwhile the least
definable set containiny consists of those monads that have a nonempty intersection
with Y. Abstracting from the existence of a specific language andbdical opera-
tions, Pawlak introduced the notion iofdiscernibility relationin the setX. This is the
equivalence relatiof® so that the monads are its cosets.

We believe that the guiding examples motivating Pawlak vatamdard medical
terminologies such as SNOMED ([SNO6]) or ICD-9 ([IC06]) atinebir inadequacies
for description of classes of medical cases. It is worth foeirtg that for many years
Pawlak collaborated with physicians interested in Medicfdrmatics (needless to say,
this started long before the terWiedical Informaticswere even coined). Pawlak was
concerned with the fact that medical reasoning approxisntite available data, often
disregarding values of some attributes. As a result, it isroflifficult, for a variety
of reasons, to classify medical cases. If one treats a mezhoaition as an ideal set
of cases and attempts to describe it within a concrete layjego some terminology
then all a physician can do is to produce a differential diesis This leads, naturally,
to lower and upper approximations of the classes of mediasés While Pawlak’s
intuitions were motivated by his collaborations with preictg physicians, it turned out
that the methodology of approximations and indiscerribilelations are a common
phenomenon. We refer the reader to monographs and joureattedi to rough set
theory ([RS06]) for further motivations.

Let us assume that the underlying sétis finite. Denoting byR(Y) and R(Y),
respectively, the largest definable subseYdnd the least definable supersetgfwe
get the desired approximation relationships

R(Y)CY CR(Y).

The setsR(Y) and R(Y') provide collectively measure of adequacy of the underly-
ing language to the task of describifig Moreover, by various statistical operations
on those sets, and on other sets derived by set-theoretiosme@ can analyze the
properties of the seY” itself. For that reason we would like to know more about the
setsR(Y) and R(Y). We would like to know what are possible operators of the form
R(-) and R(-), and how those behave whéhvary (i.e. when the language changes).
These issues, to some extent were addressed in recent [Gl@G&he review of the
literature indicates that the Rough Sets community ingastid a number of possible
explanations for the rough set formalism by immersing i wdrious well-known math-
ematical areas. Those areas are all related to a varietyysf wavhich one can describe
databases. We will list several different areas which wepéoeed, although more could
be mentioned. The references are, by necessity, incompletefirst one is the idea of
topological interpretation of approximations (alreadylexed in [MP84]). This was
for instance studied in [Yao96]. Another approach was td lmiomodal logic interpre-
tations of rough sets (see for instance [YL96] and a serigmpérs by Ortowska and



collaborators [DOO01], and more generally [OS01]). One ddhink about approxima-
tions using Kleene [KI67] three-valued logic as it was danpMT99]. Itis also possible
to look at abstractions of rough sets via techniques of usalealgebra. This last area
explores Boolean algebra with operators [JT51,J091]. dhghr set community inves-
tigated these connections, with a varying degree of geiberal [DO01,0S01,SI01].
Our contribution belong to this direction of research. Werapt to apply the techniques
of universal algebra and in particular of [JT51,S101] to fandesthetically appealing
characterization of Pawlak’s operators. In this quest esults find, indeed, a clean
and interesting characterization of these operators. Bgssty, some of the results
discussed in this paper are known. After all operators owarl®@an algebras have been
introduced by Tarski and his collaborators over 50 yearskgioinstance at least points
(2)-(4) of Proposition 5 are known. The terms in which we elocterize the Pawlak’s
operators are mostly known in the literature. The ones tlimvoduce and which (in
conjunction with other properties) appear to be new aredhewing:

YiNnf(Ys) #0 ifandonlyif Yo f(Y1) # 0. Exchange
and
YiUuf(Ys) #X ifandonlyif YoU f(Y1) #X Dual exchange

As we will see, in addition to the well known properties of ogters, these properties
characterize the lower and upper Pawlak approximatiospactively.

Thus, in this paper, we prove four results that pertain teettpanation of Pawlak’s
approximation operators. First, we show a simple and etegwracterization of upper
approximation. Much later we state but not prove the dualtattarization (an indirect
proof of this other property follow from duality consideits, and the point (5) of
Proposition 5). We also prove the duality of exchange antlekehange properties, and
we show how one can introduce a structure of a completedattiapper approximation
operators.

We believe that Pawlak, who believed in elegance of mathealdbrmulation of
tools that are useful in practice, would enjoy the simpliaf our description of his
operators.

2 Preliminaries

Given a setX and an equivalence (indiscernibility) relatidhin X, we write [z] z for
the R-cosetof the element: in X, thatis{y : Ry}. Given an equivalence relatid®,
the cosets of elements &f form a partition ofX into nonempty blocks. We may drop
the subscrip? when R is determined by the context.

Let R be an equivalence relation in the Sét The relationR determines, for every
setY C X, two sets: the lower and upp&-bounds (also known as approximations) of
Y. Specifically, following Pawlak [Paw82,MP84,Paw91] we defi

RY)={zeX:[z]nX #£0}

and
RY)={zeX:[z]C X}



It is a simple consequence of the properties of equivalealzgions and of De Mor-
gan laws that for every subskt of X, the complement of’, —Y, has the following
properties:

—R(-Y) =R(Y)

and
—R(-Y) =R(Y)

We now introduce the notion of an operator in aXeand introduce various classes
of operators. LefX be a set. The sé?(X) is the powerset of, the collection of all
subsets ofX. Given a sefX, by anoperatorin X we mean any functiorf : P(X) —
P(X). An operatorf in the setX is additiveif for all Y1, C X, f(Y1 UY3) =
f(Y1) U f(Y3). An operatorf in the setX is multiplicativeif for all Y;,Y; C X,
fY1nYsz) = f(Y1) N f(Y2). An operatorf in X is progressivef for all Y C X,
Y C f(Y). An operatorf in X isregressivdf forall Y C X, f(Y) C Y. An operator
fin X isidempotentfforall Y C X, f(f(Y)) = f(Y). An operatorf in X preserves
empty setf f(0) = () (Operators preserving empty set are catedmalin [JT51].)
Finally, we say that an operatgrin X preserves uniif f(X) = X.

All the properties of operators introduced above are pratyndard. Here are two
properties (characteristic for our intended applicatiah)ch are nonstandard. Léf
be a set and lef be an operator iX. We say thaff has arexchange propertif for all
Y,Ys C X,

YiNf(Ys) #0 ifandonlyif Yo f(Yy) # 0.

This property of the operator will turn out to be crucial inraharacterization of the
upper approximation in Pawlak’s rough sets.
Likewise, we we say that thgthas adual exchange properiyfor all Y7,Y; C X

Y1Uf(Ys) # X ifandonlyif Y>U f(Y7) # X.

The dual exchange property will be used to characterizerlapproximations of rough
sets.

3 Characterizing R

We now show the principal result of this note, the charazégion of operationg? for
equivalence relation® (The characterization of lower approximations will follékm
this result and the general facts regarding duality praggedf operators.) We have the
following result.

Proposition 1. Let X' be a finite set and lef be an operator inX. Then there exists
an equivalence relatio® such thatf = R if and only if: f preserves empty sef;is
additive; f is progressive;f is idempotent; and’ has the exchange property.

Proof: First, we need to show that wheneveis an equivalence relation iX then
the operatorR has the five properties listed above. The first four of thesepagtty
obvious;R preserves emptyset because when there is no element, #éreristino coset.
The additivity follows from the distributivity of existeial quantifier with respect to



disjunction, progressiveness follows from the fact thatlbx € X, x € [z]g, and the
idempotence follows from the transitivity of the relatié We will now show that the
operatorR possesses the exchange property. We observe that the grghraperty is
symmetric with respect t&; andY>. Therefore all we need to prove is that whenever
Y; N R(Y3) # 0 then alsaY, N R(Y;) # (. Let us reformulate slightly the statement
Y; N R(Y3) # (. This statement is equivalent to the fact that there is an Y;, and
any € Y, so thatzRy. We now proceed as follows. Sindg N R(Y>) # (), there

is an element: that belongs tdr; and an elemeny € Y5 such thatr Ry. But then
[z]r = [y]|r, and say is an element o¥; for which there is an element € Y; so that
yRz'. Namelyz is that element’. ThereforeY, N R(Y;) is nonempty.

Now, let us assume thatis an operator inX, and thatf has the five properties
mentioned above, that i§ preserves empty sef, is additive, f is progressivef is
idempotent, and that has the exchange property. Then we need to construct an-equiv
alence relatior?; so thatf coincides withR. Here is how we define relatiaR;:

cRyy itz e f({y})

Our first task is to prove that, indeell, is an equivalence relation i . To see reflex-
iveness, let us observe that sintés progressive, for every,

{z} € f({z})

that is,z € f({z}). But this means thatRz, for everyz € X.
For the symmetry of?, let us assumeR sy, thatisz € f({y}). This means that

{z}nf({y}) #0.
By the exchange property gf,

{yrnf({a}) #0.

Thatisy € f({z}). In other wordsyRx.
Finally, let us assume that y, = have the property thatR;y andyRz. That is:

re f({y}) and ye f({z})

Thatis
{z} € f({y}) and {y} C f({z}).

From the second equality we have

{yruf{z}) = r{z}).
By the additivity of f we have

FAyH v F(F{z1) = F(F({2h)-

By idempotence of we have, then

FAyHu F{zh) = F({z}).



This means that
fly}) € f{z}).

Butz € f({y}) and sax € f({z}), thatisz Rz, as desired.

To complete the proof of our assertion we need to prove thalfé™ C X, f(Y) =
R¢(Y). Our proof will use the fact that we deal with a finite set. Wél sdmment on
the dependence on this assumption later.

First, let us assume that C X, and thatr € f(Y'). SinceX is finite, soisY". Then

Y = U{x}

z€Y

Now, let us observe that since the operagfds additive, it is finitely additive that is it
distributes with respect to finite unions. Thus:

)= fad).

€Y

This means that, since our assumption was thbelongs tof (Y), for somey € Y,
z € f({y}). Butthenz Ry for somey € Y, thatisz € R;(Y). In other words, for an
arbitraryY C X, f(Y) C Ry (Y).

Conversely, let us assume thate R((Y). Then, since we proved thd; is an
equivalence relation, for somee Y, zRy. That is, according to the definition of the
relationRy, x € f({y}). Next, we observe that is monotone, that i¥7 C Y5 implies
that (Y1) C f(Y2). Indeed, ifY; C Y5 thenY; UY; = Ya, thusf (Y1 UYs) = f(Y2)
and by additivity f (Y1) U f(Y2) = f(Y2), thatisf(Y1) C f(Y2). Returning to the
argument, sincg € Y, {y} C Y, and by our remark on monotonicity:

f{yh) € F(Y).

This implies thatr € f(Y') and sincer was an arbitrary element @t;(Y), R;(Y) C
f(Y). Thus we proved the other inclusion and sifcavas the arbitrary subset df,
we proved thaf and R coincide. ]

In the proof of our Proposition 1 we computed, out of the ofmerf, a relationR
so thatf = R;. But this relation is unintuitive (at least for non-spetsits). We will
now provide a more intuitive description of the same relati®iven an operatof, we
define a relatior; as follows:

zSpy it Vycx(z e f(Y) & ye f(Y)).
We now have the following result.
Proposition 2. If the operatorf satisfies the conditions of Proposition 1, thep = S

Proof: We need to prove two implications:

(@) Va,y(zRsy = xSyy), and

(b) Ve y(xSfy = xRyy)

To show (a) letz, y be arbitrary elements oX, and let us assumeRy. Then, since
Ry is symmetricy Rz, thatisy € f({z}). Itis sufficient to prove that for all subsets



Yof X,if x € f(Y)theny € f(Y) (the proof of the converse is very similar, except
that we use the fact that € f({y})). So, letz € f(Y). Then{z} C f(Y), so, by
monotonicity,f ({z}) C f(f(Y)) = f(Y) (last equality uses idempotencef Thus,
f{z}) C f(Y), and sincey € f({z}), y € f(Y). Thus, taking into account the other
implication, proved as discussed above, we proveditlgty implieszSyy.

Next, let us assume thatS;y. That is,

Vycx(z e f(Y) e ye f(Y)).

We need to prove that € f({y}). Buty € f({y}), since forY = {y}, y € Y, and for
everyY,Y C f(Y) (f is progressive). But now specializing the above equivaddnc
Y = {y}, wefind thatr € f({y}), as desired. O

In the proof of Proposition 1 we used the assumption fhatas a finite space. In
fact, we could relax this assumption, but at a price. Reball tve assumed that the
operatorf was additive (i.ef (Y, UY2) = f(Y1) U f(Y2), for all subsetd7, Y5 of X).
In the case whekX is finite we have for any familyt’ of subsets ofX

rJx = U r).

Yex

This is easily proved by induction on the size¥f Let us call an operatgf completely
additiveif the equality
iy =U ro.
Yex
holds foreveryfamily X of subsets ofX. Under the assumption of complete additivity
the assumption of finiteness can be eliminated.

4 Structure of the family of upper closure operators

We will now look at the situation when the sat has several different equivalence
relations, that is several corresponding notions of rougk. sThis is, actually, quite
common situation; for instance we may have different méddioaenclature systems
that are used to describe medical cases. In fact it is a wellvk fact that the medical
nomenclatures of various nations are not translatable.

We now face the question of the relationship between therdifit upper closure
operators. Specifically, we may want to check the relatignbletweenR; and Ry
given relationsk; andRs.

Proposition 3. Let Ry, R, be two equivalence relations. Then
Ry C Ry ifandonlyif Vycx(Ri(Y)C Ra(Y)).

Proof: First, let us assume th&; C R, and letY be an arbitrary subset of. We
need to proveR; (Y) C Ry(Y). To this end, letr € R;(Y). Then there is an element
y € Y such thatr R, y. But thenz Ry and sar € Ry(Y).

Conversely, let us assume that for eviryR, (Y) C Ry(Y). We want to prove that
R; C Ry. Letus assume thatR;y. Thenz € R;({y}), thusz € Ry({y}). In other



words, there is somg € {y} such that:R2y’. But {y} has unique elemeny, Thus
zRsy, as desired. O

The structure of the family of all equivalence relations sedX is well-known. Let
(EqR x, C) be the relational structure witBqR 5 equal to the set of all equivalence
relations inX, ordered by inclusion. Thef¥qR ., C) is a complete lattice (regardless
whetherX is finite or not) but EqR ., C) is not a distributive lattice, in general ([Ho93,
p. 227)).

Proposition 3 allows us to transfer the properties of edeihee relations to op-
erators. Let us define ampper rough set operaton the setX as any operator that
preserves empty set, is completely additive (thus we nodpagsumeX to be finite),
progressive, idempotent, and has the exchange propertgdevite byR x the set of
all upper rough set operators i, and= x thedominance relatioiin R x defined by

f=g it Yyex(f(Y) € g(Y)).

Then applying our discussion of the lattice of equivaleraations inX to Proposition
3 we get the following fact.

Proposition 4. The structurgR x, <) is a poset. In fac{R x, <) is a complete lattice,

but in general not a distributive one.

5 Duality

Let f be an operator in a sé&. Thedual of the operatorf, f4, is an operator defined
by the following equality:
fa(Y) = =f(=Y).

HereY ranges over arbitrary subsetsXf —Y = X \ Y is the complement operation.
The dual operators are used in various places in mathenmtit£omputer science.
One example is the operator dual to van Emden-Kowalski epefa ([Do94, p. 83]).

While we defined the notion of dual operator in the BooleandattP(X), C), as
long as the lattice has a complement operatigithe notion of a dual operator can be
defined. Moreover, if for alk, — — « = z, then(f;)4 = f. This is certainly the case in
our application.

Now, let us assume that we are dealing with operators in &setve have the
following fact.

Proposition 5. Let X be a set andf an operator inX. Then:

1. The operatoy preserves the empty set (unit) if and only if the operdfqpreserves
the unit (empty set)

2. The operatorf is progressive (regressive) if and only if the operafgis regressive
(progressive)

3. The operatorf is additive (multiplicative) if and only if the operatgy; is multi-
plicative (additive)

4. The operatorf is idempotent if and only if the operatgy is idempotent



5. The operatorf possesses the exchange property (dual exchange propieaty)l i
only if the operatorf,; possesses the dual exchange property (exchange property).

Proof: The points (1)-(3) are entirely routine. To see thiap@), let us assume that the
operatorf is idempotent. Then for an arbitraky,

fa(fa(Y)) = =f(=fa(Y)) = =f(==f(=Y)) = =f(f(=Y)) = =f(=Y) = fa(Y).

The penultimate equality uses the idempotencg. dfhe other direction of (4) follows
from the fact that f;), = f, and the argument above.

To see (5), we first assume théhas the exchange property. We prove tfighas the
dual exchange property. To this end we need to prove thatlhirary Y7, Y C X,

Yy de(}/é) #+ X if and onIy if YQde(Yl) #+ X.

Since this formula is symmetric with respect® andYs, it is enough to prove the
implication:

ViU fa(Yo) # X = YaU fa(Y1) # X.
Soletus assume that U f4(Y2) # X. Then, substituting- — Y7 for Y7, and expanding
the definition off,, we get:

(——M)U—f(-Yo) # X
that is:
—(=Y1nf(-Y2)) # X.
This is, of course, equivalent to:

-Yinf(-Yz) #0.
Sincef has the exchange property,
=Ya N f(=Y1) # 0.

Thus we get:
—(=Y2n f(-1)) # X,

which reduces to
YaU—f(-=Y1) #X.

that is
YaU fa(Y1) # X,

as desired. The proof of the other part of (5) namely that whenf has the dual
exchange property thefy has the exchange property, is similar. m|
Now, let us look at the familiar equaliti®(Y') = —R(-Y). This, in the language
of operators, says that for every equivalence relafpithe operator? is simply R,.
So now we compare the characterization of the upper appeatiamby five conditions
(Proposition 1) and the duality result above (PropositipW get the following result.



Proposition 6. Let X be a finite set and lef be an operator inX. Then there ex-
ists an equivalence relatioR such thatf = R if and only if: f preserves unityf is
multiplicative; f is regressive;f is idempotent; ang” has the dual exchange property.

Again, we can also study the family of all operators that hitneefive properties
of operators characterizing lower approximation and ohtice a complete, but non-
distributive lattice structure in that set. That is, we caovp the result analogous to the
Proposition 4.

6 Conclusions

Algebraic methods, whenever applicable, provide a cleandations for an underly-
ing subject. They abstract from unnecessary details, stgpthie properties that really
matter. This is certainly the case in the area of rough sais.résults confirm that,

as observed by numerous authors [0S01,S101] the theoryughrsets relates to the
operators in lattices, a theory well-developed ([DP92,6.f8]) and with many deep

results. Rough sets approximate elements of one latticel¢@a lattice of all sets) with
elements of a sublattice (of definable sets). Abstract ambrdo this idea of approxi-
mation and characterization of approximations in algettexins will only improve our

understanding of the concept of rough set. We find it amaziagthe ideas of Tarski
(who certainly shied from applications) found its expreasin Pawlak’s, very applied,
research.
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