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Abstract. We investigate the operators associated with approximations in the
rough set theory introduced by Pawlak in his [Paw82,MP84] and extensively stud-
ied by the Rough Set community [RS06]. We use universal algebra techniques to
establish a natural characterization of operators associated with rough sets.

1 Introduction

The concept ofrough set determined by an equivalence relationR has been introduced
by Pawlak [Paw82,MP84] in his studies of data mining. It is a natural extension of a
model of database introduced in [MP76] that treats records as objects which may be
indiscernible in the language (i.e. the tables are bags, notsets, of records). Rough sets
and a set of associated numerical measures allow for capturing various degrees of simi-
larity of objects such as records, documents, or other data units. The point of departure
of Pawlak was the realization that the descriptive languages are often inadequate to
correctly describe concepts (i.e. – in set-theoretic terms– subsets of the domain). The
express goal of rough sets was to operate in the following situation: we have a collec-
tion of objectsX and some description languageL. We have some collection of objects
Y ⊆ X. We would like to describeY in the languageL. That is we would like to find
a formulaϕ of L so that

Y = {x ∈ X : ϕ[x]}.

We call such setsY definable. While usually the number of available definitions is
infinite, even in the situation whenX is finite, not every subset has to be definable. Yet
another point, made in [MT99], is that a setY may be definable in the languageL but
all the definitions are prohibitively large. In such circumstances we may want to find a
smaller languageL′ whereY is not definableL′, but the approximations are definable
in L′ by short formulas. This is certainly the case in various medical applications.

In his analysis, Pawlak observed that in the case of finite setX, there is alargest
subset ofY that is definable, and aleastsuperset ofY that is definable. There is a way



to compute these largest and least definable subsets ofX that are associated withY .
Specifically, this is done with theindiscernibility relationassociated with the language
L. In finite case, there is always a formula defining aleast definable setcontaining a
given objectx. Let us call these setsmonads(for the lack of better name, and for the
fact that they resemble Leibniz monads). Then, it turns out that the largest definable set
included inY is the union of monads that are entirely included inY , while the least
definable set containingY consists of those monads that have a nonempty intersection
with Y . Abstracting from the existence of a specific language and its logical opera-
tions, Pawlak introduced the notion ofindiscernibility relationin the setX. This is the
equivalence relationR so that the monads are its cosets.

We believe that the guiding examples motivating Pawlak werestandard medical
terminologies such as SNOMED ([SN06]) or ICD-9 ([IC06]) andtheir inadequacies
for description of classes of medical cases. It is worth mentioning that for many years
Pawlak collaborated with physicians interested in MedicalInformatics (needless to say,
this started long before the termMedical Informaticswere even coined). Pawlak was
concerned with the fact that medical reasoning approximates the available data, often
disregarding values of some attributes. As a result, it is often difficult, for a variety
of reasons, to classify medical cases. If one treats a medical condition as an ideal set
of cases and attempts to describe it within a concrete language of some terminology
then all a physician can do is to produce a differential diagnosis. This leads, naturally,
to lower and upper approximations of the classes of medical cases. While Pawlak’s
intuitions were motivated by his collaborations with practicing physicians, it turned out
that the methodology of approximations and indiscernibility relations are a common
phenomenon. We refer the reader to monographs and journals devoted to rough set
theory ([RS06]) for further motivations.

Let us assume that the underlying setX is finite. Denoting byR(Y ) andR(Y ),
respectively, the largest definable subset ofY and the least definable superset ofY , we
get the desired approximation relationships

R(Y ) ⊆ Y ⊆ R(Y ).

The setsR(Y ) andR(Y ) provide collectively measure of adequacy of the underly-
ing language to the task of describingY . Moreover, by various statistical operations
on those sets, and on other sets derived by set-theoretic means, we can analyze the
properties of the setY itself. For that reason we would like to know more about the
setsR(Y ) andR(Y ). We would like to know what are possible operators of the form
R(·) andR(·), and how those behave whenR vary (i.e. when the language changes).
These issues, to some extent were addressed in recent [GL06], but the review of the
literature indicates that the Rough Sets community investigated a number of possible
explanations for the rough set formalism by immersing it into various well-known math-
ematical areas. Those areas are all related to a variety of ways in which one can describe
databases. We will list several different areas which were explored, although more could
be mentioned. The references are, by necessity, incomplete. The first one is the idea of
topological interpretation of approximations (already explored in [MP84]). This was
for instance studied in [Yao96]. Another approach was to look at modal logic interpre-
tations of rough sets (see for instance [YL96] and a series ofpapers by Orłowska and



collaborators [DO01], and more generally [OS01]). One could think about approxima-
tions using Kleene [Kl67] three-valued logic as it was done in [MT99]. It is also possible
to look at abstractions of rough sets via techniques of universal algebra. This last area
explores Boolean algebra with operators [JT51,Jo91]. The rough set community inves-
tigated these connections, with a varying degree of generality, in [DO01,OS01,SI01].
Our contribution belong to this direction of research. We attempt to apply the techniques
of universal algebra and in particular of [JT51,SI01] to findan esthetically appealing
characterization of Pawlak’s operators. In this quest our results find, indeed, a clean
and interesting characterization of these operators. By necessity, some of the results
discussed in this paper are known. After all operators over Boolean algebras have been
introduced by Tarski and his collaborators over 50 years ago. For instance at least points
(1)-(4) of Proposition 5 are known. The terms in which we characterize the Pawlak’s
operators are mostly known in the literature. The ones that we introduce and which (in
conjunction with other properties) appear to be new are the following:

Y1 ∩ f(Y2) 6= ∅ if and only if Y2 ∩ f(Y1) 6= ∅. Exchange

and

Y1 ∪ f(Y2) 6= X if and only if Y2 ∪ f(Y1) 6= X Dual exchange

As we will see, in addition to the well known properties of operators, these properties
characterize the lower and upper Pawlak approximations, respectively.

Thus, in this paper, we prove four results that pertain to theexplanation of Pawlak’s
approximation operators. First, we show a simple and elegant characterization of upper
approximation. Much later we state but not prove the dual characterization (an indirect
proof of this other property follow from duality considerations, and the point (5) of
Proposition 5). We also prove the duality of exchange and dual exchange properties, and
we show how one can introduce a structure of a complete lattice in upper approximation
operators.

We believe that Pawlak, who believed in elegance of mathematical formulation of
tools that are useful in practice, would enjoy the simplicity of our description of his
operators.

2 Preliminaries

Given a setX and an equivalence (indiscernibility) relationR in X, we write[x]R for
theR-cosetof the elementx in X, that is{y : xRy}. Given an equivalence relationR,
the cosets of elements ofX form a partition ofX into nonempty blocks. We may drop
the subscriptR whenR is determined by the context.

Let R be an equivalence relation in the setX. The relationR determines, for every
setY ⊆ X, two sets: the lower and upperR-bounds (also known as approximations) of
Y . Specifically, following Pawlak [Paw82,MP84,Paw91] we define

R(Y ) = {x ∈ X : [x] ∩ X 6= ∅}

and
R(Y ) = {x ∈ X : [x] ⊆ X}.



It is a simple consequence of the properties of equivalence relations and of De Mor-
gan laws that for every subsetY of X, the complement ofY , −Y , has the following
properties:

−R(−Y ) = R(Y )

and
−R(−Y ) = R(Y )

We now introduce the notion of an operator in a setX and introduce various classes
of operators. LetX be a set. The setP(X) is the powerset ofX, the collection of all
subsets ofX. Given a setX, by anoperatorin X we mean any functionf : P(X) →
P(X). An operatorf in the setX is additive if for all Y1, Y2 ⊆ X, f(Y1 ∪ Y2) =
f(Y1) ∪ f(Y2). An operatorf in the setX is multiplicative if for all Y1, Y2 ⊆ X,
f(Y1 ∩ Y2) = f(Y1) ∩ f(Y2). An operatorf in X is progressiveif for all Y ⊆ X,
Y ⊆ f(Y ). An operatorf in X is regressiveif for all Y ⊆ X, f(Y ) ⊆ Y . An operator
f in X is idempotentif for all Y ⊆ X, f(f(Y )) = f(Y ). An operatorf in X preserves
empty setif f(∅) = ∅ (Operators preserving empty set are callednormal in [JT51].)
Finally, we say that an operatorf in X preserves unitif f(X) = X.

All the properties of operators introduced above are prettystandard. Here are two
properties (characteristic for our intended application)which are nonstandard. LetX

be a set and letf be an operator inX. We say thatf has anexchange propertyif for all
Y1, Y2 ⊆ X,

Y1 ∩ f(Y2) 6= ∅ if and only if Y2 ∩ f(Y1) 6= ∅.

This property of the operator will turn out to be crucial in our characterization of the
upper approximation in Pawlak’s rough sets.
Likewise, we we say that thatf has adual exchange propertyif for all Y1, Y2 ⊆ X

Y1 ∪ f(Y2) 6= X if and only if Y2 ∪ f(Y1) 6= X.

The dual exchange property will be used to characterize lower approximations of rough
sets.

3 Characterizing R

We now show the principal result of this note, the characterization of operationsR for
equivalence relationsR (The characterization of lower approximations will followfrom
this result and the general facts regarding duality properties of operators.) We have the
following result.

Proposition 1. Let X be a finite set and letf be an operator inX. Then there exists
an equivalence relationR such thatf = R if and only if: f preserves empty set;f is
additive;f is progressive;f is idempotent; andf has the exchange property.

Proof: First, we need to show that wheneverR is an equivalence relation inX then
the operatorR has the five properties listed above. The first four of these are pretty
obvious;R preserves emptyset because when there is no element, then there is no coset.
The additivity follows from the distributivity of existential quantifier with respect to



disjunction, progressiveness follows from the fact that for all x ∈ X, x ∈ [x]R, and the
idempotence follows from the transitivity of the relationR. We will now show that the
operatorR possesses the exchange property. We observe that the exchange property is
symmetric with respect toY1 andY2. Therefore all we need to prove is that whenever
Y1 ∩ R(Y2) 6= ∅ then alsoY2 ∩ R(Y1) 6= ∅. Let us reformulate slightly the statement
Y1 ∩ R(Y2) 6= ∅. This statement is equivalent to the fact that there is anx ∈ Y1, and
an y ∈ Y2 so thatxRy. We now proceed as follows. SinceY1 ∩ R(Y2) 6= ∅, there
is an elementx that belongs toY1 and an elementy ∈ Y2 such thatxRy. But then
[x]R = [y]R, and soy is an element ofY2 for which there is an elementx′ ∈ Y1 so that
yRx′. Namelyx is that elementx′. ThereforeY2 ∩ R(Y1) is nonempty.

Now, let us assume thatf is an operator inX, and thatf has the five properties
mentioned above, that isf preserves empty set,f is additive,f is progressive,f is
idempotent, and thatf has the exchange property. Then we need to construct an equiv-
alence relationRf so thatf coincides withR. Here is how we define relationRf :

xRfy if x ∈ f({y}).

Our first task is to prove that, indeed,Rf is an equivalence relation inX. To see reflex-
iveness, let us observe that sincef is progressive, for everyx,

{x} ⊆ f({x})

that is,x ∈ f({x}). But this means thatxRfx, for everyx ∈ X.
For the symmetry ofRf , let us assumexRfy, that isx ∈ f({y}). This means that

{x} ∩ f({y}) 6= ∅.

By the exchange property off ,

{y} ∩ f({x}) 6= ∅.

That isy ∈ f({x}). In other words,yRfx.
Finally, let us assume thatx, y, z have the property thatxRfy andyRfz. That is:

x ∈ f({y}) and y ∈ f({z}).

That is
{x} ⊆ f({y}) and {y} ⊆ f({z}).

From the second equality we have

{y} ∪ f({z}) = f({z}).

By the additivity off we have

f({y}) ∪ f(f({z})) = f(f({z})).

By idempotence off we have, then

f({y}) ∪ f({z}) = f({z}).



This means that
f({y}) ⊆ f({z}).

But x ∈ f({y}) and sox ∈ f({z}), that isxRfz, as desired.
To complete the proof of our assertion we need to prove that for all Y ⊆ X, f(Y ) =

Rf (Y ). Our proof will use the fact that we deal with a finite set. We will comment on
the dependence on this assumption later.

First, let us assume thatY ⊆ X, and thatx ∈ f(Y ). SinceX is finite, so isY . Then

Y =
⋃

x∈Y

{x}.

Now, let us observe that since the operatorf is additive, it is finitely additive that is it
distributes with respect to finite unions. Thus:

f(Y ) =
⋃

x∈Y

f({x}).

This means that, since our assumption was thatx belongs tof(Y ), for somey ∈ Y ,
x ∈ f({y}). But thenxRfy for somey ∈ Y , that isx ∈ Rf (Y ). In other words, for an
arbitraryY ⊆ X, f(Y ) ⊆ Rf (Y ).

Conversely, let us assume thatx ∈ Rf (Y ). Then, since we proved thatRf is an
equivalence relation, for somey ∈ Y , xRfy. That is, according to the definition of the
relationRf , x ∈ f({y}). Next, we observe thatf is monotone, that isY1 ⊆ Y2 implies
thatf(Y1) ⊆ f(Y2). Indeed, ifY1 ⊆ Y2 thenY1 ∪ Y2 = Y2, thusf(Y1 ∪ Y2) = f(Y2)
and by additivityf(Y1) ∪ f(Y2) = f(Y2), that isf(Y1) ⊆ f(Y2). Returning to the
argument, sincey ∈ Y , {y} ⊆ Y , and by our remark on monotonicity:

f({y}) ⊆ f(Y ).

This implies thatx ∈ f(Y ) and sincex was an arbitrary element ofRf (Y ), Rf (Y ) ⊆
f(Y ). Thus we proved the other inclusion and sinceY was the arbitrary subset ofX,
we proved thatf andRf coincide. 2

In the proof of our Proposition 1 we computed, out of the operator f , a relationRf

so thatf = Rf . But this relation is unintuitive (at least for non-specialists). We will
now provide a more intuitive description of the same relation. Given an operatorf , we
define a relationSf as follows:

xSfy if ∀Y ⊆X(x ∈ f(Y ) ⇔ y ∈ f(Y )).

We now have the following result.

Proposition 2. If the operatorf satisfies the conditions of Proposition 1, thenRf = Sf

Proof: We need to prove two implications:
(a)∀x,y(xRfy ⇒ xSfy), and
(b) ∀x,y(xSfy ⇒ xRfy)
To show (a) letx, y be arbitrary elements ofX, and let us assumexRfy. Then, since
Rf is symmetric,yRfx, that isy ∈ f({x}). It is sufficient to prove that for all subsets



Y of X, if x ∈ f(Y ) theny ∈ f(Y ) (the proof of the converse is very similar, except
that we use the fact thatx ∈ f({y})). So, letx ∈ f(Y ). Then{x} ⊆ f(Y ), so, by
monotonicity,f({x}) ⊆ f(f(Y )) = f(Y ) (last equality uses idempotence off ). Thus,
f({x}) ⊆ f(Y ), and sincey ∈ f({x}), y ∈ f(Y ). Thus, taking into account the other
implication, proved as discussed above, we proved thatxRfy impliesxSfy.

Next, let us assume thatxSfy. That is,

∀Y ⊆X(x ∈ f(Y ) ⇔ y ∈ f(Y )).

We need to prove thatx ∈ f({y}). But y ∈ f({y}), since forY = {y}, y ∈ Y , and for
everyY , Y ⊆ f(Y ) (f is progressive). But now specializing the above equivalence to
Y = {y}, we find thatx ∈ f({y}), as desired. 2

In the proof of Proposition 1 we used the assumption thatX was a finite space. In
fact, we could relax this assumption, but at a price. Recall that we assumed that the
operatorf was additive (i.e.f(Y1 ∪ Y2) = f(Y1)∪ f(Y2), for all subsetsY1, Y2 of X).
In the case whenX is finite we have for any familyX of subsets ofX

f(
⋃

X ) =
⋃

Y ∈X

f(Y ).

This is easily proved by induction on the size ofX . Let us call an operatorf completely
additiveif the equality

f(
⋃

X ) =
⋃

Y ∈X

f(Y ).

holds foreveryfamily X of subsets ofX. Under the assumption of complete additivity
the assumption of finiteness can be eliminated.

4 Structure of the family of upper closure operators

We will now look at the situation when the setX has several different equivalence
relations, that is several corresponding notions of rough sets. This is, actually, quite
common situation; for instance we may have different medical nomenclature systems
that are used to describe medical cases. In fact it is a well-known fact that the medical
nomenclatures of various nations are not translatable.

We now face the question of the relationship between the different upper closure
operators. Specifically, we may want to check the relationship betweenR1 and R2

given relationsR1 andR2.

Proposition 3. LetR1, R2 be two equivalence relations. Then

R1 ⊆ R2 if and only if ∀Y ⊆X(R1(Y ) ⊆ R2(Y )).

Proof: First, let us assume thatR1 ⊆ R2, and letY be an arbitrary subset ofX. We
need to proveR1(Y ) ⊆ R2(Y ). To this end, letx ∈ R1(Y ). Then there is an element
y ∈ Y such thatxR1y. But thenxR2y and sox ∈ R2(Y ).

Conversely, let us assume that for everyY , R1(Y ) ⊆ R2(Y ). We want to prove that
R1 ⊆ R2. Let us assume thatxR1y. Thenx ∈ R1({y}), thusx ∈ R2({y}). In other



words, there is somey′ ∈ {y} such thatxR2y
′. But {y} has unique element,y. Thus

xR2y, as desired. 2

The structure of the family of all equivalence relations in asetX is well-known. Let
〈EqRX ,⊆〉 be the relational structure withEqRX equal to the set of all equivalence
relations inX, ordered by inclusion. Then〈EqRX ,⊆〉 is a complete lattice (regardless
whetherX is finite or not) but〈EqRX ,⊆〉 is not a distributive lattice, in general ([Ho93,
p. 227]).

Proposition 3 allows us to transfer the properties of equivalence relations to op-
erators. Let us define anupper rough set operatorin the setX as any operator that
preserves empty set, is completely additive (thus we no longer assumeX to be finite),
progressive, idempotent, and has the exchange property. Wedenote byRX the set of
all upper rough set operators inX, and�X thedominance relationin RX defined by

f � g if ∀Y ⊆X(f(Y ) ⊆ g(Y )).

Then applying our discussion of the lattice of equivalence relations inX to Proposition
3 we get the following fact.

Proposition 4. The structure〈RX ,�〉 is a poset. In fact〈RX ,�〉 is a complete lattice,
but in general not a distributive one.

5 Duality

Let f be an operator in a setX. Thedual of the operatorf , fd, is an operator defined
by the following equality:

fd(Y ) = −f(−Y ).

HereY ranges over arbitrary subsets ofX, −Y = X \ Y is the complement operation.
The dual operators are used in various places in mathematicsand computer science.
One example is the operator dual to van Emden-Kowalski operator TP ([Do94, p. 83]).

While we defined the notion of dual operator in the Boolean lattice, 〈P(X),⊆〉, as
long as the lattice has a complement operation−, the notion of a dual operator can be
defined. Moreover, if for allx, −− x = x, then(fd)d = f . This is certainly the case in
our application.

Now, let us assume that we are dealing with operators in a setX. We have the
following fact.

Proposition 5. LetX be a set andf an operator inX. Then:

1. The operatorf preserves the empty set (unit) if and only if the operatorfd preserves
the unit (empty set)

2. The operatorf is progressive (regressive) if and only if the operatorfd is regressive
(progressive)

3. The operatorf is additive (multiplicative) if and only if the operatorfd is multi-
plicative (additive)

4. The operatorf is idempotent if and only if the operatorfd is idempotent



5. The operatorf possesses the exchange property (dual exchange property) if and
only if the operatorfd possesses the dual exchange property (exchange property).

Proof: The points (1)-(3) are entirely routine. To see the point (4), let us assume that the
operatorf is idempotent. Then for an arbitraryY ,

fd(fd(Y )) = −f(−fd(Y )) = −f(−−f(−Y )) = −f(f(−Y )) = −f(−Y ) = fd(Y ).

The penultimate equality uses the idempotence off . The other direction of (4) follows
from the fact that(fd)d = f , and the argument above.
To see (5), we first assume thatf has the exchange property. We prove thatfd has the
dual exchange property. To this end we need to prove that for arbitraryY1, Y2 ⊆ X,

Y1 ∪ fd(Y2) 6= X if and only if Y2 ∪ fd(Y1) 6= X.

Since this formula is symmetric with respect toY1 andY2, it is enough to prove the
implication:

Y1 ∪ fd(Y2) 6= X ⇒ Y2 ∪ fd(Y1) 6= X.

So let us assume thatY1∪fd(Y2) 6= X. Then, substituting−−Y1 for Y1, and expanding
the definition offd, we get:

(−− Y1) ∪ −f(−Y2) 6= X

that is:
−(−Y1 ∩ f(−Y2)) 6= X.

This is, of course, equivalent to:

−Y1 ∩ f(−Y2) 6= ∅.

Sincef has the exchange property,

−Y2 ∩ f(−Y1) 6= ∅.

Thus we get:
−(−Y2 ∩ f(−Y1)) 6= X,

which reduces to
Y2 ∪ −f(−Y1) 6= X.

that is
Y2 ∪ fd(Y1) 6= X,

as desired. The proof of the other part of (5) namely that whenever f has the dual
exchange property thenfd has the exchange property, is similar. 2

Now, let us look at the familiar equalityR(Y ) = −R(−Y ). This, in the language
of operators, says that for every equivalence relationR, the operatorR is simplyRd.
So now we compare the characterization of the upper approximation by five conditions
(Proposition 1) and the duality result above (Proposition 5). We get the following result.



Proposition 6. Let X be a finite set and letf be an operator inX. Then there ex-
ists an equivalence relationR such thatf = R if and only if: f preserves unit;f is
multiplicative;f is regressive;f is idempotent; andf has the dual exchange property.

Again, we can also study the family of all operators that havethe five properties
of operators characterizing lower approximation and introduce a complete, but non-
distributive lattice structure in that set. That is, we can prove the result analogous to the
Proposition 4.

6 Conclusions

Algebraic methods, whenever applicable, provide a clean foundations for an underly-
ing subject. They abstract from unnecessary details, showing the properties that really
matter. This is certainly the case in the area of rough sets. Our results confirm that,
as observed by numerous authors [OS01,SI01] the theory of rough sets relates to the
operators in lattices, a theory well-developed ([DP92, p. 86, ff.]) and with many deep
results. Rough sets approximate elements of one lattice (Boolean lattice of all sets) with
elements of a sublattice (of definable sets). Abstract approach to this idea of approxi-
mation and characterization of approximations in algebraic terms will only improve our
understanding of the concept of rough set. We find it amazing that the ideas of Tarski
(who certainly shied from applications) found its expression in Pawlak’s, very applied,
research.
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