
Toward Automating the Discovery of
Decreasing Measures

Robert S. Boyer∗, Wilfred J. Legato† and Victor W. Marek‡

Abstract

An often neglected part of proof automation is simply admitting recur-
sive function definitions into a constructive logic. Since function termination
in general is undecidable, current generation theorem provers are quick to
involve the human. There is, however, a substantial subset of the class of
recursive functions for which termination arguments can be provided auto-
matically. In particular, when the ordinal measure used to justify termination
is less thanωω, we provide algorithms and proofs that guarantee optimum
results, given the capability of existing proof libraries on the theorem prov-
ing system.

1 Introduction and motivation

There are at least two applications within the context of automated theorem prov-
ing for an algorithm that constructs well-founded decreasing measures. The first
arises when admitting recursive functions into constructive logic provers such as
NQTHM [RB79, RB98] or ACL2 [KMM00a, KMM00b]. The second arises when
justifying an induction heuristic within an experimental theorem prover [Leg05]
currently under development. These measures are often difficult to find, especially
if the recursive function or inductive instances are mechanically generated. We

∗Department of Computer Sciences, University of Texas, Austin, TX 78712
†National Security Agency, 9800 Savage Rd., Ft. Meade, MD, 20755
‡Department of Computer Science, University of Kentucky, Lexington, KY 40506

1

present here an algorithmic approach to constructing suitable ordinal measures.
The method is not general, in that it only makes explicit use of ordinals less than
ωω. Such ordinals are expressible as lists of natural numbers that are compared
lexicographically. We shall see in the concluding section that our methods can be
applied more broadly to in effect employ ordinals up toε0 (i.e. ω +ωω +ωωω

. . .).

Below we first introduce a statement of a formal problem (Section 1.1) and then
look at the motivation of this problem in terms of automated theorem proving
(Section 1.2). We then formulate (Section 1.3) our problem as a combinatorial
problem. Then, in Section 2 we introduce an algorithm that finds a solution to
our problem if one exists. The correctness of our solution is shown by means of
a series of statements, culminating in Corollary 2.4. A sufficient condition for
existence of a solution is given in Section 3. In Section 4 we provide yet another
algorithm also solving the original problem but one that uses data structures more
practical for programming. In the Appendix a Lisp implementation for both algo-
rithms is provided. Section 5 contains conclusions and further research directions.

1.1 Formal Statement of the Problem

Given a set of variablesX = {x1, x2, ...xn} and elements of the power set ofX ,
S(j, i) for i = 1, 2, . . . , n, andj = 1, 2, . . . ,m, determine whether an ordering of
x1, x2, ...xn exists such that for alli, j if S(j, i) is nonempty then there existsxk

in S(j, i) such thatxk precedesxi in that ordering.

1.2 Background of the Problem

The constructive logic theorem provers NQTHM and ACL2 allow users to define
a broad class of functions that include the primitive recursive functions. Both the-
orem provers guarantee that all functions admitted under their respective defini-
tional principles terminate, and thus are well defined. Although many termination
proofs are automatically derived, there are simple definitions such as the following
where the user must identify a decreasing measure function.

2

f(x, y) =
if x = 0 then

if y = 0 then 0 elsef(y − 1, y − 1)
else1 + f (x − 1 , y)

When x or y is not a natural number, we definef(x, y) = 0. Although this
function is fabricated to illustrate a point, one can easily imagine it arising as the
recursive function [Mc63] for a doubly nested program loop. Such functions are
commonplace when formally modeling low level programs [Leg02], and may in
fact include large numbers of variables representing state components.

The correspondence between this function and the formal problem statement is

X = {x, y}
S(1, 1) = {y}
S(1, 2) = ∅
S(2, 1) = ∅
S(2, 2) = ∅

The algorithms in this paper will identify the following ordinal measure function

µ(x, y) = ν(y) · ω + ν(x)

whereν is a well-founded measure on the naturals.

More generally, the recursive definition off(x) within NQTHM and ACL2 gen-
erates the following proof obligations (among others).

hj(x) =⇒ µ(rj(x)) < µ(x)

wherex represents the tuple of arguments(x1, x2, . . . xn), andhj(x) is the pred-
icategoverningwhether the recursive callf(rj(x)) is made. rj(x) may in fact
involve the function being defined, as is the case with the Ackermann function.
The algorithms in this paper will, if successful, determine a measure functionµ
of the following form

µ(x) =
∑

i

νi(x) · ωπ(i)−1

3

whereνi is an ordinal valued function ofx, andπ is a permutation reflecting
the ordering ofx1, x2, . . . xn in a solution to the formal problem statement. In
practice,νi(x) typically will depend only onxi and will likely be a function (e.g.
COUNT within NQTHM or ACL2-COUNT within ACL2) that simply counts the
number of constructors applied in generating an inductively defined object.

Given the capabilities of the theorem prover and its proof libraries

hj(x) =⇒ νi(rj(x)) < νi(x)

can be proved automatically for some values ofi. Let Gj be the set of variables
xi for which this is true. Otherνi can be shown to remain unchanged under the
transformationrj, and the remaining are treated as if they increased. For each
“increasing”νi setS(j, i) = Gj. Set the remainingS(j, k) = ∅. If Gj = ∅, there
is no solution. If a solution to the formal problem statement

xπ(n), xπ(n−1), . . . xπ(1)

exists, it definesπ and indirectly the measureµ. We observe that the formal
problem statement guarantees thatµ decreases on each recursive call, because
any non decreasingνi is preceded in the order by a decreasing one. In this casef
terminates on all inputs.

The definitional principles for both NQTHM and ACL2 will on occasion usehj

that are in fact weaker than the actual predicate governing thejth recursive call.
So there will be situations where an otherwise admissible function fails to be
admitted, regardless of the strength of the theorem prover, its proof libraries, or
whether the techniques proposed in this paper are used.

We describe now the second application of our techniques. Rather than pattern an
induction after recursive function definitions as is done in NQTHM and ACL2, the
experimental theorem prover [Leg05] takes a novel approach toward induction.
When presented with a clause

L1(x) ∨ L2(x) ∨ . . . ∨ Lt(x)

to be proved, it augments the set of rewrite rules witht additionalmeasuredrules
constructed as follows. The universally quantified variablesx are replaced by

4

pattern variablesz. Then for each literalLi(z) a rewrite rule is created whose hy-
pothesis is the conjunction of the negations of the remaining literals in the clause.
Li(z) is converted to an equality (if not already so) and this equality is oriented
into a replacement rule using a term ordering function compatible with the exist-
ing set of rewrite rules. When a measured rule is applied, in addition to relieving
its hypothesis there is the further obligation of showing that the substitutionσj

generated by the pattern match for thejth application of a measured rule derived
from this clause satisfies

hj(x) =⇒ µ(σj(z)) < µ(x)

wherehj represents the context in which the measured rule is applied andµ is
defined as before. Depending on the capabilities of the theorem prover and its
proof libraries

hj(x) =⇒ νi(σj(z)) < νi(x)

can automatically be proved for somei. We collect all variablesxi for which this
is true into the setGj. If Gj = ∅, the rule application fails. For those variablesxi

that possibly increase, we setS(j, i) = Gj. We set the remainingS(j, i) = ∅. If
the resulting measure problem can be solved, then the rule is applied. We do not
need to identify the ordering. Its existence is sufficient to justify the induction.

We observe that the measure functionµ evolves with each application of a mea-
sured rule derived from the same clause, since the measure must be consistent over
all applications. Thus the measure problem is solved repeatedly as new rows are
added to the arrayS(j, i). It is this application that motivates the need for efficient
solutions to the combinatorial problem, since the algorithm will be applied many
times on measured rules derived from clauses possibly containing large numbers
of state variables.

1.3 The combinatorial problem

By an assignment of sets to elements (or simplyset-assignment) we mean a func-
tion S from a setX to its power setP(X). WhenX is finite,X = {x1, . . . , xn}

5

we write suchS as (
x1 x2 . . . xn

S1 S2 . . . Sn

)
A set-multiassignment is a natural generalization of an assignment. Namely, we
havem set-assignmentsSk, 1 ≤ k ≤ m. We will store all these assignments in a
single matrix:

x1 x2 . . . xn

S1,1 S1,2 . . . S1,n

.
Sk,1 Sk,2 . . . Sk,n

.
Sm,1 Sm,2 . . . Sm,n

and call that matrix amultiassignment.

Let S be such a set-multiassignment on a finite setX = {x1, . . . , xn}. The ques-
tion we want to decide is:

(?) Is there an ordering≺ of the setX such that for everyk, 1 ≤ k ≤
m and for everyi, 1 ≤ i ≤ n, wheneverSk,i is not empty then there
is xj ∈ Sk,i such thatxj ≺ xi?

ThusS is an instance, and≺ (if it exists) is asolutionof the problem(?) for the
instanceS.

The problem(?), for a given instanceS, can of course, be solved by exhaustion
on all n! orderings of{x1, . . . , xn}. Our algorithm solves this problem for set-
multiassignments in orderO(n3 · m). It either returns an ordering≺, or a string
impossible if no such ordering exists.

Before we write the algorithm, first in English and then in pseudocode, we need
some definitions.

In the text below,{x1, . . . , xn} is a fixed finite set. A (total) ordering of the set
{x1, . . . , xn} is an irreflexive, connected, transitive relation, on the set{x1, . . . , xn}.

Formally, we say that an ordering≺ of {x1, . . . , xn} is a solution for the set-
multiassignmentS if ≺ satisfies(?).

6

We use the termprefix to denote an ordering of a subset of{x1, . . . , xn}. We will
use a symbol< to denote prefixes. The reason for this terminology is that we can
think about an ordering of{x1, . . . , xn} as a string over the alphabet{x1, . . . , xn}
with no repeated symbols. Aninitial segmentof an ordering≺ is a subsetD of
{x1, . . . , xn} such that whenevery ∈ D, andz ≺ y thenz ∈ D. The initial
segments of the ordering can be identified with prefixes - those are just listings of
the elements of the initial segmentD according to the ordering≺|D.

When< is a prefix, we denote byD< its domain. That is,D< is the set of elements
occurring in<. Next, when< is a prefix, we say that< is extensibleto a solution
if there is an ordering≺ of the entire{x1, . . . , xn} such that< is a prefix of≺ and
≺ is a solution.

Finally, let< be a prefix. We say that an elementxi of {x1, . . . , xn}\D< is ready
for < if for all k, 1 ≤ k ≤ m, eitherSk,i = ∅ or D< ∩ Sk,i 6= ∅.

2 Algorithm 1 and its pseudocode

Algorithm 1 belongs to the family of greedy algorithms. After initialization it
selects as the shortest prefix anyxi such that for allk, 1 ≤ k ≤ m, Sk,i = ∅. If
there is no suchxi it returns the stringimpossible.

Next, at each step, it attempts to find a new element, not in the current prefix,
that is ready for this prefix. If it cannot find any but there are elements not in
the prefix it returns the stringimpossible. If there are elements that are not in the
prefix and which are ready for that prefix, it selects one and appends it at the end
of the current prefix. Finally, when it exhausts the entire set{x1, . . . , xn} without
producing the stringimpossible it returns the prefix (which is then, of course, a
solution).

Here is the pseudocode for this algorithm. The symbol_ is interpreted ascon-
catenationof strings, and〈a〉 is a string consisting of a single symbola.

7

Algorithm 1.
Input: A set-multiassignment on a finite set{x1, . . . , xn}
Output: An ordering of{x1, . . . , xn} satisfying(?), or a stringimpossible
/∗ Initialization ∗/
(1) <:= ∅,
/∗ Basic loop ∗/
(2) while ({x1, . . . , xn} \D< 6= ∅)
(3) {
(4) if (there is noxi ready for<)
(5) {return(impossible)};
(6) else
(7) {
(8) selectxi such thatxi is ready for<;
(9) <:=<_ 〈xi〉;
(10) }
(11)};
(12) return (<);

Lemma 2.1 LetS be a set-multiassignment on{x1, . . . , xn} and≺ be an order-
ing of {x1, . . . , xn} which solves the problem(?) for the set-multiassignmentS.
Let us write the ordering≺ as

y1 ≺ y2 ≺ . . . ≺ yn.

Then for everyj, 0 < j ≤ n, yj is ready for the prefix<j defined as≺ |{y1,...,yj−1}.

The proof follows directly from the definition of solution. 2

Theorem 2.2 Assume thatS is a set-multiassignment and≺ is a solution for the
problem(?) for S. Next, assume that< is an initial segment of≺ and thaty /∈ D<,
and y is ready for<. Then there exists a solution of the problem(?) for S, ≺′,
such that<_ 〈y〉 is a prefix of≺′.

Proof: Let us define the relation≺′ as follows:

1. If x, x′ ∈ D< thenx ≺′ x′ iff x ≺ x′

8

2. If x ∈ D<, x′ /∈ D< thenx ≺′ x′

3. If x /∈ D<, x 6= y, theny ≺′ x

4. If x, x′ /∈ D<, x 6= y 6= x′ thenx ≺′ x′ iff x ≺ x′.

It is easy to check that≺′ is, in fact, a total ordering of{x1, . . . , xn}. Now consider
the ordering≺. If y is the immediate successor (in≺) of the last element ofD<,
we do nothing. Otherwise, we takey from its current position in≺ and “slide”
it back to the position immediately following the last element of<. Calling the
resulting ordering≺′, we see that the order withinD< and within({x1, . . . , xn} \
D<) \ {y} is maintained as we pass from≺ to≺′. The only change is thaty has
been moved to follow<. We observe that, by construction,<_ 〈y〉 is a prefix of
≺′.

All we need to show is that≺′ is a solution for the problem(?) for the set-multi-
assignment (i.e. an instance)S. To this end, letz belong to{x1, . . . , xn}. Several
cases need to be considered.

1. z ∈ D<. Let z = xi. Then, since≺ is a solution, for allk, 1 ≤ k ≤ m it
is the case that eitherSk,i is empty, or some element ofSk,i ≺-precedesz.
Say this element iss. Then, by the definition of≺′, case (1),s ≺′ z. Thus
the condition for a solution is satisfied in this case.

2. z = y. Let y = xi. Then becausey is ready forD<, for eachk, 1 ≤ k ≤ m,
Sk,i is empty, orSk,i ∩ D< 6= ∅. By clause (2) of the definition of≺′, all
elements ofD< ≺′-precedey. Thus the condition for the solution is satisfied
in this case too.

3. z /∈ D<, z 6= y. We now have two subcases:

(a) z ≺ y. In this case the set of elements≺′-precedingz is actually
bigger than the set of the predecessors ofz in ≺. Namely, in addition
to all the≺-predecessors ofz it now also containsy. Now, letz = xi.
Then, because≺ was a solution, whenever1 ≤ k ≤ m, eitherSk,i is
empty, or the set of≺-predecessors ofz has a nonempty intersection
with Sk,i. But then, since the set of≺′-predecessors ofz is bigger,
wheneverSk,i 6= ∅, then the intersection ofSk,i with the set of≺′-
predecessors ofz is nonempty. Thus the condition for the solution is
satisfied in this case.

9

y

z<

Figure 1: Movingy immediately after<, Case 3(a)

(b) y ≺ z. In this case the set of≺′-predecessors ofz and the set of≺-
predecessors coincide (the orderings≺′ and≺ do not coincide on that
set, but the set is the same!). Thus, since≺ is a solution, the condition
for the solution is satisfied in this case.

y

z<

Figure 2: Movingy immediately after<, Case 3(b)

This completes the argument. 2

Theorem 2.2 entails the correctness of Algorithm1. Specifically we have:

Theorem 2.3 Algorithm1 finds a solution if there is one.

Proof. Assume thatS is a set-multiassignment, and≺ is a solution for the problem
(?) for S. By induction onj ≤ n we show that afterj iterations of the basic loop
(2), the content of the variable< is a prefix of a solution.

This is certainly true at the initialization; the content of< is the empty sequence
which is a prefix of≺. Now, assume that afterj iterations< holds a prefix of a
solution. Assuming thatj 6= n, since there is a solution≺′ such that< is a prefix
of ≺′, the first element of≺′ that follows<, sayy is by Lemma 2.1 ready for
<. Therefore, the set of elements in{x1, . . . , xn} that are ready for< and do not
belong toD< is nonempty. Therefore line (4) will selectsomeelementy. But by
Theorem 2.2 there is a solution≺′′ such that<_ 〈y〉 is a prefix of≺′′. Thus the

10

inductive step is proved. But now, whenj = n, the prefix< must coincide with a
solution, which is returned by line (12). 2

Corollary 2.4 Algorithm 1 finds the solution to the problem(?) for a set-multi-
assignmentS if and only if a solution exists.

Proof: We proved that if a solution exists, one will be found by the algorithm1.
But it is easy to see from the definition of ready elements that if a sequence~x of
lengthn is returned by the algorithm1 then it is a solution. 2

Let us look at the complexity of algorithm1. The test at line (4) is run at mostn
times and within each run for at mostn sets each of sizen we testm-times either
the emptiness or nonemptiness of its intersection with a set consisting of at most
n elements. This can be done in timeO(n2), and hence algorithm1 runs in time
at mostO(n3 ·m).

A further inspection shows, however, that we can do better, if we maintain the
setsSj,k sorted and, additionally, we maintain a separate variable containing all
elements of the prefix in sorted order. Namely, by a version of the familiarmerge-
sort algorithm, we can test if two such sets have non-empty intersection in linear
time. This implies that the algorithm runs in at mostO(n2 ·m).

Theorem 2.2 used the fact that given a solution≺ and an elementy ∈ {x1, . . . ,
xn}, we could slide a given elementy closer to the front, toany positionas long
asy is ready for the prefix of≺ determining this position. This implies that given
a solution≺ we can define theindicator function– a function which assigns, to
a given elementy, the first place wherey can be moved. Then we can movey to
any position between this indicator and its current position in the solution≺ and
the resulting ordering will still be a solution. Formally, given an instanceS and a
solution≺ = 〈y1, . . . , yn〉 and an elementy = yk, the indicator of y in ≺ is the
leasti such that〈y1, . . . , yi−1, y, yi, . . . , yk−1, yk+1, . . . , yn〉 is also a solution. We
denote this value byindS,≺(y). It is easy to see that because≺ is a solution, the
functionλ(y)indS,≺(y) is well defined.

If S is a multiassignment andT arises fromS by elimination of some of its rows,
then any solution≺ to S is a solution toT . It turns out that given such a situation
there is a relationship between the corresponding indicator functions forS andT .

Specifically, we have the following property.

11

Proposition 2.5 If S, T are two set-multiassignments andT arises fromS by
elimination of some rows, and≺ is a solution of(?) for the instanceS, then≺ is
a solution of(?) for the instanceT and the indicator function forT is pointwise
smaller or equal than that forS. That is, for ally, indT ,≺(y) ≤ indS,≺(y).

Proposition 2.5 tells us that if the requirements for the instanceT are less stringent
than those forS then we can slide elements further back inT and maintain the
property of being a solution.

3 A sufficient condition for the casem = 1

Let S =

〈
x1 x2 . . . xn

S1 S2 . . . Sn

〉
be a set assignment on the setX = {x1, . . . , xn}.

We say that the set-assignmentS satisfies condition(??)

if

wheneverxj ∈ Si thenSj ⊂ Si.

Let us note that the requirement is the strict inclusion.

If n > 0 then the condition(??) implies that there must beSi such thatSi = ∅.
For if Si 6= ∅ then there isxj ∈ Si such thatSj ⊂ Si. Then eitherSj = ∅ or
there isxk ∈ Sj such thatSk ⊂ Sj. If Sk 6= ∅ we could continue. Since all sets
Si, i ≤ n are finite, we eventually have to reach the empty set.

Proposition 3.1 If S is an assignment of sets to elements ofX = {x1, . . . , xn}
satisfying(??) then there is a positive solution to the problem(?) for S.

Proof: AssumeS satisfies the condition(??). Define a graphGS = 〈X, E〉 on the
setX by defining the edges as follows:

(xi, xj) ∈ E if and only if Si ⊂ Sj.

We claim that the graph〈X, E〉 is acyclic. Indeed, ifH = 〈xi1 , . . . , xit〉 is a
simple cycle in〈X, E〉, then we have

Si1 ⊂ Si2 ⊂ . . . ⊂ Sit ⊂ Si1

12

which is an obvious contradiction.

Now, knowing thatG = 〈X, E〉 is an acyclic graph we can topologically sortGS .
We claim that every topological sort≺ of G = 〈X,E〉 has the property(??).

To this end, letxj be an element ofX. If Sj = ∅, there is nothing to prove.

Thus assumeSj 6= ∅. Selectxi ∈ Sj. Then, by condition(??), Si ⊂ Sj, and by
the definition(xi, xj) ∈ E. Since≺ is the topological sort of〈{x1, . . . , xn}, E〉,
xi ≺ xj as desired. 2

Proposition 3.2 The condition(??) can be tested in time polynomial in the size
of S. Once the condition is met, the ordering≺ can be found in the time linear in
the size ofS.

Proof: Assuming that the familyS is implemented as a double linked list, it is
easy to test thatS assigns an empty set to at least one element ofX. This testing
can be done in time linear in the size ofS. Then, for each pair〈i, j〉, the inclusion
of Sj ⊂ Si can be tested in time linear in the size ofX. There are at most|X|2
such tests to be performed.

Finally, once the condition(??) has been checked, the graphGS can be computed
in time linear in the size ofS, and since the topological sort can be performed in
time linear in the size ofGS , we are done. 2

4 Algorithm 2 and its pseudocode

In this section we study an alternative algorithm in which the information is stored
in two binary matricesD andU . The matrixD describes where the substitutions
“go down”. That isDj,i = 1 if substitutionj provably goes down on variablei
andDj,i = 0, otherwise. Likewise,Uj,i = 1 if substitutionj possibly goes up
on variablei, andUj,i = 0, otherwise. We also adopt the convention that the
variables are indexed starting with1. We setDj,0 = Uj,0 = 1 for all j. If we
represent thejth rows of the arraysD andU by Dj andUj then these bit vectors
may be represented as integers using the formulas

Dj =
∑

i

Dj,i · 2i

13

and
Uj =

∑
i

Uj,i · 2i

The following algorithm decides whether there exists a measure that provably de-
creases over allj. If so, a measure can be constructed by successively appending
the variables indexed by non-zero bits ofM (see the algorithm below) to a grow-
ing prefix. Failure to find a decreasing measure, does not rule out the possibility
of later finding such a measure after adding more non-zero values toD and more
zero values toU . Here is the alternative algorithm.

Algorithm 2.
Input: Binary matricesD andU
Output: true if an ordering of{x1, . . . , xn} exists that satisfies the requirements
of a decreasing ordinal measure, otherwisefalse.
/* Main Loop */
(1)D :=

∨
j Dj, U :=

∨
j Uj, M := D ∧ ¬U ;

(2) if M = 0
(3) then { if (D ∨ U) = 0
(4) then return (true)
(5) else return (false)};
(6) else
/* Inner loop */
(7) { for all j
(8) if (M ∧Dj) 6= 0
(9) then
(10) {Dj := 0;
(11) Uj := 0};
(12) }
(13)go to1.

4.1 Analysis of Algorithm 2

A variable ordering〈x1, x2, . . . , xn〉 gives rise to a decreasing measure provided
for eachj if U(j, i) = 1 then there existsxk precedingxi such thatD(j, k) = 1.
We make use of the following lemma.

14

Lemma 4.1 Suppose the variable ordering specified by listingy1, y2, . . . , yn gives
rise to a decreasing measure. Supposexi is a variable for which the correspond-
ing column in the matrixU is all 0’s and the corresponding column inD has at
least one1. Suppose thatxi = yk for somek > 1. Then the variable ordering
xi, y1, . . . , yk−1, yk+1, . . . , yn also gives rise to a decreasing measure.

This follows directly from the criteria defining a decreasing measure and is quite
similar to the previous argument. The case forxi is trivial, since noU(j, i) is 1.
The cases fory1, y2, . . . , yk−1 follow because we have increased the number of
variables preceding them. The cases foryk+1, . . . , yn remain unchanged, because
they have the same sets of variables preceding them.

It is clear that the above algorithm will give rise to a decreasing measure if it
terminates with no non-zero rows, since at each stage it zeroizes rows known to
decrease under the partial measure constructed. It remains to be shown that if the
above algorithm halts without eliminating all rows, then no decreasing measure
exists. Equivalently, if a solution exists then the above algorithm will eliminate all
rows. We use strong induction on the number of non-zero rows. Assume that for
fewer thanm non-zero rows the above algorithm finds a solution when one exists.
Suppose the systemD, U with m non-zero rows has a solution. Then the maskM
computed at step 1 is non-zero, otherwise every variable that goes down in some
substitution goes up in another and consequently no variable can be placed at the
beginning of a substitution. Construct a prefix to a variable ordering by placing
all variables corresponding to a 1 withinM at the beginning (in some arbitrary
order). From Lemma 4.1, we know that moving the variables identified byM
one at a time to the beginning gives rise to a solution if one exists. Since each row
containing a1 in the prefix is guaranteed to decrease under any measure beginning
with the prefix, we need no longer consider them. Zeroizing their rows simulta-
neously, eliminates the columns within the prefix. By the induction hypothesis,
since the reduced system has a solution, continuation of the algorithm will result
in all rows being zeroized.

The run time of this algorithm is proportional to the product of the number of
variables times the number of substitutions. If counting each bit vector opera-
tion as separate operations on each bit, the run time is linear in the number of
substitutions and quadratic in the number of variables.

15

5 Conclusions and further research

In this paper we have shown how to automatically derive ordinal measures to
prove function termination or justify an induction heuristic. It should be noticed
that our methods may in fact be applied in a more general setting. Rather than
associating eachνi with a variable,νi could in fact be an arbitrary ordinal valued
function ofx. In an extreme case, there need only be oneνi representing the com-
plete measureµ. In less extreme cases, variables could be grouped in very natural
ways (for example components of a multiple precision integer) into a singleνi.
By supplying such functions it is possible to derive ordinal measures up toε0.

It should also be noticed that several recursive functions used in classical work,
for instance those appearing in [Ge36, Go44], require the use of ordinals beyond
ωω.

Our algorithm is fast (works in polynomial time), but perhaps a less efficient but
more general algorithm would better suit the application. For example, it is possi-
ble to strengthen the hypotheses under which we prove that a variable decreases by
assuming that those variables in the current prefix neither increase nor decrease.
Such strengthening obviously entails a computational cost, either up front or as
part of the measure determining algorithm. We hope that stronger results (i.e.
more general, but still easily checkable conditions) will be found, and even more
importantly, introduced into automated theorem proving systems.

References

[RB79] R. S. Boyer and J. S. Moore.A Computational Logic, Academic
Press, 1979.

[RB98] R. S. Boyer and J. S. Moore.A Computational Logic Handbook, Aca-
demic Press, 1998.

[Ge36] Gentzen, G. Die Widerspruchsfreiheit der reinen Zahlentheorie
Mathematisches Annalen112:493–565, 1936.

[Go44] Goodstein, R.L. On the Restricted Ordinal Theorem,Journal of Sym-
bolic Logic9:33–41, 1944.

16

[KMM00a] M. Kaufmann, P. Manolis and J. S. Moore.Computer-Aided Reason-
ing, An Approach, Kluwer, 2000.

[KMM00b] M. Kaufmann, P. Manolis and J. S. Moore, (editors).Computer-
Aided Reasoning, ACL2 Case Studies, Kluwer, 2000.

[Leg02] W. J. Legato, A Weakest Precondition Model for Assembly Lan-
guage Programs, unpublished, February 2002. Available athttp:
//www.cs.uky.edu/~marek .

[Leg05] W. J. Legato, Experimental Theorem Prover, software available from
the author, 2005.

[Mc63] J. McCarthy, Towards a Mathematical Science of Computation,
in Information Processing 1962: Proceedings of IFIP Congress
1962 (C. M. Popplewell, ed.), (Amsterdam), pages 21-28, North
Holland, 1963, available athttp://www-formal.stanford.
edu/jmc .

17

Appendix

We include here Lisp implementations for Algorithms 1 and 2, together with some
testing code, available athttp://www.cs.uky.edu/~marek .

;;; We represent each of the sets S(j,i) as an integer bit vector
;;; k
;;; s(j,i) = sum 2
;;; x in S(j,i)
;;; k
;;; Let s = ((s(1,1) s(1,2) ... s(1.n))
;;; (s(2,1) s(2,2) ... s(2,n))
;;; ...
;;; (s(m,1) s(m,2) ... s(m,n)))

;;; Algorithm 1

(defun measure-ok (s)
(do ; loop until the prefix p is stable

((p 1) ; initially p is empty
(pp 0)) ; the old value of p

((equal p pp) ; when p is stable, return true iff all xi
(equal (1+ (length (car s))) (logcount p))) ; are assigned

(setq pp p)
(do ; intersect the "ready" sets over all j

((sj s (cdr sj))
(pmask -1)) ; prepare to intersect ready vars over all j

((null sj) (setq p (logior p pmask))) ; extend prefix
(do ; compute the "ready" set for the jth substitution

((i 2 (+ i i)) ; advance i over powers of 2
(ready 0)
(si (car sj) (cdr si))) ; si = (S(j,1) S(j,2), ... S(j,n))

((null si)
(setq pmask (logand pmask ready))) ; must be ready for j

(and (zerop (logand p i)) ; if xi is not assigned and S(j,i)
(or (zerop (logand p (car si))) ; holds an assigned var

(setq ready (logior i ready)))))))) ; xi is ready

18

;;; Generate the s(j,i), where the kth element of the list sub
;;; represents whether variable xk went up, down or remained the
;;; same under the jth substitution.

(defun predecessor (sub)
(let ((down

(do ; generate the set Gj of the paper
((i 2 (+ i i))

(pmask 0)
(sub sub (cdr sub)))

((null sub) pmask)
(and (equal (car sub) ’down)

(setq pmask (logior pmask i))))))
(do

((sub sub (cdr sub))
(s nil)) ; generate sj

((null sub) (reverse s))
(push (case (car sub)

(’equal (if (zerop down) 0 1)) ; unconstrained
(’down 1) ; unconstrained
(’up down); must follow a decreasing variable
(t t)) ; this should never happen

s))))

;;; Create the list of sj’s.

(defun s-gen (subs)
(mapcar #’predecessor subs))

;;; Generate the mask of positions within sub with value key.

(defun gen-mask (sub key)
(do ((sub sub (cdr sub))

(i 2 (+ i i))
(d 1))

((null sub) d)
(and (equal (car sub) key)

(setq d (+ d i)))))

19

;;; Algorithm 2

;;; D(j,i) = 1 if substitution j provably goes down on variable i
;;; U(j,i) = 1 if substitution j possibly goes up on variable i
;;; Variables are indexed starting with 1. D(j,0) = U(j,0) = 1
;;;
;;; D(j) = sum D(j,i)*2^i, ds = (D(1) D(2) ... D(m))
;;; i
;;;
;;; U(j) = sum U(j,i)*2^i, us = (U(1) U(2) ... U(m))
;;; i
;;;

;;; due is destructive on the lists ds and us.
;;; Use (due (copy-list ds) (copy-list us))
;;; to preserve original values.

(defun due (ds us)
(let (d u m)

(loop
(setq d (reduce #’logior ds)

u (reduce #’logior us)
m (logand d (lognot u)))

(or (not (zerop m))
(return (if (zerop (logior d u))

t
nil)))

(do ((ds ds (cdr ds))
(us us (cdr us)))

((null ds))
(or (zerop (logand m (car ds)))

(setf (car ds) 0
(car us) 0))))))

20

;;; Compare algorithms 1 and 2 on ntries randomly generated
;;; tests of nvars variables and nsubs substitutions.

(defun tess (nvars nsubs ntries)
(let ((flg t))

(dotimes (k ntries flg)
(let* ((test

(do ((j 0 (1+ j))
(subs nil (cons

(do ((i 0 (1+ i))
(sub nil (cons

(case (random 3)
(0 ’up)
(1 ’down)
(2 ’equal))

sub)))
((<= nvars i) sub))

subs)))
((<= nsubs j) subs)))

(masks (s-gen test))
(ds (mapcar #’(lambda (x) (gen-mask x ’down)) test))
(us (mapcar #’(lambda (x) (gen-mask x ’up)) test))
(t1 (measure-ok masks))
(t2 (due ds us)))

(format t "test=~A due=~A~%" test t2)
(format t "Algorithms agree? = ~A~%" (equal t1 t2))
(setq flg (and flg (equal t1 t2)))))))

21

