
Set Based Logi ProgrammingH.A. Blair1, V.W. Marek2, J.B. Remmel3, and A. Rivera11 EECS Department, Syrause University, Syrause, NY 132442 CS Department, University of Kentuky, Lexington, KY 405063 Mathematis Department, University of California at San Diego,La Jolla, CA 92903Abstrat. In a previous paper, the authors showed that the mehanismunderlying Logi Programming an be extended to handle the situationwhere the atoms are interpreted as subsets of a given spae. In a suhsituation, the atoms of the underlying language orresponding to a logiprogram P are interpreted as sets, the one step onsequene operatorapplied to a set S is interpreted as the union of all sets orrespondingto atoms whih are the heads of lauses whose body is satis�ed by S,and the models of the program are interpreted as subsets of the spae.It turns out that the operator approah to Logi Programming an betransferred to suh situations. The onepts of supported and stablemodels of programs also naturally transfer. In this paper, we show thatthis set based formalism for Logi Programming naturally supports avariety of options. For example, if the underlying spae has a topology,one an insist that the basi one-step onsequene operator always pro-dues a losed set or always produe an open set. We develop a generalframework for set based programming involving monotone idempotentoperators and demonstrate the utility of this approah by giving a spa-tial logi program representing two ooperating agents in a ontinuousenvironment.1 IntrodutionIn [BMR01℄, the authors developed an extension of the logi programming paradigmwhih an diretly reason about regions in spae and time as might be required,for example, for appliations in graphis, image ompression, or job sheduling.Thus instead having the intended underlying universe be the Herbrand base ofthe program, one replaes the underlying Herbrand universe by some �xed spaeX and has the atoms of the program speify subsets of X , i.e. elements of theset 2X , the set of all subsets of X .If we reet for a moment on the basi aspets of logi programming withan Herbrand model interpretation, a slight hange in our point of view showsthat interpreting atoms as subsets of the Herbrand base is a natural thing to do.In normal logi programming, we determine the truth value of an atom p in anHerbrand interpretation I by delaring I j= p if and only if p 2 I . However, thisis equivalent to de�ning the sense, �(P ), of a ground atom p to be the set fpgand delaring that I j= p if and only if �(p) � I . By this simple move, we have



permitted ourselves to interpret the sense of an atom as a subset, rather thanthe literal atom itself.This given, we showed in [BMR01℄ that it is a natural step to take the sense�(p) of ground atom p to be a �xed assigned subset of some nonempty set X andto de�ne a I � X to be a model of p, written I j= P , if and only if �(p) � I . Thistype of model theoreti semantis makes available, in a natural way, multipletruth values, intensional onstruts, and interpreted relationships among theelements and subsets of X . Observe that the assignment � of a sense to groundatoms is intrinsially intensional. Interpreted relationships among the elementsand subsets of X allow the programs that use this approah, whih was alledspatial logi programing in [BMR01℄, to serve as front-ends for existing systemsand still have a seamless model-theoreti semantis for the system as a whole.It turns out that if the underlying spae X has struture suh as a topologyor an algebrai struture suh as a group, ring, �eld or vetor spae, then anumber of natural options present themselves. For example, if we are dealingwith a topologial spae, one an ompose the one step onsequene operator Twith an operator that produes, e.g. topologial losures of sets or interiors ofsets. In suh a situation, one ensures that the T always produes losed sets, oralways produes open sets. Similarly, if the underling spae is a vetor spae, onemight insist that T always produes a subspae, or perhaps a onvex losure.Notie that eah of the operators: losure, interior, span and onvex-losureare monotone idempotent (i.e. op(op(I)) = op(I)) operators. We all suh anoperator a miop (pronouned \my op").One also has a variety of options for how to interpret negation. In normallogi programming, a modelM satis�es :p if p =2M . From the set-based point ofview when p is interpreted as a singleton fpg, this would be equivalent to sayingthat M satis�es :p if (i) fpg \M = ;, or (equivalently) (ii) fpg * M . Whenthe sense of p is a set with more than one element it is easy to see that sayingthat M satis�es :p if �(p) \M = ; (a strong negation) is di�erent from sayingthat M satis�es :p if �(p) *M (a weaker negation). There are thus two naturalinterpretations of the negation symbol. Again, when the underlying spae hasstruture, one an get even more subsidiary types of negation by taking M tosatisfy :p if l(�(p)) \M = l(;), or by taking M to satisfy :p if l(�(p)) *Mwhere l is some natural miop.The main goal to this paper is extend spatial logi programming paradigmlogi programming of [BMR01℄ to a full set based logi program paradigm withassoiated miops. The outline of this paper is as follows. In setions 2 and 3, weshall briey review the spatial logi programming paradigm as given in [BMR01℄.In setion 4, we shall formulate a general set based logi programming formalismwhen the underlying spae has natural miops. We shall give several exampleswhere the same program an give di�erent results depending on whih miopand/or negation operator we use. Finally, in setion 5, we shall give an appli-ation of our formalism to show how one an represent and reason about theoordination of agents in a ontinuous spae.



2 Spatial Logi Programs: syntax and semantisBefore giving the general de�nitions of our formalism for set based logi pro-gramming with miop operators, we shall �rst reall the de�nitions of spatiallogi programs as developed in [BMR01℄.The syntax of spatial logi programs is based on the syntax of the formulasof what we de�ne as spatially augmented �rst-order logi. Spatial augmentationis an intensional notion. The syntax of spatial programs will essentially be thesyntax of DATALOG programs with negation, but augmented by ertain in-tensional onnetives suh as union and intersetion that are designed to makeprogramming in a spatial logi programming setting easier.The use of intensional onnetives allows for operations on what we all thesenses of ground atoms desribed in the next setion to materially ontribute todetermining the models of programs. The expressive power of intensional on-netives allows us to apture funtions and relations intrinsi to the domain ofa spatial logi program, but independent of the program. It is this feature thatpermits spatial logi programs to seamlessly serve as front-ends to other sys-tems. Intensional onnetives orrespond to bak-end proedures and funtions.However, it turns out that intensional onnetives an be eliminated from pro-grams by using miops. The trade-o� is a matter of expressive onveniene andnaturalness.De�nition 1. A spatially augmented �rst-order language (spatial lan-guage, for short) L is a quadruple (L;X; �; I), where1) L is a language for �rst-order prediate logi without funtion symbols otherthan onstants,2) X is a nonempty (possibly in�nite) set, alled the interpretation spae,3) � is a mapping from the ground atoms of L to the power set of X , and4) I is a possibly in�nite alphabet of symbols alled intensional onnetives.The olletion is required to ontain logial intensional onnetives, orrespond-ing to the union, intersetion, and omplement operators on 2X as well as theonstant unary operator that returns X . Eah intensional onnetive is equippedwith a �xed interpretation as an operator of some �nite arity on 2X .Although L may have in�nitely many intensional onnetives, we will assumethat in any spatial logi program P ontains only �nitely many suh intensionalonnetives.The mapping �, the interpretation spae X , and the interpretations of theintensional onnetives might seem to properly belong in the semantis of spa-tially augmented languages. However, these languages are to be thought of ashaving a �xed partial interpretation, and hene the interpretation spae, senseassignment, and the interpretations of the intensional onnetives should be �xedby the language analogously to �xing the interpretation of the equality symbolin ordinary �rst-order languages as the identity relation.We now de�ne the intensional atoms of L in the usual indutive manner.



De�nition 2. 1) An atomi formula A of L, the underlying �rst-order languageomponent of L, is an intensional atom, whih we all a primitive atom. Theprediate symbol of A is the prinipal funtor of A and2) If '1; : : : ; 'n are intensional atoms and � is an n-ary intensional onnetive,then �('1; : : : ; 'n) is an intensional atom, whose prinipal funtor is �.The remaining intensional formulas of L are built up from intensional atoms inthe usual way. It should be noted that intersetion is not representable as familiarBoolean onnetives. This will beome lear after we present the semantis.We an then extend the notion of sense to arbitrary intensional ground atomsindutively by delaring that the sense of intensional ground atom �('1; : : : ; 'n)to be given by �(�('1; : : : ; 'n)) = f(�('1); : : : ; �('n))where the interpretation of � is a funtion f : (2X)n �! 2X .We now de�ne the lass of spatial logi programs of the spatial language L.De�nition 3. A spatial logi program has three omponents.1) The language L whih inludes the interpretation spae and the sense assign-ment.2) The IDB (Intentional Database): A �nite set of program lauses, eah ofthe form A  L1; : : : ; Ln, where eah Li is a literal, i.e. an intensional atom orthe negation of an intensional atom, and A is an intensional atom.3) The EDB (Extensional Database): A �nite set of intensional ground atoms.Given a spatial logi program P , the Herbrand base of P is the Herbrand baseof the smallest spatial language over whih P is a spatial logi program.For the rest of this setion, we shall assume that the lasses of spatial logiprograms that we onsider always are over a language for �rst-order logi L withno funtion symbols exepts onstants, a �xed set X and a set of intensionalonnetives.Informally, we think of the Herbrand universe �L of the underlying languageL, i.e. the set of onstant symbols of L, as being a set of indies whih we mayemploy to suit whatever purpose is at hand. We let HBL denote the Herbrandbase of L, i.e. the set of ground intensional atoms of L. We omit the subsriptL when the ontext is lear. Let X be a nonempty set, 2X the powerset ofX , and let � : HBL �! 2X . The subset of X , �(p), is alled the sense of theground atom p (with respet to X). An interpretation I of the spatial languageL = (L;X; �; I) is a subset of X . A ground intensional atom p is satis�ed by theinterpretation I , with respet to sense assignment � (denoted by I j=� p) if andonly if �(p) � I . After introduing miops we will modify the j= relation.We note that sense assignments � an be used to partition the ground atomsinto multiple sorts. For example, let X be the disjoint union of X1 and X2. LetHBL be the disjoint union of A1 and A2, and hoose � suh that �(p) � Xi forp 2 Ai, i = 1; 2:The preeding de�nition allows us to extend the satisfation relation to allintensional formulas with respet to 2-valued logi in the usual way. We ould



similarly de�ne truth-valuations from subsets of X together with ground atomsinto larger sets of truth values.We now extend the the satisfation relation to arbitrary formulas. Beauseof the diversity of notions of negation available, we will employ a mapping �Iorresponding to eah I � X from the set of sentenes, i.e. the set of all formulaswithout free ourrenes of variables, to three truth values t, f, and ?. We �rstde�ne �I on the ground intensional literals, i.e. ground intensional atoms andtheir negations. �I is more interesting when extended to all sentenes.We are assuming that the satisfation relation I j=� A on ground intensionalliterals A has been given, i.e., for eah ground intensional atom A,�I(A) =8<: t if I j= Af if I j= :A? otherwise.Note that a ground atom p piks out a set of subsets of X as its model lass,namely the set of all supersets in X of the sense of p. Thus the model lass of pis a member of the Boolean algebra determined by the power set of the powerset of X with respet to union, intersetion, and omplement in 22X . In orderto omplete the set up of the semantis for a spatially augmented language, weadopt a three-valued logi with truth values ft; f;?g. (Every sentene, i.e. the setof all formulas without free ourrenes of variables, will turn out to have have atruth-value other than ? if every ground intensional atom has this property.) Weadopt a standard set of strong interpretations of the 3-valued onnetives [Kl67℄,pp. 334, derived from the standard 2-valued onnetives of lassial propositionallogi where ? plays the role of unknown. It suÆes to give the interpretationof j i.e. NAND, or not both: t j t = f, f j x = x j f = t. The remaining pairsof inputs yield ?. The interpretations of all other propositional ombinations oftruth values an be obtained by expressing the ombination in terms of NANDas in the two-valued ase. It is readily seen that the NAND expression one seletsto represent a partiular propositional onnetive is immaterial.We indutively extend �I to all of the elements of Sent, the set of sentenes ina usual Tarskian manner. The existential quanti�er is evaluated by the funtion�I by: �I(9x'(x)) = 8<:t if �I('(e=x)) = t for some onstant ef if �I('(e=x)) = f for all onstants e? otherwise:The universal quanti�er is treated as an abbreviation of :9x:'(x)). Finally, wedelare I j= ' if and only if �I (') = t.A model, not neessarily stable, of a spatial program is a model of the setof all formulas in the EDB and IDB. Thus, in partiular, a model of a programmust ontain the sense of every ground instane of eah intensional atom in theEDB.We note that if \ is the intensional onnetive orresponding to the interse-tion operator on 2X and A \ B is a ground atom, then for I � X , there is noBoolean ombination of the assertions I j= A and I j= B that holds if, and onlyif, I j= A \B for all hoies of the senses of A and B. Contrast this observationwith: I j= A [ B if and only if I j= A and I j= B.



3 The onsequene operator and stable modelsThe following operator generalizes the one-step onsequene-operator of ordinarylogi programs with respet to 2-valued logi to spatial logi programs.Given a spatial program P with IDB P , let P 0 be the set of ground instanes ofa lauses in P and let TP (I) = I1 [ I2where I1 =[f�(A) j A L1; : : : ; Ln 2 P 0; I j= Li; i = 1; : : : ; ng andI2 =[f�(A) j A is a ground atom in the EDB of P :A supported model of P a model of P that is a �xpoint of TP .A spatial logi program is Horn if the IDB is Horn. Our de�nitions generalizethe familiar haraterization of the least model of ordinary Horn programs. How-ever, if the Herbrand universe of a spatial program is in�nite (ontains in�nitelymany onstants) then, unlike the situation with ordinary Horn programs, TPwill not in general be upward ontinuous.We iterate TP in the usual manner: TP "0 (I) = I ,TP "�+1 (I) = TP (TP " �(I)), andTP "� (I) = [�<�fTP " �(I)g; � limit 4.Example 1. To speify a spatial program we must speify the language, EDB andIDB. Let L = (L;X; �; I) where L has four unary prediate symbols: p, q, r ands, and ountably many onstants e0; e1; : : : ; . X is the set NSfNg where N isthe set of natural numbers, f0; 1; 2; : : :g. � is spei�ed by �(q(en)) = f0; : : : ; ng,�(p(en)) = f0; : : : ; n+ 1g, �(r(en)) =N, �(s(en)) = fNg.The EDB is empty and the IDB is: q(e0) ; p(X) q(X), and s(e0) r(e0).Now, after ! iterations upward from the empty interpretation, r(e0) beomessatis�ed. One more iteration is required to reah an interpretation that satis�ess(e0), where the least �xpoint is attained.It is lear that TP is monotoni if P is a Horn program and thus that thefollowing result follows from the Tarski �xpoint theorem.Theorem 1. The least model of spatial Horn program P exists, is supported,and is given by TP "� (;) for the least ordinal � at whih a �xpoint is obtained.What is di�erent about the asending iteration of TP from the ordinary situ-ation in logi programming is that in the spatial ase the senses of ground body4 Batarakh and Subrahmanian, [BS89℄, studied appliations of logi programming inlatties di�erent from the lattie of interpretations.



atoms an be satis�ed by the union of the senses of in�nitely many ground lauseheads without any �nite olletion of these lause heads uniting to satisfy thebody atom. But, if there are only �nitely many primitive atoms, i.e. the Her-brand universe of the program is �nite, then this soure of upward disontinuityvanishes. The proof of upward ontinuity is essentially the same in that ase asthe ase for ordinary Horn programs.Theorem 2. The least model of spatial Horn program P exists, is supported,and is given by TP "! (;), if the set of primitive ground atoms in the Herbrandbase of P is �nite.In spatial logi programs, we allow lauses whose ground instanes are of thefollowing form: A B1; : : : ; Bn;:C1; : : : ;:Cm: (1)We an the de�ne the stable model semantis for suh programs as follows. Forany given set J � X , we de�ne Gelfond-Lifshitz transform [GL88℄ of a programP , GL(P ), in two steps. First we onsider all ground instanes C of lauses in Pas in (1). If J j= Ci for some Ci in the body of C, then the we eliminate lauseC. If not, then we replae C by the Horn lauseA B1; : : : ; Bn: (2)The GL(P ) onsists of EDB(P ) plus the sets of all Horn lauses produed bythis two step proess. Thus GL(P ) is a Horn program so that TGL(P ) is de�ned.Then we say that J is stable model of P if and only if J equals the least modelof GL(P ).Theorem 3. For any spatial logi program P ,1. I � X is a model of P i� TP (I) � I and2. I is stable with respet to P implies that I is supported with respet to P.The next theorem shows the relationship between stable models of a a spatialprogram, and a natural topology indued by a spatial language on its interpre-tation spae.Theorem 4. If L is a spatially augmented �rst-order language with the inten-sional operator for intersetion of senses, then the set of senses of the groundintensional atoms form the basis of a topology in whih all supported models, afortiori all stable models, of all spatial programs over L are open subsets of theinterpretation spae.We will all the topology given by the previous theorem the Herbrand topol-ogy. This topology has a utility in �nding stable models. Ordinarily one expetsto reover a guess for a stable model as the least �xpoint of the Gelfond-Lifshitztransform determined by the guess. The previous theorem allows one to reovermerely the interior of the guess, or equivalently, on�ne ones guesses to imagesof open sets. In the next setion, where we inorporate miops into the one-steponsequene operator of a program, we an ahieve even greater seletivity ofstable models.



4 Set Based Logi Programming with MiopsIn this setion, we shall introdue miops on the underlying spae X of logi pro-gramming and show how we an extend the spatial logi programming paradigmof the previous setion to inorporate miops.Let X be the underlying spae of spatial logi program P . We say that anoperator op : 2X ! 2X is a miop if for all A;B � X ,1. A � B =) op(A) � op(B) and2. op(op(A)) = op(A).4.1 Operators and stable modelsSuppose that the underlying spae X is either Rn or Qn were R is the realsand Q is the rationals. Then X is a topologial vetors spae under the usualtopology so that we have a number of natural miop operators:1. opid(A) = A, i.e. the identity map is simplest miop operator,2. op(A) = A where A is the smallest losed set ontaining A,3. opint(A) = int(A) where int(A) is the interior of A,4. oponvex(A) = K(A) where K(A) is the onvex losure of A, i.e. the smallestset K � X suh that A � K and whenever x1; : : : ; xn 2 K and �1; : : : ; �nare elements of the underlying �eld R or Q suh that Pni=1 �i = 1, thenPni=1 �ixi is in K, and5. opsubsp(A) = (A)� where (A)� is the subspae of X generated by A.Now if we are given a miop operator op+ : 2X ! 2X and spatial logi programP over X , then we an further generalize the one-step onsequene-operator ofordinary logi programs with respet to 2-valued logi to spatial logi programsrelative to miop operator op+ as follows. Given a spatial program P with IDBP , let P 0 be the set of ground instanes of a lauses in P and letTP;op+(I) = op+(I1 [ I2)whereI1 = Sf�(A) j A L1; : : : ; Ln 2 P 0; I j= Li; i = 1; : : : ; ng:I2 = Sf�(A) j A is a ground atom in the EDB of Pg.A supported model relative to op+ of P a model of P that is a �xpoint of TP;op+ .We iterate TP;op+ aording to the following.TP;op+ " 0(I) = ITP;op+ " �+ 1(I) = TP;op+(TP;op+ " �(I))TP;op+ " �(I) = op+([�<�fTP;op+ " �(I)g); � limitA spatial logi program is Horn if the IDB is Horn. Again it is easy to seethat if P is a Horn program and op+ is a miop, then TP;op+ is monotoni. Thusjust like in the ase a spatial logi programs.



Theorem 5. Given a miop op+, the least model of spatial Horn program Pwhih is losed under op+ exists, is supported relative op+, and is given byTP;op+ "� (;) for the least ordinal � at whih a �xpoint is obtained.Next we onsider how we should deal with negation in the setting of miopoperators. Suppose that we have a miop operator op� on the underlying spaeX . In the de�nition of setion 1, we say that J j= :Ci if and only if it is notthe ase that J j= Ci. That is, J j= :Ci if and only if Ci * J . As we mentionedin the introdution, it seem equally plausible to say that J j= :Ci if and onlyif J \ Ci = ;. Thus we will de�ne two di�erent satisfation relations for literalbased relative to miop operator op�5. This leads us to the following de�nition.De�nition 4. Suppose that P is spatial logi program over X and op� is amiop operator on X .(I) Given any atom C and set J � X , then we say J j=Iop� :C if and only ifop�(C) \ J = op�(;).(II) Given any atom C and set J � X , then we say J j=IIop� :C if and only ifop�(C) * J .We an the de�ne the two types of stable model semantis for a spatial logiprogram P over X relative to two miop operators op+ and op� on X . Let P bea spatial logi program over X and op+ and op� on X be two miop operatorson X6.De�nition 5. (I) For any given set J � X , we de�ne Gelfond-Lifshitz trans-form of type I of a program P , GLIJ;op+;op�(P ), in two steps. First we onsider allground instanes of lasses C in P as in (1). If it is not the ase that J j=Iop� :Cifor some i, then the we eliminate lause C. Otherwise we replae C by the Hornlause A B1; : : : ; Bn: (3)The GLIJ;op+;op�(P ) onsists of EDB(P ) plus the sets of all Horn lauses pro-dued by this two step proess. Thus GLIJ;op+;op�(P ) is always a Horn programand hene TGLIJ;op+;op� (P );op+ is de�ned. Then we say that J is type I stablemodel of P relative to (op+; op�) if and only if J equals the least model relativeto op+ of GLIJ;op+;op�(P ).(II) For any given set J � X , we de�ne Gelfond-Lifshitz transform of typeII of a program P , GLIIJ;op+;op�(P ), in two steps. First we onsider all groundinstanes of lasses C in P as in (1). If it is not the ase that J j=IIop� :Ci forsome i, then the we eliminate lause C. Otherwise we replae C by the Hornlause A B1; : : : ; Bn: (4)5 Lifshitz [Li94℄ observed that di�erent modalities, thus di�erent operators, an beused to evaluate positive and negative part of bodies of lauses of normal programs.6 It will often be the ase that we take op+ = op�, but it is not required.



The GLIIJ;op+;op�(P ) onsists of EDB(P ) plus the set of all Horn lauses pro-dued by this two step proess. Thus GLIIJ;op+;op�(P ) is always a Horn programand hene TGLIIJ;op+;op� (P );op+ is de�ned. Then we say that J is type II stablemodel of P relative to (op+; op�) if and only if J equals the least model relativeto op+ of GLIIJ;op+;op�(P ).We then have the following result.Theorem 6. Suppose that P is spatial logi program over X and op+ and op�are miop operators on X. Assume I be losed relative to op+, i.e., op+(I) = I.Then1. I � X is a model of P i� TP;op+(I) � I.2. I is stable of type I or II with respet to P implies that I is supported withrespet to P relative to op+.In the following subsetions, 4.2-4.5, we shall give four examples to show howthe stable models of a give spatial logi program an vary depending on how wede�ne op+ and op�. We note that in the ase where op� = opid and the sense ofany atom A suh that :A appears in P is a singleton, then there is no di�erenebetween the type I and type II stable models. Our examples in the next threesubsetions will all have this property so that we will not distinguish betweentype I and type II stable models.4.2 Separating setsSuppose that V = Qn. Let 0 denote the zero vetor of V . Suppose A and B aresubsets of V . Our idea is onstrut a program whose stable models orrespond toseparating sets S suh that S is losed relative to op+,A � S and S\B = op�(;).As we shall see that by piking the miop operators op+ and op� appropriatelywe an have a single spatial logi program P whose stable models have a varietyof properties.Formally, we shall assume that the underlying �rst order language has on-stant symbols a for eah a 2 V and it has three unary prediate symbols S, Sand A. Thus the ground atoms of the underlying Herbrand Base are all of theform S(a), S(a) and A(a) for some a 2 V . We shall think of the interpretationspae X as the setX = fS(a) : a 2 V g [ fS(a) : a 2 V g [ fA(a) : a 2 V g:The sense of any ground atom S(a), S(a) and A(a) will be just fS(a)g, fS(a)gand fA(a)g respetively. That is: �(S(a)) = fS(a)g; �(S(a)) = fS(a)g and�(A(a)) =fA(a)g:Now suppose that we are given a triple of miop operators opS ; opS ; opA onV . Then we an de�ne a miop operator op+ on X as by de�ning op+ so that



op+(T ) = fS(a) : a 2 opS(fy 2 V : S(y) 2 Tg)g[fS(a) : a 2 opS(fy 2 V : S(y) 2 Tg)g[fA(a) : a 2 opA(fy 2 V : A(y) 2 Tg)g: (5)The intuition here is that suppose we want in a stable model S and S to speifysubspaes of V . Then we take opS = opS = opsubsp so that in any stable modelthe sets fa 2 V : S(a) 2 Mg and fa 2 V : S(a) 2 Mg are subspaes. Nowonsider the following program P .(1) S(a) for all a 2 A.(2) S(b) for all b 2 B.(3) A(0) S(x); S(x);:A(0)(4) S(x) :S(x)(5) S(x) :S(x)We note that when we ground P , the lauses of type (3), (4) and (5) willgenerate the following sets of ground lauses.(3)' A(0) S(v); S(v);:A(0) for all v 2 V(4)' S(v) :S(v) for all v 2 V(5)' S(v) :S(v) for all v 2 VBefore proeeding we should make an observation about the lauses of type(3)' under the assumption that opA = op� = opid. That is, if op� = opid,then op�(�(A(0))) = fA(0)g. Now if fA(0)g � M , then it is not the ase thatM j=Iop� :A(0) nor is it the ase that M j=IIop� :A(0). Note that every lauseof ground(P) whih has A(0) in the head has :A(0) in the body. We laim thatno matter how we de�ne opS , opS and op�, it will be that ase that any typeI or type II stable model M of P will have fa : A(a) 2 Mg = ;. That is, sinethe only lauses whih have an A(v) in the head ome from the lauses of type(3)', it automatially follows that it must be the ase that fa : A(a) 2 Mg iseither equal to opA(;) = ; or opA(fA(0)g) = fA(0)g. But it annot be thatA(0) 2 M sine otherwise all the lauses of type (3)' will be eliminated whenwe take GLIIop+;op�(P ) or GLIIop+;op�(P ) and hene there would be no way togenerate A(0) by iterating TGLIop+;op� ;op+ or TGLIIop+;op� ;op+(P ) starting at theempty set. Thus it must be the fa : A(a) 2 Mg = ;. But then the e�et ofthe lauses of type (3)' is to say that it is impossible that both S(v) and S(v)are elements of a stable model M of P of type I or type II. Thus the e�et ofthe lauses of type (3)' is to say that in any stable model M of type I or typeII, when opA = op� = opid, the sets fa : S(a) 2 Mg and fa : S(a) 2 Mg aredisjoint.Next it is easy to see that the lauses of type (4)' and (5)' ensure that thatfor any stable model of type I or type II of P , it is the ase that fa : S(a) 2Mg[ fa : S(a) 2Mg = V . Similarly the lauses of type (1) and type (2) ensure



that A � fa : S(a) 2 Mg and B � fa : S(a) 2 Mg. Thus it follows that nomatter how we de�ne opS and opS , the set fa : S(a) 2Mg and fa : S(a) 2Mg,where M is stable model of type I or type II of P , are a pair of separating setsfor A and B.Now onsider the various options for opS and opS . In eah ase stable modelsof P will haraterize some desired lass of sets. Moreover, in eah ase the stablemodels will be of the form M = fS(v) : v 2 Cg [ fS(v) : v 2 X � Cg where Cis the set whih is haraterized.Proposition 1. 1. When opS = opid and opS = opid, P has a stable model ifand only if A \ B = ; and stable models of P haraterize sets C � V suhthat A � C and B � V � C.2. When opS = op and opS = opint, P has a stable model if and only ifop(A) \ B = ; and stable models of P haraterize losed sets C � V andA � C and B � V � C.3. When opS = opint and opS = op, P has a stable model if and only ifA \ op(B) = ;. Stable models of P haraterize open sets C � V suh thatA � C and B � V � C.4. When opS = oponv and opS = oponv, P has a stable model if and only ifK(A) \ K(B) = ; and the stable models of P relative to op+ haraterizesets C � V suh that C and V � C are onvex, A � C and B � V � C7.5. When opS = opsubsp and opS = opid, P has a stable model if opsubsp(A) \B = ; and the stable models of P haraterize subspaes of C � V suh thatA � C and B � V � C.4.3 Complementary subspaesIn this setion we modify the previous onstrution to ompute omplementarysubspaes. That is, suppose that we add 2 more prediates T; T and de�ne�(T (v)) = fT (v)g and �(T (v) = fT (v)g for all v 2 X . Next onsider the programQ whih is P from the previous onstrution plus the following set of lauses:(6) T (b) for all b 2 B,(7) T (a) for all a 2 A,(8) A(0) T (x); T (x);:A(0),(9) T (x) :T (x) and(10) T (x) :T (x).Then as before with shall take opA = op� = opid, opS = opT = opsubspand opS = opT = opid. Then we are essentially in the ase of part 5 of theProposition 1 so that all stable model of Q relative to op+ are of the formM = fS(v) : v 2 Cg [ fS(v) : v 2 X � Cg[ fT (v) : v 2 Dg [ fT (v) : v 2 X �Dg:7 Reall the lassial Convex Separation Theorem of Stone: if A and B are disjointonvex subsets of V , then there is a set C suh that C and V �C are onvex subsetsof V suh that A � C and B � V � C.



where C and D are subspaes of V suh that A � C, B � V � C, A � X �D,and B � D. Finally we would like to add some lauses to ensure that C andD are omplementary subspaes, i.e. C \ D = f0g and opsubsp(C [ D) = V .We add three more prediates U , U and equality where opU = opsubsp andop= = opU = opid. Consider the following lauses (11)-(18):(11) A(0) U(x); U(x);:A(0),(12) U(x) :U(x),(13) U(x) :U(x),(14) A(f0g) U(x);:A(f0g),(15) U(x) S(x),(16) U(x) T (x),(17) = (v; v) for all v 2 V and(18) A(0) S(x); T (x);:(x = 0);:A(0).By our previous analysis, lauses (11), (12) and (13) ensure that in a stablemodel M the set E = fv 2 V : U(v) 2 Mg is a subspae and V � E = fv 2V : U(v) 2 Mg. Clause (14) then ensures that in a stable model V � E = fv 2V : U(v) 2 Mg = ; and hene it must be the ase that E = fv 2 V : U(v) 2Mg = V . However the only way that we an generate in E is via appliationsthe lauses of the form (15) and (16) so that in a stable model, we must haveopsubsp(C [ D) = E = V . Finally the lauses of the form (17) and (18) ensurethat C \D = f0g. Thus we have the following result.Proposition 2. The stable models of program Q determine sets C and D to beomplementary subspaes of V .4.4 Continuous real funtionsIn this setion, we shall use set based programming to write a program whosestable models represent ontinuous funtions F : [0; 1℄! [0; 1℄.Let R be the real line, equipped with its usual topology. Let R+ be the setof all positive real numbers. Let ! be the set of all natural numbers. Let Z+ bethe set of all positive integers.It is easy to see that there R has a ountable base fUa j a 2 ! g suh that1. U0 = R,2. for eah a > 0, Ua is an open interval (pa; qa) whose endpoints are dyadirational,3. the endpoint sequenes hpaia2! and hqaiq2! are omputable,4. there is a monotone funtion e : Z+ �! Z+ suh that, for eah positiveinteger m, for eah a > e(m), the diameter of Ua is less than 2�m and5. for all natural numbers a and b, if Ua � Ub, then a � b.For any positive integer n, the produt spae Rn also possesses suh a base(with the obvious di�erene that the sets Un for n > 0 are produts of open



intervals and that there are 2n omputable sequenes of endpoints.) Obviously,suh a onstrution an be relativized to the produt spaes [0; 1℄nGiven suh a base for the topology of Rn, we an represent a ontinuousfuntion F : Rn �! Rn by the funtion f : ! �! ! de�ned byf(a) = the greatest b suh that F (Ua) � Ub (6)We an reover F from f , sine, for eah x 2 Rn, F (x) is the unique member ofTa2!;x2Ua Uf(a)Conversely, given suh a base fUa j a 2 ! g and an arbitrary funtion f :! �! !, it is natural to ask when is it the ase that there is a ontinuousfuntion F : Rn ! Rn suh that F is de�ned from f via (6). One an show thatit is the ase that for any �xed x 2 Rn,\a2!;x2UaUf(a)is a singleton if and only if there is a funtion dx : Z+ �! R+ suh that, for eahnatural number m and eah positive integer k, x 2 Um and Um has diameter lessthan dx implies Uf(m) has diameter less than 2�k. Thus, (6) de�nes a funtionfrom Rn to Rn if and only if suh a dx exists for every x 2 Rn. In the ase ofompat spae like [0; 1℄, it is the ase the (6) de�nes a funtion from [0; 1℄ to[0; 1℄ if and only if suh a d, alled the modulus of ontinuity of the F funtion,suh that for all k, Um has diameter less than d(k) implies Uf(m) has diameterless than 2�k.We shall onsider a simpli�ed version of this type of phenomenon. For exam-ple, let An = fAn;k : k = 0; : : : ; 2n � 1g [ fBn;k : k = 1; : : : ; 2n�1 � 2g: (7)where An;k =8><>:[0; 12n ) if k = 0;( 2n�12n ; 1℄ if k = 2n � 1 and( k2n ; k+12n ) if k = 1; : : : ; 2n�1 � 2and Bn;k = (2k + 12n+1 ; 2k + 32n+1 ) for k = 0; : : : ; 2n�1 � 1:The signi�ane of the family An is that every x 2 [0; 1℄ lies in an open intervalI of diameter 1=2n for some I 2 An. Now suppose that our representing funtionf of a ontinuous funtion F : [0; 1℄! [0; 1℄ has the property that if Ua 2 A2n,then f(a) = b where b 2 An. Thus the modulus of ontinuity funtion in this aseis given by d(k) = 122k+2 . That is, whenever Um has diameter < d(k), Um � Utwhere Ut 2 A2k and hene Uf(m) � Uf(t) 2 Ak and hene diam(Uf(m)) �diam(Uf(t)) = 2�k. In fat, it easy to see that an speify F by merely de�ningf on the a suh that Ua 2 Sn�1A2n.



This given, we onsider the following program. The onstants of the under-lying program will be An;k suh that k = 0; : : : ; 2n� 1 and n � 1 and Bn;k suhthat k = 0; : : : 2n�1 � 2 for n � 1. Our program will ontain one binary relationsymbol f(x; y) and one 0-ary prediate symbol C. The sense of a ground atomf(Em;k; Fn;l) where E;F 2 fA;Bg will simply be the open set Em;k � Fn;l on-tained in [0; 1℄� [0; 1℄. The sense of C is just fCg so that the underlying spaeX onsists of all fCg [ fUa � Ub : a; b 2 !g. We will take the miop operatoropf = opC = op� = opid. Then onsider the following propositional set-basedprogram P .(1) C  f(X;Y );:C for all X 2 A2n and Y =2 An,(2) C  f(X;Y ); f(X;Z);:C for all X 2 A2n and Y; Z 2 An with n � 1 andX 6= Y ,(3) C  f(X;U); f(Y; V );:C for all X;Y 2 Sn�1A2n and U; V 2 Sn�1Ansuh that X � Y but U * V .(4) f(X;Y ) :f(X;U1); : : : ;:f(X;U2n+2n�1�1) for eah n � 1, X 2 A2n andY 2 An where An � fY g = fU1; : : : ; U2n+2n�1�1g and(5) C  :f(X;U0); : : : ;:f(X;U2n+2n�1�1);:C for eah n � 1, X 2 A2n andY 2 An where An = fU0; : : : ; U2n+2n�1�1g.It is then easy to see by the same type analysis that we used in example 1,that C an never be an element of a stable model M for P . It follows that e�etof the lauses in (1), (2), (3) is to ensure that we an think of f as speifyinga funtion de�ned on some subset of Sn�1A2n suh that for eah n � 1, (i)X 2 A2n implies f(X) 2 An and (ii) if X � Y , then f(X) � f(Y ). Finally thelauses of (4) and (5) say that f must be de�ned on all of Sn�1A2n. Thus wehave the followingProposition 3. The stable models of P orrespond to f : Sn�1An ! Sn�1Ansuh that for all n, a 2 A2n implies f(a) 2 An and hene all suh f de�ne aontinuous funtions F : [0; 1℄ �! [0; 1℄ via (6).We should note that we did not really need to used set-based programming inthis ase as we ould do the same thing in normal logi programming. The reasonfor presenting this onstrution is that by setting it in this framework, we anreason diretly about the approximating interval Ua � Uf(a) to the funtion Fin this ase. Moreover, the framework of representing funtions allows to reasonabout ontinuous transformations between di�erent agents. Of ourse, in atualpratie, we an only reason about approximations of ontinuous funtions sineontinuous funtions and/or their representing funtions are in�nite objets. Inour setting, we an reason about approximations of representing funtions by�xing some n0 and restriting our program lauses so that all indies involvedmust be greater than or equal to n0.



4.5 Distinguishing type I and type II stable modelsWe end this setion with an example where there is a di�erene between typeI and type II stable models. Suppose that the underlying spae X = R2 is thereal plane. Our program will have two atoms fa; bg; f; dg where a; b;  and d arereals. We let [a; b℄ and [; d℄ denote the line segments onneting a to b and  tod respetively. We let sense of the these atoms be the orresponding subsets, i.e.we let �(fa; bg) = fa; bg and �(f; dg) = f; dg. We let op+ = op� = oponvex.The onsider the following program P .(1) fa; bg  :f; dg(2) f; dg  :fa; bgThere are four possible andidate for stable models in this ase, namely (i) ;,(ii) [a; b℄, (iii) [; d℄, and (iv) oponvexfa; b; ; dg.If we are onsidering type I stable models where J j=Iop� :C if and only ifop�(C) \ J = op�(;) = ;, then the only ase where there are stable models if[a; b℄ and [; d℄ are disjoint in whih (ii) ase and (iii) are stable models.If we are onsidering type II stable models where J j=IIop� :C if and only ifop�(C) ( J , then there are no stable models if [a; b℄ = [; d℄, (ii) is stable modelif [a; b℄ ( [; d℄, (iii) is stable model if [; d℄ ( [a; b℄ and (ii) and (iii) are stablemodels if neither [a; b℄ � [; d℄ nor [; d℄ � [a; b℄.5 An appliation: ooperating multi-agentsIn this setion we will illustrate the power of spatial programs and miops torepresent multi-agent systems by building upon an example given by Russelland Norvig [RN03℄ involving doubles tennis. Our point of departure is their 2-player doubles tennis team and how the team attempts to handle the return ofan inoming ball. We �rst desribe their representation of this situation.Russell and Norvig set up two agents (the players on the team) that an eahbe in one of four disrete position values: [Left, Baseline℄, [Right, Baseline℄, [Left,Net℄, [Right, Net℄. Initially the ball is approahing the [Right, Baseline℄ positionand it is assumed that the ball an only be returned from the position it isapproahing. The goal is to return the ball and have both players positioned atthe net.8 Eah player has three distint ations available that an be invokedunder ertain preonditions. The e�et of an ation is to hange the environment.In this tennis example, an environment is an assoiation of values to the ball'sapproahing position attribute, the ball's returned attribute, and eah agent'sposition attribute. The ations available to an agent are NoOp whih has noe�et, Go whih reassigns the agent's position attribute value, and Hit whihsets the ball's returned attribute to true. Sine we are about to hange thepreonditions for moving a player anyway, we omit the desription of the ratherommon sense preonditions for eah of the ations.8 Eah player an go to any position that she herself does not urrently oupy, henethe position goal for the players is atually superuous.



We will now modify Russell and Norvig's example to allow for the ontinuousmotion of the players in ontinuous time and allow them a ontinuum of positionson their side of the ourt, as well as seek to prevent ollisions when hittingthe ball. We will represent the modi�ed situation with a spatial logi programand seleted miops. The representation will be aomplished by �rst onsideringa representation of the tennis example in a simpli�ed variation of a fragmentof William Rounds's and Hosung Song's �-alulus [RS03℄, and then we willdisuss how to represent the �-alulus desription as a spatial program withmiops. We emphasize that we are not attempting to give a general proedurefor representing �-alulus models as spatial logi programs with miops. Rather,we are informally indiating that there is a relationship between �-alulus (andsimilar aluli suh as CCS and �-alulus) and spatial programs with miops.We give our �-alulus variation grammatially and then desribe an opera-tional semantis.We have Conurrent Expressions (CE), Copy Expressions (YE), Commit-ted Choie Expressions (CCE), Ation Sequene Expressions (ASE), Ation Ex-pressions (AE), Environmental Ations (EA), and messages (M). The gram-mar relating these types of phrases is given by the following prodution rules:CE �! CCE, CE �! Y E, CE �! CCEjjCE, Y E �! !CCE, CCE �!ASE, CCE �! ASE + CCE, ASE �! AE, ASE �! AE :CCE (not quitehierarhial with this rule), AE �! EA, AE �!M , and eah message is of theform id or id 9 where id is an identi�er. An empty CE is denoted by 0, a proesswhih is unable to arry on any more ations. An EA is either empty, or has theform ['! E ℄, where ' is a sentene from a �xed given spatially augmented �rstorder language and E is an environment (to be disussed momentarily). ASEexpressions are read, and proessed, from left to right. The proessing of CEexpressions is made by onsidering all the subexpressions simultaneously; andthe proessing of CCE expressions onsists on seleting only one of its subex-pressions for exeution. The stopping ondition of a CE is the disjuntion of thestopping onditions of its omponents. Analogously, the stopping ondition of aCCE is the disjuntion of the stopping onditions of the AE's in the CE. Thestopping ondition of an EA, [' ! E ℄, is ', and is alled the preondition ofthe EA. The stopping ondition of a message is true. The stopping ondition of0 is true. Finally, the stopping ondition a Y E is the stopping ondition of itstop-level CCE.An environment is a quadruple (V; I; L; P ) where V is a a k-tuple (for somek) of variables, I is a set of k-tuples of values in the interpretation spae of thegiven spatially augmented language L for the variables in V , L is a ow law andP is an invariant ondition, whih must remain true while the state I evolvesin aordane with the ow laws. Formally, I is a relation (whih evolves as theenvironment evolves) on an interpretation spae, the ow law L is a funtionthat maps pairs onsisting of, for some k, a k-ary relation on an interpretationspae and a time (i.e. a real number) to k-ary relations on the interpretation9 In the literature, id is regarded as the ation of listening for the message id, and idas the ation of sending that message



spae, and P is a formula of the given spatially augmented language L whosefree variables are in V .Consider the Eulidean plane with a standard oordinate system and thesystem of ordinary di�erential equations _x = f(x; y), _y = g(x; y). Take for I asmall region suh as the dis of radius 1 around the origin. The ow law is thesystem of ordinary di�erential equations. A suitable ow law an be thoughtof as ausing the points in I to move to new positions as a funtion of time,thus moving and distorting I as a funtion of time. (It is possible to give e.g.di�erential equations that move at least some of the points of I to in�nity aftera short time, thus rendering the image of I at all later times unde�ned. Wewill assume that the admissible ow laws de�ne an image of any subset of theplane at all times.) Think of the image of I evolving over time while the imagesatis�es or remains in the region spei�ed by P . For example, the unit dis maymove and distort for a while until the image no longer ontains the origin. Whenthat happens and is deteted, we ould stop the evolution of the image of I . Ingeneral, we an stop the evolution of the image of I at the greatest lower boundof all times t, at or after the starting time, at whih P is satis�ed by the imageof I . Call this time the stop time.Now, the essential onnetion with spatial logi programs and miops is thatthe image of I at the stop time, as a funtion of I , for a given admissible ow lawand a given invariant ondition, is a miop provided we ensure that any invariantonditions we use always eventually must be falsi�ed suh as by arranging fordefault stop times to be spei�ed. If I inreases in size, so do the images of I overtime (monotoniity) and if a stop time has been reahed, a restart with the sameinvariant ondition goes nowhere (idempoteny). Any omputations of miops,suh as those involving numerial solutions of ordinary di�erential equationsand detetions of invariant ondition satisfation are bak-end omputations.Using invariant onditions that allow the bak-end omputation to not returnallows a form of deadlok. It is, therefore, reasonable to avoid suh invariantonditions.A sentene of the given spatially augmented language. A miop � an bederived from L and an invariant ondition ' as follows: �L;'(I) = L(I; t1) wheret1 = infft j L(I; t) j= :'g.An operational semantis for our variant fragment of �-alulus is based on asimple notion of onurrent threads, eah of whih is a sequene of ations to bearried out on an environment. Eah element of a onurrent expression (CE) iseither a opy expression (Y E) or a ommitted hoie expression (CCE). We deferdesribing the proessing of opy expressions until the tennis example. Copyexpressions have the least priority in proessing. Think of a CE as a olletion ofonurrent queues, eah of whih is ontained in a CCE. A CCE is an exlusive-or of these queues. A CCE is eligible to be seleted for proessing if its stoppingondition is satis�ed by the urrent environment. An eligible CCE is seletednondeterministially, but subjet to the onstraint that CCE0s ontaining anation sequene that an partiipate in a handshake (see below) have priority.An ation sequene expression whose stopping ondition is urrently satis�ed



is seleted from the CCE to replae the CCE, i.e. the CCE is redued, againsubjet to the onstraint that handshakes get priority. The operation is vauousif the seleted CCE is already an ASE, and we must build into interpreters theavoidane of repeated vauous seletions of redued CCE0s. An ASE is thoughtof as a queue. When an ASE is seleted for proessing, the ation at the front ofit (whih may involve a handshake with the ation at the front of another ASE)is proessed in the manner of the �-alulus. Ations other than handshakesinvolve syntati hanges to the environment and resetting of variables. If thereare no eligible CCE0s, the environment is allowed to evolve in aord with itsurrent ow law and invariant. If the environment's invariant ondition is notsatis�ed and there are no eligible CCE's, deadlok results.An operational semantis treats the phrase types in aordane with thefollowing: Let (E ; E) be a pair, where E is an environment and E is a CE.The stopping ondition ' of the pair is the disjuntion of the negation of theinvariant ondition of E and the stopping ondition of E. A transition from (E ; E)to (E 0; E0) nondeterministially ours, from the highest to the lowest priority,if:{ the expression E is a onurrent expression of the form E1jj : : : jjEn, and atleast two subexpressions Ei and Ej are ready to synhronize by means ofomplementary messages. This ation requires the struture of the subex-pressions to be Ei = a:Êi and Ej = a:Êj . E0 then results from E in themanner of �-alulus transitions, and E 0 = E . This is known as a handshake.{ the stopping ondition of (E ; E) is satis�ed by the set in E , none of theomponents of E are ready for a handshake , E 0 is the environment of anenvironmental ation whose preondition is satis�ed by the set in (E ; E) andE0 is a replaement of E in the manner of the �-alulus.{ the stopping ondition of (E ; E) is not satis�ed by the set in E , E0 = E, andthe set in E 0 is the result of applying the miop derived from the ow law in(E ; E) and the stopping ondition of (E ; E) to the set in (E ; E).Whenever the expression E an be proessed in the manner of the �-alulus,no environmental evolution an take plae and E is proessed. Otherwise Esatis�es no ative stopping onditions and is permitted to evolve aording to itsonstituent ow law. The distintion between ommitted hoie and mere hoieis that any of the message omponents or ation omponents of a CE with asatis�ed preondition an be seleted to be proessed (with mathing messageshaving priority) and then eliminated. With a CCE one of the ation omponentswith a satis�ed preondition an be seleted for proessing after whih the entireCCE is eliminated. Copy expressions are treated by regarding a CE as a list ofomponents and list-proessing the CE by performing an in-plae replaementof a omponent !CCE by CCEk!CCE.The �rst two types of transitions between environment/expression pairs item-ized above are representable as lauses. We an onstrut a set-based logi pro-gram to be an interpreter for our �-alulus fragment variant in aordane withthe following. We want stable models to be plans whih we represent as lists



of pairs, eah pair of the form (E ; E), and onseutive pairs (E ; E); (E 0; E0) o-urring in a plan only if (E ; E) 7! (E 0; E0) is a legitimate transition. Note thatwhenever E 6= E 0, it must be that the set omponent of E 0 results by applyinga miop representing a ow or an environmental ation to the set omponent ofE . The spei� miop to be applied is determined by the top few levels of subex-pressions in E together with the set omponent (whih may be a singleton) inE . We may regard the miop as a funtion of both E and E; in that ase thereis only a single miop � to represent environmental evolution that we need to beonerned with. We an identify the set omponents of E and, similarly, E 0, witha tuple of onstants in a manner similar to a our treatment of vetor spaes insetion 4.2, whenever it is a singleton, as it is in the appliations under disus-sion here. The sense of an atom trans(E ; E; E 0; E0) is just the singleton of thepair ((E ; E); (E 0; E0)). We then delare a miop op to at on sets of these pairs byop(R) = f(s; t) 2 R j t 2 �(fsg)g, where R � S � T .The set-up of a spatial logi program-based interpreter involves the need for,given a nonempty relation q in a program P , arranging a relation p suh thatin eah stable model p is true of exatly one tuple and q is true of that tuple.The arrangement should not hange the extension of q in any stable model.Spei�ally, we an add lauses to P as follows:That in any stable model p will have at most one true instane is expressedby: A(X;Y ) p(X); p(Y );:A(X;Y )A(X;X)That in any stable model p and p are disjoint is expressed by:A p(X); p(X);:Ap and p are omplementary:p(X) :p(X)p(X) :p(X)That in any stable model that if p is true of X , then q is true of X is expressedin onjuntion with the above lauses, while avoiding adding any new lauseswith q ourring in their head, by:p(X) :q(X)In onjuntion with the above lauses, 9Xp(X):A :B;:AB  :p(X)The eight lauses given above an regarded as a maro, whih we write as:exatlyOne[q℄(X)



It is lear that we may generalize the single variable X to a tuple of variables.Moreover, by singling out a subtuple of variables among a tuple of variables, wemay obtain (Skolem) funtions. The following is the obvious abbreviation, whereY1; : : : ; Ym funtionally depends on X1; : : : ; Xn:exatlyOne[q℄(X1; : : : ; Xn;Y1; : : : ; Ym)Thus, given a1; : : : ; an, we obtain exatly one instane ofexatlyOne[q℄(a1; : : : ; an;Y1; : : : ; Ym)true in any stable model.In order to obtain one suessful plan per stable model, we use the exatly-One maro. Suppose we have set up, using standard tehniques, a 1-ary prediateplanPart whih in any stable model is true of all and only the lists of pairs(Env;Exp) suh that for two suessive pairs (Env;Exp), (Env0; Exp0) in anylist of whih planPart is true, trans(Env;Exp;Env0; Exp0) is true. Further-more, suppose we have easily available list-proessing prediates, first(A;L)true of all and only lists L whose �rst member is A in all stable models, andlast(Z;L) true of all and only lists L whose last member is Z in all stable mod-els. (That lists are �nite is easy to arrange in what we take for the interpretationspae.) Then we may de�ne the 3-ary prediate plan byplan((Env;Exp); (Env0; Exp0); P lan) first((Env;Exp); P lan), last((Env0; Exp0); P lan), planPart(P lan)The maroexatlyOne[plan℄((Env;Exp); (Env0; Exp0);P lan)piks out exatly one P lan starting from (Env;Exp) and ending with (Env0; Exp0)in any stable model of the interpreter for whih plan((Env;Exp); (Env0; Exp0); P lan)is true.We onlude this setion with a disussion traing the proessing of theexpression representing the double tennis team's attempt to return an inomingball.The representation of the tennis situation in our variant of the �-alulus is:[P1 an reah ball ! set P1 to interept ball ℄.goP1.([P1 an hit! stop P1, return ball℄.hitBallP1 + [P1 missed ! all stop℄. missedP1)jjgoP2.[P2 loser than P1 ! no reset℄.([true ! stop P1℄ + [true ! move P1 to default position℄)℄jj[P2 an reah ball ! set P2 to interept ball ℄. goP2.([P2 an hit ! stop P2, return ball ℄. hitBallP2 + [P2 missed ! all stop ℄.missedP2)jjgoP1.[P1 loser than P2 ! no reset ℄.([true ! stop P2℄ + [true ! move P2 to default position℄)



In order to simplify the representation, we will use labels to refer to theenvironmental ations in this proess; ations with labels ei belong to expressionsrelated to player 1, and labels of the form e0j refer to EAs of player 2.Let:e1= [P1 an reah ball ! set P1 to interept ball ℄e2=[P1 an hit! stop P1, return ball℄e3=[P1 missed ! all stop℄e4=[P2 loser than P1 ! no reset℄e5=[true ! stop P1℄e6=[true ! move P1 to default position℄)℄e01=[P2 an reah ball ! set P2 to interept ball℄e02=[P2 an hit ! stop P2, return ball℄e03=[P2 missed ! all stop ℄e04=[P1 loser than P2 ! no reset℄e05=[true ! stop P2℄e06=[true ! move P2 to default position℄The representation of the tennis game is now:e1:goP1:(e2:hitBallP1 + e3:missedP1) jjgoP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jjgoP1:e04:(e05 + e06)When the ball approahes the players, the �rst and third omponents of therepresentation an potentially have their preonditions satis�ed. It is presumedthat at most one of the players an reah the ball. If neither reah-preonditionis satis�ed as the environment evolves the ball's position, then no expressionproessing will result, and the environment will eventually stop evolving whenits default stopping ondition is reahed , for instane, when the ball goes outof the ourt.Alternatively, suppose the reah preondition for P1 is satis�ed �rst. Thenthe environment evolution is halted, variable values are reset, and the ow lawis altered to ause player 1 to interept the ball when ativated. The expressione1 = [P1 an reah ball! set P1 to interept ball℄ is popped and disarded. Theexpression now has the form:goP1:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jj goP1:e04:(e05 + e06)At this point in the expression proessing, the messages goP1 and goP1 mathand are eliminated by means of a handshake ation. As mentioned above, thiskind of ation takes preedene over any other possible proessing urrentlyavailable in the expression. The result of the handshake is the expression:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)



No other handshake is possible at the moment, so the environment resumesevolving until (possibly after 0 elapsed time) one of the preonditions [P1 anhit℄ (from e2), [P2 an reah ball℄ (from e01), or [P1 loser than P2℄ (from e04) issatis�ed.Suppose for example that [P2 an reah ball ℄, the preondition of e01, issatis�ed �rst. The environment is updated by using the information providedin e01 setting player 2 to go also after the ball. e01 is then eliminated from theexpression, whih now presents this form:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jjgoP2:(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)Notie how the proessing of e01 has enabled a handshake, with messagesgoP2 and goP2, whih has to be proessed before the environment an resumeevolution. The expression is now:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)Both players will be attempting to reah the ball. Assuming that the ballis not lose enough so neither player an determine whether they an reah it{preonditions for e2 and e02{ (muh less, hit the ball), nor the players are ableto deide whih one is loser to the ball {preonditions for e4, and e04 { theenvironment is allowed to evolve thus desribing the trajetory of the ball andthat of the players moving towards it.Suppose that next [P1 loser than P2℄, the preondition of e04, is satis�ed.Then, environmental evolution stops and the proessing of e04 opens up a hoieregarding the future ations for P2 by exposing the CCE expression e05 + e06. e04does not arry any resetting information for updating the urrent environment.This ation is designed to detet the ourrene on an event for whih its responseis delegated to a subexpression. After removing e04 the expression has the form:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2) jj e05 + e06The proessing of e04 paused the evolution of the environment. However, thiswill not start evolution again until a hoie is made between e05 or a06. Thissituation is due to the fat that the preonditions of both e05 and a06 are true.After a hoie is made, P2 will remain in its urrent position if e05 is proessed; orit will be disretely reloated a to a default position after proessing e06. In eitherase, sine no more ations follow e05 and e06, this subexpression is regarded as anull proess 0 and it an safely be removed from this expression. After hoosingeither EA and properly updated the urrent environment, the expression is then:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)Evolution of the environment then resumes as P1 attempts to interept andhit the ball. It is important to realize that even though the expression above



gives hope for P2 to hit the ball (by means of the expression e02:hitBallP2 +e03:missedP2), the urrent environment makes this possibility very unlikely: theurrent ow law of P2 prevents it from moving after hoosing either e05 or e06 inthe previous step. It an be also veri�ed that the preonditon for e4 (P2 loserthan P1) is not satis�ed as P1 is the only player going towards the ball and itwas already deided that P2 was not getting any loser to the ball.P1's attempt to interept the ball may result in a suessful return if e2 isproess. The environment then will be updated to stop P1 and to hange thediretion of the ball, result of an e�etive return by P1. In this ase the expressionwill have the form: hitBallP1 jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)On the other hand, P1 may not be able to reah the ball, in whih asethe preondition of e3 is designed to detet suh event and the result of theproessing of this EA will reet P1's failure. The expression is then:missedP1 jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)In either ase, the resulting expressions reet a state in whih no moreprogress an be made: a handshake involving hitBallP1 (or missedP1, in theseond ase) is not possible; and, no preondition of any of the EA availablesis satis�ed. In other words, the expression is funtionally equivalent to the 0proess. It is lear that the representation of a omplete tennis game will requirethe ability of allowing the players to reat to more than one serv, game and set.For instane, we an embed eah of the omponents of the original onurrentexpression CE inside opy expressions CY. This would allow the reations ofopies of those omponents as needed. The original expression would have hadthe following struture:!(e1:goP1:(e2:hitBallP1 + e3:missedP1)) jj!(goP2:e4:(e5 + e6)) jj!(e01:goP2:(e02:hitBallP2 + e03:missedP2)) jj!(goP1:e04:(e05 + e06))The �rst step of the proessing of this expression onsists in obtaining aopy of eah omponents based on the �-alulus ongruene rule (whih it isimported from �-alulus) !P � P jjP . The resulting expression is then:e1:goP1:(e2:hitBallP1 + e3:missedP1) jjgoP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jjgoP1:e04:(e05 + e06) jj!(e1:goP1:(e2:hitBallP1 + e3:missedP1)) jj!(goP2:e4:(e5 + e6)) jj!(e01:goP2:(e02:hitBallP2 + e03:missedP2)) jj!(goP1:e04:(e05 + e06))



The representation is now in a form that allows us to proeed as desribedbefore.6 Conlusions and Further WorkIn this paper, we de�ned a variant of logi programming, alled spatial logiprogramming, where the atoms have an assoiated sense (whih is a subset ofa given spae) and have illustrated how suh program an be used to naturallyexpress problems in the various ontinuous domains. We envision many otherappliations of our spatial logi programming formalism suh areas as graphis,image ompression, and other domains where there are natural representation ofproesses that aept subsets of spaes as inputs and ompute outputs, subsetsof those spaes. Spatial programs with miops provide a logi-based approah tohybrid dynamial systems.This paper is the �rst of a series of papers that will explore the spatial logiprogramming paradigm. For example there are a number of onepts from logiprogramming suh as, well-founded model [VGRS91℄, strati�ed programs, et.that an be lifted to the present ontext almost verbatim. Thus one an developa rih theory of spatial logi programs. Our spatial logi programs share ertainfeatures with Constraint Logi Programming [JM94℄ and the exat onnetionsneed to be explored. Third, one an think about the senses of atoms as annota-tions of the kind disussed in [KS92℄. While there are various di�erenes betweenour approah and [JM94℄, for instane our use of negation as means to enforeonstraints as in [Nie99℄, the relationship between these two approahes shouldbe explored. Fourth, spatial logi programming an be studied in the more gen-eral setting of nonmonotone indutive de�nitions [Den00℄ (e.g. iterated indutivede�nitions of Feferman [Fef70℄).Aknowledgments: The seond author has been partly supported by NSFgrants IIS-0097278 and IIS-0325063. The authors wish to thank David Jakel forontributions and valuable disussion, partiularly in regard to the desriptionof the representation of ontinuous funtions on the real numbers.Referenes[ABW88℄ Apt, K., Blair, H.A., and Walker, A. Towards a theory of DelarativeKnowledge. In Foundations of Dedutive Databases and Logi Program-ming, J. Minker, Ed. Morgan Kaufmann, 89{148, 1988.[BMR01℄ Blair. H.A.,Marek, V.W. and Remmel, J.B. \Spatial Logi Program-ming" in Pro. SCI 2001, Orlando, FL, July, 2001.[BS89℄ A. Batarekh and V.S. Subrahmanian. Topologial Model Set Deforma-tions in Logi Programming, Fundamenta Informatiae, Vol. XII, No. 3,pps 357{400, Sep. 1989, North Holland.[Den00℄ Deneker, M. Extending lassial logi with indutive de�nitions. InFirst International Conferene on Computational Logi (CL2000). LetureNotes in Arti�ial Intelligene, vol. 1861. Springer, 703{717, 2000.



[Fef70℄ Feferman, S. Formal theories for trans�nite iterations of generalizedindutive de�nitions and some subsystems of analysis. In Intuitionismand Proof theory, A. Kino, J. Myhill, and R. Vesley, Eds. North Holland,303{326, 1970.[GL88℄ Gelfond, M. and Lifshitz, V. The stable model semantis for logiprogramming. In Pro. of the International Joint Conferene and Sympo-sium on Logi Programming. MIT Press, 1070{1080, 1988.[Li94℄ V. Lifshitz. Minimal belief and negation as failure. Arti�ial Intelligene70:53{72, 1994.[JM94℄ J. Jaffar and M. Maher. Constraint logi programming: A survey.Journal of Logi Programming, 19-20:503{581, 1994.[KS92℄ Kifer, M. and Subrahmanian, V.S. Theory of generalized annotatedlogi programming and its appliations. Journal of Logi Programming12:335{367, 1992.[Kl67℄ Kleene, S.C. Introdution to Metamathematis, North-Holland, 1967.[Nie99℄ Niemel�a, I. Logi programs with stable model semantis as a onstraintprogramming paradigm. Annals of Mathematis and Arti�ial Intelli-gene 25, 3,4, 241{273, 1999[RN03℄ Russell, Stuart J. and Peter Norvig Arti�ial Intelligene: A ModernApproah (2nd Edition). Prentie Hall, 2003.[RS03℄ Rounds, William, C. and Hosung Song The �-Calulus: A languagefor distributed ontrol of reon�gurable embedded systems. In HybridSystems: Computation and Control: 6th International Workshop, HSCC2003, O. Maler and A. Pnueli, Eds. Leture Notes in Computer Siene,Springer Verlag, 435{449, 2003.[VGRS91℄ Van Gelder, A., Ross, K., and Shlipf, J. The Well-Founded Seman-tis for General Logi Programs. Journal of the ACM 38, 3, 620{650,1991.


