
Answer Set Programming with Default Logic

Victor W. Marek
Department of Computer Science

University of Kentucky
Lexington, KY 40506, USA,

marek@cs.uky.edu

Jeffrey B. Remmel
Department of Mathematics

University of California
La Jolla, CA 92093, USA

jremmel@ucsd.edu

Abstract

We develop an Answer Set Programming formalism based
on Default Logic. We show that computing generating sets of
extensions in this formalism captures allΣP

2 search problems.

I. Introduction
The main motivation for this paper comes from recent de-
velopments in knowledge representation theory. In partic-
ular, a new generation of general solvers have been de-
veloped, (Niemel̈a and Simons 1996; Eiter et. al. 1998;
Cholewínski et.al. 1999; Syrjanen 2001; Simons et. al.
2002), based on the so-called Answer Set Programming
(ASP) paradigm (Niemelä 1998; Marek and Truszczyński
1999; Lifschitz 1999). The most popular ASP formalism is
based on the the stable semantics for logic programs (SLP)
(Gelfond and Lifschitz 1988). However, one can easily ex-
tend the ideas of answer set programming to other nonmono-
tonic logic formalisms such as default logic (Reiter 1980).
In each case, the first question one should ask is what ex-
actly can these systems theoretically compute. In (Marek
and Remmel 2001), the authors answered this question for
ASP systems built on SLP. Namely, answer set programs un-
der SLP can solve the class of NP-search problems and no
more. The main result of this paper is to prove a similar re-
sult for ASP systems built on Default Logic (DL). That is,
we shall show that ASP systems built on DL can solve the
class ofΣP

2 search problems and no more.
Default Logic has been introduced by Raymond Reiter in
his seminal paper (Reiter 1980). The formalism of De-
fault Logic has been, subsequently, extensively studied by
the Knowledge Representation community. In addition to
the original semantics ofextensions, many additional struc-
tures associated with a given default theory〈D,W 〉 have
been introduced. Those include weak extensions (Marek and
Truszczýnski 1989), Łukaszewicz extensions (Łukaszewicz
1984), rational extensions (Mikitiuk and Truszczyński 1993)
and other structures. For a detailed discussion of De-
fault Logic with extensions see (Marek and Truszczyński
1993). Default Logic with extensions forms a direct gen-
eralization of stable semantics of logic program (the latter
has been introduced by Gelfond and Lifschitz in (Gelfond
and Lifschitz 1988)), see (Marek and Truszczyński 1989a;
Bidoit and Froidevaux 1991). Weak extensions turned out

to be equivalent to Autoepistemic Logic of Moore (Moore
1985). See (Marek and Truszczyński 1993) for details. The
basic complexity result for Default Logic was established by
Gottlob (Gottlob 1992) (see also Stillman (Stillman 1992).
Gottlob found that the decision problems associated with the
Default Logic are complete for the second level of polyno-
mial hierarchy. Specifically, the existence problem for ex-
tensions isΣP

2 complete, the membership problem for exten-
sions (membershipin some, membershipin all) are com-
plete, respectively, forΣP

2 andΠP
2 .

A search problem ((Garey and Johnson 1979))S has two
components. First,S specifies a set of finite instances
(Garey and Johnson 1979). For example, the search prob-
lem may be to find Hamiltonian paths in a graph so that the
set of instances of the problem is the set of all finite graphs.
Second, for any given instanceI ∈ S, S specifies a setSI

of solutions to the search problemsS for instanceI. For
example, in our Hamiltonian path problem, given a finite
graphI, SI is the set of all Hamiltonian paths ofI. An al-
gorithm solves the search problemS if, given any instanceI
of S, the algorithm returns a solutions ∈ SI , wheneverSI

is non-empty, and returns the string “empty” otherwise.
We say that a search problemS is in ΣP

2 if and only if there
is a polynomial time coding procedure which maps each in-
stance inI ∈ S to a stringxI and there is a non-deterministic
polynomial time oracle Turing machineM with an oracle
X ∈ NP such that given a codingxI of an instanceI ∈ S,
the output of any terminating computation ofMX with in-
putxI codes a solutions ∈ SI and there are no terminating
computations ofMX on inputxI if SI = ∅.
The goal of this paper is first to investigate the ASP for-
malism based on Default Logic (DL) which has the same
basic properties as SLP Answer Set Programming formal-
ism. This formalism is closely related to both to (Niemelä
and Simons 1996) and (East and Truszczyński 2001), but al-
lows for more complex entities. By definition, extensions
of default theories are always infinite since they are closed
under logical consequence. This is in contrast with stable
models of logic programs which are finite. Thus to have an
appropriate analogue for the result that ASP logic programs
capture NP search problems, we shall consider generating
sets of extensions of default theories as opposed to exten-
sions themselves. Then we will show that anyΣP

2 search
problem can be reduced to the problem of finding generat-

ing sets for extensions of DL programs and, vice versa, the
problem of finding generating sets of extensions of DL pro-
grams is itself aΣP

2 search problem. That is, we shall show
that for eachn and each polynomial run time boundp(x),
there is a single ASP default theory〈Dn,p

Trg ,W
n,p
Trg 〉 that is ca-

pable of simulating any polynomial time nondeterministic
Turing oracle machine with an oracle for 3-SAT on inputs
of sizen in the sense that given any polynomial time non-
deterministic oracle Turing machineM with an oracle for
3-SAT and any inputσ of sizen, there is a set of formu-
las edbM,p,σ such that a certain class of generating sets of
the extensions of〈Dn,p

Trg ,W
n,p
Trg ∪ edbM,p,σ〉 codes accepting

computations ofM3-SAT started with inputσ that termi-
nates inp(|σ|) or fewer steps and any such accepting com-
putation ofM3-SAT is coded by the generating set of some
extension of〈Dn,p

Trg ,W
n,p
Trg ∪ edbM,p,σ〉.

Our results here are closely related to the work of Cadoli,
Eiter and Gottlob (Cadoli et. al. 1994; Cadoli et. al. 1997)
who studied the use of Default Logic as a query language.
Recall that Reiter, from the very beginning, recognized that
one can treat defaults with variables. Reiter called such de-
faultsopenand realized that they can be viewed as reasoning
patterns. That is, instantiating an open default rule creates
a new propositional default rule. In (Cadoli et. al. 1994;
Cadoli et. al. 1997), a DQL Input/Output queryQ consists
of a pair(B,D) whereB is a set of first-order formulas and
D is a set of open default rules, where the first order lan-
guage is function-free and quantifier-free, plus a set of out-
put relation schemataS = {S1, . . . , Sm}. One assumes that
the set of predicate symbols occurring in the defaults ofQ
contain all the names of the relation schemata{R1, . . . , Rn}
of the database (the extensional relations) and possibly some
other symbols (the intensional relations). One assumes that
the output relations are intensional. The intuitive meaning
of query is the following. We want to compute all tuples
in theSi relations which can be inferred under the credulous
semantics. More formally, supposeW is a database instance
over the set of relation schemata{R1, . . . , Rn} over a finite
universeU . If Ri is anli-ary relation, letRi|W be the set of
li-tuples inW belonging toRi. Let the completion ofW ,
COMP(W) be

n
⋃

i=1

{R(a1, . . . , ali) : (a1, . . . , ali) ∈ Ri|W}∪

n
⋃

i=1

{¬R(a1, . . . , ali) : (a1, . . . , ali) ∈ U
li \Ri|W}.

COMP(W) completely describes the finite relational sys-
tem〈U , R1, . . . , Rn〉.
Let INST (B) denote the set of ground formulas that result
by uniformly substituting constants fromU for the free vari-
ables in formulas ofB and, similarly, letINST (D) denote
the set of ground default rules that result by uniformly sub-
stituting constants fromU for the free variables in formu-
las of the open defaults inD. Let Q + W denote the de-
fault theory with defaultsINST (D) and first-order formu-
lasCOMP(W) + INST (B). Then the answer to the DLQ

queryQ = 〈(B,D), {S1, . . . , Sm}〉 equals

m
⋃

i=1

{Si|W}

where Si|W is the set of all groundli-tuples t over U
such thatSi(t) is in at least one extension ofQ + W . It
is clear that this is analogous to the way thatDATALOG
and DATALOG¬ (see (Ullman 1988)) treats queries to
databases. Then the main result of (Cadoli et. al. 1994;
Cadoli et. al. 1997) is that a database query isΣp

2-
recognizable if and only if it is definable as DQL I/0 query.
The outline of this paper is as follows. In section II, we shall
describe specifying our formulation of an Answer Set Pro-
gramming based on default logic. We shall also formally
describe our conventions for how a non-deterministic oracle
machine relative to an oracle for 3-SAT operates. Then in
section III, we shall describe a uniform coding our uniform
coding of nondeterministic Turing machines with an oracle
for 3-SAT via our ASP default theories which is used to de-
rive our main result that our ASP default theories capture all
Σp

2-search problems.

II. Technical preliminaries
In this section, we formally introduce several notions that
will be needed for the proof of our main results. First, we
shall make a typographical departure from the original con-
vention of Reiter for writing defaults. Recall, that in Reiter’s
original paper and most of the literature on Default Logic, a
default is written asα:β1,...,βk

γ
. This is convenient for theo-

retical considerations, but it is not typographically suitable
when eitherα and/or some of theβ’s are long. Gelfond and
Lifschitz (Gelfond and Lifschitz 1991) suggested that de-
fault logic should be treated as a natural extension of Logic
Programming. We will follow this suggestion and write a
default as a rule:

γ ← α : β1, . . . , βk.

First, we introduce the set of propositional default logic
programs that we will study. LetForm(L) be the set
of formulas for a propositional languageL. Given T ⊆
Form(L), we let the theory ofT , Th(T), denote the set
of all logical consequences ofT . We say thatT is the-
ory if T = Th(T). We letP(Form(L)) denote the set
of all subsets ofForm(L). A propositional default the-
ory 〈D,W 〉 is a pair whereD is a collection of default
rules andW is a subset ofForm(L). To each such de-
fault theory 〈D,W 〉, we associate an operator,Γ〈D,W 〉 :
P(Form(L)) → P(Form(L)), called Reiter’s operator,
by definingΓ〈D,W 〉(S) = T if T is the least theory con-
tained in Form(L) such that (i)W ⊆ T and (ii) T
satisfies the following condition: Wheneverψ ← α :
β1, . . . , βm ∈ D, α ∈ T,¬β1 /∈ S, . . . ,¬βm /∈ S, thenψ ∈
T. A theory S ⊆ Form(L) is called adefault exten-
sion of 〈D,W 〉 if Γ〈D,W 〉(S) = S. We say thatG is
a generating set for〈D,W 〉 if W ⊆ G ⊆ W ∪ {φ :
φ is the head of some ruler ∈ D} andTh(G) is an exten-
sion of〈D,W 〉.

In the spirit of answer set programming, we shall extend the
notion of propositional default theories to predicate logic de-
fault theories where there areno function symbols in the
underlying predicate logic. These predicate logic default
theories are the analogue ofDATALOG¬ program used in
(Marek and Remmel 2001) or PS+ theories used in (East and
Truszczýnski 2001). That is, we consider a predicate logicL
where we allow predicate symbols of any arity but no func-
tion symbols. In particular, we allow predicate symbols of
arity 0 which are propositional letters. The only terms of the
language are either constant symbols or individual variables.
In particular both Herbrand universe and Herbrand base of
L are finite, since we will deal with finite default theories.
We letForm(L) denote the set all formulas ofL and we let
Sent(L) denote the set of sentences ofL, i.e. the set of all
formulas ofL with no free variables. We letQFForm(L)
denote the set all quantifier free formulas ofForm(L) and
QFSent(L) denote the set of all quantifier free sentences
of Sent(L). If X = (x1, . . . , xn) is a sequence of individ-
ual variables, then for any given formulaϕ ∈ Form(L), we
shall writeϕ(X) to indicate that the free variables ofϕ are
among the variables inX.
An ASP default theoryis a pair〈D,W 〉 whereD is a finite
collection of default rules, that is, rules of form

r(X) = ψ(X)← α(X) : β1(X), . . . , βm(X), (1)

whereα(X), β1(X), . . . , βm(X), andψ(X) are quantifier
free formulas inL andW a finite subset ofQFForm(L).
Let c1, . . . , ck be the set of all constants that occur in
〈D,W 〉. Suppose thatX = (X1, . . . ,Xn). Then ground in-
stance of default ruler(X) as in (1) is the result of a simul-
taneous substitution of constantsd = (d1, . . . , dn), where
di ∈ {c1, . . . , ck} for all i, for the variablesX occurring in
r(X). Similarly a ground instance of a formulaϕ(X) ∈ W
is the result of a simultaneous substitution of constantsd for
the variablesX occurring inϕ. Given a ASP default theory
〈D,W 〉, 〈Dg,Wg〉 is a propositionaldefault theory where
Dg is the set of all ground instances of rules inD andWg

of all ground instances of formulas inW . If no constant
symbol occurs in〈D,W 〉, then we fix some new constant
symbolc1 and let〈Dg,Wg〉 be the result of substitutingc1
for every variable that occurs in〈D,W 〉 so that once again
〈Dg,Wg〉 can be considered a propositional default theory.
We then say thatE is an extension of〈D,W 〉 if and only if
E is an extension of〈Dg,Wg〉.
Our first result is that the problem of computing generating
sets an ASP default theory is aΣP

2 -search problem. That is,
fix some set of variablesX = {X1, . . . ,Xk}. Then we con-
sider the setDF (X) of all finite ASP predicate logic default
theories〈D,W 〉 whose underlying set of variables is con-
tained inX . Then we can define a search problemS(X) by
saying that an instanceI of S(X) is a default theory〈D,W 〉
in DF (X) and the set of solutions ofI is the set of generat-
ing sets of〈Dg,Wg〉. It is then easy to prove the following.

Theorem 1 For any set of variablesX = {X1, . . . ,Xk},
S(X) is aΣP

2 search problem.

A nondeterministic Oracle Turing Machine is a 8-tuple of

the form
M = (Q,Σ,Γ,D, δ, s0, , sq, f).

HereQ is a finite set of states andΣ is a finite alphabet of
input symbols. We assumeQ always contains three special
states,s0, the start state,sq, the query state, andf , the final
state. We also assume that there is a special symbolB for
“blank” such thatB /∈ Σ andΓ = Σ∪{B} is the set of tape
symbols. The setD is the set of move directions consisting
of the elementsl, r, andλwherel is the “move left” symbol,
r is the “move right” symbol andλ is the “stay put” symbol.
The functionδ is the nondeterministic transition function of
the machineM .
We assumeM operates ontwo one-way infinite tapes, a
computation tape and a query tape, where the cells of the
tapes are labeled from left to right by0, 1, 2, To visual-
ize the behavior of the machineM , we shall talk about the
two read-write heads of the machine, thec-read-writehead
on the computation tape and theq-read-writehead on the
query tape. At any given time in a computation, the read-
write heads ofM are always in some states ∈ Q and the
c-read-write head is reading some symbolpa ∈ Γ which
is in some cella on the computation tape and the q-read-
write head is reading some symbolpb ∈ Γ which is in
some cellb on the query tape. Ifs 6= sq, thenM picks
an instruction(s1, p1, d1, p2, d2) ∈ δ(s, pa, pb) and then re-
places the symbolpa on the computation tape byp1, re-
places the symbolpb on the query tape byp2, changes its
state to states1, and moves on the computation tape ac-
cording tod1 and on the query tape according tod2. If
s = sq, thenM takes one of two actions depending on
the current state of the query tape and the oracleO. That
is, if the string of symbols consisting of all cells that are
weakly to the left of the right-most non-blank symbol on the
query tape is inO (not inO), thenM picks an instruction
(s1, p1, d1, p2, d2) such that{yes} × (s1, p1, d1, p2, d2) ∈
δ(sq, pa, pb) ({no} × (s1, p1, d1, p2, d2) ∈ δ(sq, pa, pb))
and then replaces the symbolpa on the computation tape by
p1, replaces the symbolpb on the query tape byp2, changes
its state to states1, and moves on the computation tape ac-
cording tod1 and on the query tape according tod2.
We assume that at the start of the computation ofM on input
σ of lengthn, the cells0, . . . , n− 1 of the computation tape
contain the symbolsσ(0), . . . , σ(n− 1) respectively and all
cells to the right of celln − 1 are blank. We also assume
that all the symbols on the query tape are blank. We do not
impose (as it is often done) any special restrictions on the
state of the tape and the position of the read-write heads at
the end of computation. However, we assume that at the start
of any computation, the read-write heads are in states0 and
the c-read-write head is reading the symbol in cell 0 on the
computation tape and the q-read-write head is reading the
symbol in cell 0 of the query tape.
Suppose we are given a oracle Turing machineM with ora-
cleO whose runtimes are bounded by a polynomialp(x) =
a0 + a1x+ · · ·+ akx

k where eachai ∈ N = {0, 1, 2, . . .}
andak 6= 0. That is, on any input of sizen, an accepting
computation terminates in at mostp(n) steps. Then any ac-
cepting computation on inputσ can affect at most the first
p(n) cells of the both the computation and the query tapes.

Thus in such a situation, there is no loss in only consider-
ing tapes of lengthp(n). Hence in what follows, one shall
implicitly assume that the both the computation tape and the
query tapes are finite. Moreover, it will be convenient to
modify the standard operation ofM in the following ways.
1. We shall assumeδ(f, a, b) = {(f, a, λ, b, λ)} for all
a, b ∈ Γ.
2. Given an inputx of lengthn, instead of immediately halt-
ing when we first get to the final statef reading a symbol
a on the computation tape and symbolb on the query tape,
we just keep executing the instruction(f, a, λ, b, λ) until we
have completedp(n) steps. That is, we remain in statef , we
never move, and we never change any symbols on the tapes
after we get to statef . The main effect of these modifica-
tions is that all accepting computations will run for exactly
p(n) steps on an input of sizen.
Finally, we end this section by describing our conventions
for the operation of Turing machines with an oracle for 3-
SAT. First we need to discuss the coding of clauses with
three literals (3-clauses, for short). A 3-clause is an ex-
pression of the formε1Ai1 ∨ ε2Ai2 ∨ ε3Ai3 where each
εi is either empty string or¬, andAij

, j = 1, 2, 3 are
propositional atoms. If we haven propositional atoms,
A1, . . . , An then there is precisely8 ·

(

n
3

)

3-clauses based
onA1, . . . , An. We order the 3-clauses so that the 3-clauses
based onA1, . . . , An form an initial segment of the 3-
clauses based onA1, . . . , An+1. Thus when we writeϕi, we
mean theith 3-clause in this fixed ordering. With this con-
vention, the indexi such thatε1Ai1 ∨ ε2Ai2 ∨ ε3Ai3 = ϕi

does not depend on the numbern of atoms. There are28·(n

3)

propositional formulas of the formϕ11
∧ · · · ∧ ϕim

where
1 ≤ i1 < . . . < im ≤ 8 ·

(

n
3

)

. These are the pos-
sible elements of 3-SAT based on the propositional atoms
A1, . . . , An. Our convention thatϕi1 ∧ · · · ∧ ϕim

will be
coded on the query tape by a sequence of(e0, . . . , e8·(n

3−1)
)

whereei = 1 if i+ 1 ∈ {i1, . . . , im} andei = B otherwise.
In our coding of Turing machine via ASP default theories,
we will be given a non-deterministic polynomial time oracle
Turing machine with a 3-SAT oracle and we will be given
a run timep(n). Thus on an input of sizen, the oracle ma-
chine can visit at mostp(n) cells on the both the compu-
tation and the query tape. By our coding of 3-clauses, any
clause that contain the propositional letterAt has index at
most8 ·

(

t
3

)

. Thus any query that we make of 3-SAT cer-
tainly cannot contain anAt wheret > p(n). Thus, since
there are8 ·

(

p(n)
3

)

3-clauses based on the propositional let-
tersA1, . . . , Ap(n), we will assume that on an input of size
n, the input tape has exactlyp(n) cells and the query tape
has exactly8 ·

(

p(n)
3

)

cells. In that case, we are coding the

28·(n

3) propositional formulas of the formϕ11
∧ · · · ∧ ϕim

where1 ≤ i1 < . . . < im ≤ 8 ·
(

n
3

)

by strings of 0’s
and 1’s of length8 ·

(

n
3

)

. There are many such codings that
are possible, but any such coding of such conjunctions of

three clauses with strings of 0’s and 1’s still must use28·(n

3)

strings and hence cannot produce a significantly shorter set
of codes.

III. Uniform coding of Nondeterministic
Oracel Turing Machines with a 3-SAT Oracle

by a Default Logic Program
In this section, we shall prove our main result that computing
generating sets of extensions of DL programs captures all
ΣP

2 search programs.
We define for eachn and run time polynomialp, a de-
fault theory〈Dn,p

Trg,W
n,p
Trg〉, and for each inputσ of length

n and nondeterministic polynomial time oracle Turing ma-
chineM with an oracle for 3-SAT, an extensional database
edbM,p,σ which can be computed in polynomial time from
M,p, andσ such that (a) for each accepting computationc
ofM on inputσ, there is a generating setGc of a unique ex-
tensionEc of 〈Dn,p

Trg,W
n,p
Trg ∪ edbM,p,σ〉 which codes the

computationc in such a way thatc can be recovered in
linear time fromGc and (b) for each extensionE of the
〈Dn,p

Trg,W
n,p
Trg ∪ edbM,p,σ〉, there is an accepting computa-

tion cE of M on inputσ such thatTh(GcE
) = E.

First, we need to define the underlying language of the
theory 〈Dn,p

Trg,W
n,p
Trg〉. We also explain the use for each

symbol. The set of predicates that will occur in our ex-
tensional database are the following:time(X) for “X is
a time step”,c-cell(X) for “X is a cell number on the
computation tape”,q-cell(X) for “X is a cell number on
the query tape”,symb(X) for “X is a symbol”,state(S)
for “S is a state”, ci position(P) for “P is the initial
position of the read-write head on the computation tape”,
qi position(P) for “P is the initial position of the read-
write head on the computation tape”,c-data(P,Q) for “Ini-
tially, the computation tape stores the symbolQ at the cell
P ”, q-data(P,Q) for “Initially, the query tape stores the
symbolQ at the cellP ”, tapec(X,Y, T) for “X is symbol in
cell Y on the computation tape at timeT ”, tapeq(X,Y, T)
for “X is symbol in cell Y on the query tape at time
T ”, delta(X,Y,Z,X1, Y 1,M1, Y 2,M2) for “the 5-tuple
(X1, Y 1,M1, Y 2,M2) is an executable instruction when
the read-write head is in stateX ∈ Q− {sq} and is reading
the symbolY on the computation tape and the symbolZ on
the query tape”,deltayes(sq, Y, Z,X1, Y 1,M1, Y 2,M2)
for “the 5-tuple(X1, Y 1,M1, Y 2,M2) is an executable in-
struction when the read-write head is in statesq and is read-
ing the symbolY on the computation tape and the sym-
bol Z on the query tape and the oracle gives the answer
yes”, deltano(sq, Y, Z,X1, Y 1,M1, Y 2,M2) for “the 5-
tuple (X1, Y 1,M1, Y 2,M2) is an executable instruction
when the read-write head is in statesq and is reading
the symbolY on the computation tape and the symbolZ
on the query tape” and the oracle gives the answerno”,
neq(X,Y) for “X is different fromY ” , eq(X,Y) for “X
is equal toY ”, succ(X,Y) for “Y is equal toX + 1”1

content(A,X, T) for the the predicate thatA is the sym-
bol in cellX of the query tape at timeT .
Now fix a polynomial time Turing machineM =
(Q,Σ,Γ,D, δ, s0, sq, f) with a 3-SAT oracle, an inputσ =

1For the clarity of presentation we will use equality symbol=,
inequality symbol,6= and relation described by the successor func-
tion +1, instead ofeq ,neq , andsucc.

(σ(0), . . . , σ(n−1)) of lengthn, and a run-time polynomial
p(x). This given, we now define the extensional database
extM,p,σ. First,extM,p,σ will contain the following the fol-
lowing set of constant symbols: (1)0, 1, . . . , 8 ·

(

p(n)
3

)

, (2)
s, for eachs ∈ S (Note three constantss0 (for initial state),
sq (for query state) andf (for final state) will be present in
every extensional database), (3)B (blank symbol) andx for
eachx ∈ Σ, and (4)r, l, λ.
Our extensional databaseedbM,σ,p will consist of two
groups. The first group of facts consists of the following
set of facts that describe the machineM , i.e. the basic
declarations for the predicatesstate, symb, anddelta, the
segment of integers0, . . . , 8 ·

(

t
3

)

, i.e. the basic declarations
for the predicatestime, c-cell, q-cell, and predicates that
describe the initial configuration the computation tape on
inputσ.

(1) For eachs ∈ Q, the clause state(s) belongs to
extM,p,σ.
(2) For eachx ∈ Γ, the clause symb(x) belongs to
extM,p,σ.
(3) For every triple(s, x, y) ∈ Q− {sq} × Γ× Γ and every
5-tuple(s1, x1, d1, x2, d2) ∈ δ(s, x, y),
the clause delta(s, x, y, s1, x1, d1, x2, d2) belongs to
extM,p,σ.
(4) For every pair(x, y) ∈ Γ × Γ and every 5-tuple
(s1, x1, d1, x2, d2) such that(yes, (s1, x1, d1, x2, d2)) ∈
δ(sq, x, y), the clause
deltayes(sq, x, y, s1, x1, d1, x2, d2) belongs toextM,p,σ.
(5) For every pair(x, y) ∈ Γ × Γ and every 5-tuple
(s1, x1, d1, x2, d2) such that(no, (s1, x1, d1, x2, d2)) ∈
δ(sq, x, y), the clause
deltano(sq, x, y, s1, x1, d1, x2, d2) belongs toextM,p,σ.

(6) For0 ≤ i < 8 ·
(

p(n)
3

)

, the clausesucc(i, i+1) belongs
to extM,p,σ.
(7) For 0 ≤ i ≤ p(n), the clause time(i) belongs to
extM,p,σ.
(8) For0 ≤ i ≤ p(n) − 1, the clausec-cell(i) belongs to
extM,p,σ.

(9) For0 ≤ i ≤ 8 ·
(

p(n)
3

)

− 1, the clauseq-cell(i) belongs
to extM,p,σ.
(10) For0 ≤ m ≤ |σ| − 1, the clausec-data(m,σ(m))
belongs toc-extM,p,σ.
(11) For |σ| ≤ m ≤ p(n) − 1, the clausec-data(m,B)
belongs toextM,p,σ.

(12) For0 ≤ m ≤ 8 ·
(

p(n)
3

)

− 1, the clauseq-data(m,B)
belongs toextM,p,σ.
(13) The clauses dir(l), dir(r) and dir(λ) belong to
extM,p,σ.
(14) The clauses ci position(0) and qi position(0)
belong toextM,p,σ.

(15) For alla, b ∈ S ∪ Γ ∪ {0, . . . , 8 ·
(

p(n)
3

)

} with a 6= b,
the clauseneq(a, b) belongs toextM,p,σ.

(16) For all a ∈ S ∪ Γ ∪ {0, . . . , 8 ·
(

p(n)
3

)

}, the clause
eq(a, a) belongs toextM,p,σ.

The second group of facts in our extensional database

extM,p,σ is designed to help us deal with the operation of
the Turing machineM when it is in the query statesq.
Our idea is to use that fact that extensions are closed under
logical consequences to help us give correct answers for the
oracle 3-SAT. Our idea is that we will employ a set ofp(n)
propositional lettersA1, . . . , Ap(n). Recall our coding of
3-clausesϕ1, ϕ2, . . . , ϕ8·(p(n)

3) based on the propositional

lettersA1, . . . , Ap(n). In addition, we will employ one other
propositional letterD.
Our second group of formulas inextM,p,σ are :
(17) content(1, i, t) ↔ ¬ϕi for all 1 ≤ i ≤ 8 ·

(

p(n)
3

)

and
0 ≤ t ≤ p(n).
(18)content(B, i)↔ D&¬D for all 1 ≤ i ≤ 8 ·

(

p(n)
3

)

and
0 ≤ t ≤ p(n).

To understand to role of the these sentences, we will
briefly describe several of the predicates that will occur
in ASP default theory〈Dn,p

Trg ,W
n,p
Trg 〉. First we will have

a predicate,tapeq(X,Y, T) which is to mean that at time
T , symbolX is in cell Y of the query tape and a predicate
state(S, T) which is to mean thatM is in stateS at timeT .
We will also have two predicatesno(T) andyes(T). The
main properties that we shall prove about these predicates is
thatyes(T) will hold if at time T if the read-write heads are
in statesq and the 3-SAT oracle gives the answer “yes” to
our query andno(T) will hold if at time T , if the read-write
heads are in stateS = sq and the 3-SAT oracle gives the
answer “no” to our query.
The key to our proof that atomsyes(T) andno(T) correctly
simulate the oracle is the fact that it will be the case that
none of the atomscontent nor the atomsAi occur in any
conclusion of the rules of our default theory〈Dn,p

Trg ,W
n,p
Trg 〉.

They only occur inWn
Trg ∪ extM,p,σ. That is, we can prove

the following proposition.

Proposition 1 Let ψ be any formula of the propositional
language based on atomscontent(a, i, t), a ∈ {0, 1}, i ≤
8 ·

(

n
3

)

, 0 ≤ t ≤ p(n) andAi, 1 ≤ i ≤ p(n). LetT be any
consistent theory generated byWn,p

Trg ∪ extM,p,σ and any set
of conclusions of rules fromDn,p

Trg . Thenψ ∈ Th(T) if and
only ifψ ∈ Th(Wn,p

Trg ∪ extM,p,σ).

Once we specifyWn
Trg ∪ extM,p,σ, we will be able to prove

via induction on the length the sequence of configurations
that specify a partial computation ofM3-SAT on inputσ
that the following proposition holds.

Proposition 2 Let 〈xi〉
8·(n

3)
i=1 be a binary sequence of length

8 ·
(

n
3

)

. Then if M started on inputσ has an accept-
ing computation, then for all0 ≤ t ≤ n, the formula
∨8·(n

3)
i=1 content(xi, i, t) belongs toTh(Wn,p

Trg ∪ extM,p,σ) if

and only if the set of formulasA = {¬ϕi : i < 8 ·
(

n
3

)

, xi =
1} is unsatisfiable.

Note that Proposition 2 completely characterizes formulasof

the form
∨8·(n

3)
i=1 content(xi, i, t) that belong toTh(Wn

Trg ∪
extM,p,σ).

Next we specify the description of〈Dn,p
Trg ,W

n,p
Trg 〉 The

remaining predicates of〈Dn,p
Trg ,W

n,p
Trg 〉 are the following:

tapec(P,Q, T) for “the computation tape stores symbolQ
at cellP at timeT ”,
tapeq(P,Q, T) for “the query tape stores symbolQ at cell
P at timeT ”,
positionc(P, T) for “the c-read-write head reads the content
cell P at timeT ”,
positionq(P, T) for “the q-read-write head reads the
content cellP at timeT ”,
state(S, T) for “the read-write heads are in stateS at time
T ” (notice that we have both a unary predicatestate/1 with
the content consisting of states, andstate/2 to describe the
evolution of the machine),
yes(T) for the oracle gives the answer “yes” at timeT ,
no(T) for the oracle gives the answer “yes” at timeT
instr(S,Q,R, S1, Q1,D1, Q2,D2, T) for “instruction
(S1, Q1,D1, Q2,D2) has been selected for execution at
timeT ”,
otherInstr(S,Q, ,R, S1, Q1,D1, Q2,D2, T) for “in-
struction other than (S1, Q1,D1, Q2,D2) has been
selected for execution at timeT ”,
instr def (T) for “there is an instruction to be executed at
timeT ”,
completion for “computation successfully completed”, and
A, a propositional letter.2.

The defaults in our theory〈Dn,p
Trg ,W

n,p
Trg 〉 consists of

rules which describe how the Turing machineM operates
with an oracle for 3-SAT. That is, we have to describe how
the state and the contents of the computation and query
tapes evolve in the course of a computation ofM3-SAT(σ).
As we shall see, each individual rule is relatively simple, but
there has to be a large number of rules due to the inherent
complexity of describing the way a nondeterministic Turing
machine evolves. The only subtle rules are the rules in
Group 6 below which rely on the interaction between the
predicatescontent(Xi, i, T) described above. In the default
theory 〈Dn,p

Trg ,W
n,p
Trg 〉, there should be no constants. That

is, all constants should appear in the extensional database
only. For notational convenience, we will not be strict in
this respect. That is, to simplify our presentation, we will
use the constants 0,f , and s0 in 〈Dn,p

Trg ,W
n,p
Trg 〉. These

can easily be eliminated by introducing appropriate unary
predicates. Finally to simplify the clauses, we will follow
here the notation used in thesmodelssyntax. That is, we
shall write
Q(X)← α1(X) ∧ · · · ∧ αn(X) : β1(X), . . . , βm(X) as
Q(X)← α1(X), . . . , αn(X) : β1(X), . . . , βm(X).
Also, we will use p(X1; . . . ;Xk) as an abbreviation for
p(X1), . . . , p(Xk).

2The propositional letterA will be used whenever we write
clauses acting as constraints. That is, the symbolA will occur in
the following syntactical configuration.A will be the head of some
clause, andA will also occur in the restraints of that same clause.
In such situation an extensioncannotsatisfy the remaining atoms
in the body of that clause.

Group 1. Defaults describing how the position of the read-
write head evolves.

(1.1) (Initial position of the c-read-write head)
positionc(P, T)← time(T), c-cell(P), T = 0,
ci position(P) :

(1.2) (Initial position of the q-read-write head)
positionq(P, T)← time(T), q-cell(P), T = 0,
qi position(P) :

We have 6 rules that describe how read write heads move
depending of the values ofD1 andD2. For example, we
would have the following two clauses whenDi equalsl.

(1.3) positionc(P1, T1)← time(T ; T1), c-cell(P ; P1),
state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
T1 = T + 1, P1 + 1 = P, positionc(P, T),
state(S, T), tapec(P, Q, T),
instr(S, Q, R, S1, Q1, D1, Q2, D2, T), D1 = l, P 6= 0 :

(1.4) positionq(P1, T1)← time(T ; T1), q-cell(P ; P1),
state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
T1 = T + 1, P1 + 1 = P, positionq(P, T),
state(S, T), tapeq(P, R, T),
instr(S, Q, R, S1, Q1, D1, Q2, D2, T), D2 = l, P 6= 0 :

Then we would include four more such clauses (1.5)-(1.8)
to cover the cases whenDi equalsr or λ.

Group 2. Defaults describing how the contents of the
tape change as instructions get executed.

(2.1) tapec(P, Q, T)← time(T), c-cell(P), symb(Q),
T = 0, datac(P, Q) :

(2.2) tapeq(P, Q, T)← time(T), q-cell(P), symb(Q),
T = 0, dataq(P, Q) :

(2.3) tapec(P, Q1, T1)← time(T ; T1), c-cell(P),
state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
T1 = T + 1, positionc(P, T), state(S, T), tapec(P, Q, T),
instr(S, Q, R, S1, Q1, D1, Q2, D2, T) :

(2.4) tapeq(P, Q2, T1)← time(T ; T1), q-cell(P),
state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
T1 = T + 1, positionq(P, T), state(S, T), tapeq(P, R, T),
instr(S, Q, R, S1, Q1, D1, Q2, D2, T) :

(2.5) tapec(P, Q, T1) ← time(T ; T1), c-cell(P ; P1), symb(Q),
T1 = T + 1, tapec(P, Q, T), positionc(P1, T), P 6= P1 :

(2.6) tapeq(P, Q, T1) ← time(T ; T1), q-cell(P ; P1), symb(Q),
T1 = T + 1, tapeq(P, Q, T), positionq(P1, T), P 6= P1 :

Group 3. Defaults describing how the state of the read-write
head evolves over time.

(3.1) state(S, T)← time(T), state(S), T = 0, S = s0 :

(3.2) state(S1, T1)← time(T ; T1), c-cell(P1), q-cell(P2),
state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
T1 = T + 1, positionc(P1, T), positionq(P2, T),
state(S, T), tapec(P1, Q, T), tapeq(P2, R, T),
instr(S, Q, R, S1, Q1, D1, Q2, D2, T) :

Group 4. Defaults describing the unique instruction to be
executed at timeT .

(4.1) Selecting instruction at step 0.
instr(S, Q, R, S1, Q1, D1, Q2, D2, T)← state(S; S1),
symb(Q; R; Q1; Q2), dir(D1; D2), time(T), T = 0,
c-cell(P1), q-cell(P2), S = s0, tapec(P1, Q, T)
ci position(P1), tapeq(P2, R, T), qi position(P2),
delta(S, Q, R, S1, Q1, D1, Q2, D2) :
otherInstr((S, Q, R, S1, Q1, D1, Q2, D2, T)

(4.2) Defaults describing the selection the instruction tobe im-
plemented at non-query steps.
instr(S, Q, R, S1, Q1, D1, Q2, D2, T)← state(S; S1),
symb(Q; R; Q1; Q2), dir(D1; D2), time(T), T 6= 0,
c-cell(P1), q-cell(P2), positionc(P1, T), positionq(P2, T),
S 6= sq, tapec(P1, Q, T), tapeq(P2, R, T),
delta(S, Q, R, S1, Q1, D1, Q2, D2) :
otherInstr(S, Q, R, S1, Q1, D1, Q2, D2, T)

(4.3) Selecting instruction at query steps where the oraclean-
swers yes.
instr(S, Q, R, S1, Q1, D1, Q2, D2, T)← state(S; S1),
S = sq, dir(D1; D2), symb(Q; R; Q1; Q2), time(T),
T 6= 0, c-cell(P1), q-cell(P2), positionc(P1, T),
positionq(P2, T), tapec(P1, Q, T), tapeq(P2, R, T),
yes(T), deltayes(S, Q, R, S1, Q1, D1, Q2, D2) :,
otherInstr(S, Q, R, S1, Q1, D1, Q2, D2, T)

(4.4) Selecting instruction at query steps where the oraclean-
swers no.
instr(S, Q, R, S1, Q1, D1, Q2, D2, T)← state(S; S1),
S = sq, dir(D1; D2), symb(Q; R; Q1; Q2), time(T),
T 6= 0, c-cell(P1), q-cell(P2), positionc(P1, T),
positionq(P2, T), tapec(P1, Q, T), tapeq(P2, R, T),
no(T), deltano(S, Q, R, S1, Q1, D1, Q2, D2) :
otherInstr(S, Q, R, S1, Q1, D1, Q2, D2, T)

Group 5. Defaults that define theotherInstr pred-
icate. Rules (5.1)-(5.8) are designed to say that
a 9-tuple (S,Q,R, S1, Q1,D1, Q2,D2, T) sat-
isfies otherInstr if it differs from the 9-tuple
(S′, Q′, R′, S2, Q3,D3, , Q4,D4, T) that satisfiesinstr.
Thus a typical rule would be

(5.1) otherInstr(S, Q, R, S1, Q1, D1, Q2, D2, T)←
state(S; S′; S1; S2), symb(Q; Q′; R; R′; Q1; Q2, Q3, Q4),
time(T), dir(D1; D2, D3, D4),
instr(S′, Q′, R′, S2, Q3, D3, , Q4, D4, T), S 6= S′ :

Rules (5.2)-(5.8) are identical to rule (5.1) except that they
end inQ 6= Q′ :, R 6= R′ :, S1 6= S2 :, Q1 6= Q3 :,
D1 6= D3 :,Q2 6= Q4 :,D2 6= D4 : instead ofS 6= S′ :.

Our next two clauses are designed to ensure that ex-
actly one instruction is selected for execution at any given
timeT .

(5.9) instr def (T)← state(S; S1), symb(Q; Q1), dir(D),
time(T), instr(S, Q, S1, Q1, D, T) :

(5.10) A← time(T),¬instr def (T) : ¬A

Group 6. Defaults that ensure that the predicatesyes(T)
andno(T) behave properly whenM is in the query statesq

at timeT .

(6.1) no(T)← symbol(X1; . . . : X
8·(p(n)

3)),

q-cell(1; . . . ; 8 ·
(

p(n)
3

)

), time(T), state(sq, T),

(
∨8·(p(n)

3)
i=1 (content(Xi, i, T)) & (Xi = 1 ∨Xi = B),

(
∧8·(p(n)

3)
i=1 (tapeq(Xi, i, T) & (Xi = 1 ∨Xi = B)) :

(6.2) yes(T)← symbol(X1; . . . : X
8·(p(n)

3)),

q-cell(1; . . . ; 8 ·
(

p(n)
3

)

), time(T), state(sq, T),

(
∧8·(p(n)

3)
i=1 (tapeq(Xi, i, T) & (Xi = 1 ∨Xi = B)) : no(T)

The idea of these clauses is as follows. For any given
time t with 0 ≤ t ≤ p(n), cell i with 0 ≤ i ≤ 8 ·
(

p(n)
3

)

and symbolsi,t ∈ {1, B}, the only way that we
can derivetapeq(si,t, i, T) is if there is partial computa-

tion of M3-SAT(σ) such thatsi,t is in cell i at of the
query tape at timet. This means that to deriveno(t), we

must be able to deriveΘt = (
∨8·(p(n)

3)
i=1 (content(si,t, i, t)).

But by Proposition 1 and the clauses in our extensional
database described in (17) and (18) ,Θt can be derived from
〈DTrg ,WTrg ∪ edbM,p,σ〉 only if

∨

si,t=1 ¬φi is a tautol-
ogy where the disjunction runs for all cellsi on the query
tape. But

∨

si,t=1 ¬φi is equivalent to¬(
∧

si,t=1 φi) which
represents the negation of the query given to the 3-SAT ora-
cle at timet. Since¬(

∧

si,t=1 φi) is a tautology, it must be
that

∧

si,t=1 φi is not satisfiable. Thus clause 6.1 can hold
if and only if our 3-SAT oracle gives the answerno at time
t. Clause 6.2 then says that if we do not get the answerno
from the 3-SAT oracle at timet, then we must get the answer
yes from the 3-SAT oracle at timet.
Group 7. Defaults that ensure that extensions only corre-
spond to accepting computations.

(7.1) completion ← symb(Q), instr(f, Q, f, Q, λ, p(n)) :.

(7.2) A←: ¬completion,¬A

Proposition 3 There is a polynomialq so that for every
machineM , polynomial p, and an inputσ, the size of
the extensional databaseedbM,p,σ is less than or equal to
q(|M |, |σ|, p(|σ|)).

We can prove that for any nondeterministic oracle Turing
MachineM with oracle 3-SAT, runtime polynomialp(x),
and inputσ of lengthn, the generating sets of extensions
of 〈DTrg ,WTrg ∪ edbM,p,σ〉 encode the sequences of tapes
of length p(n) which occur in the steps of an accepting
computation ofM3-SAT starting onσ and that any such
sequence of steps can be used to produce an extension of
〈DTrg ,WTrg ∪ edbM,p,σ〉.
The key idea is to consider valid runs of the oracle machine
M3-SAT started on inputσ. A configurationrelative to state
S is a quintuple〈i, U, V, u, v〉 where

1. i is an instruction〈S,Q,R, S1, Q1,D1, Q2,D2〉,
2. U is a state of the computation tape,
3. V is the state of the query tape,
4. u is an integer≤ p(n) such thatU(u) = Q ∈ Σ ∪ {B},

and
5. v is an integer≤ 8·

(

p(n)
3

)

such thatV (v) = R ∈ Σ∪{B}

Informally,u is the index of the cell on which the read-write
head on the computation tape is pointing at the time the con-
figuration is observed andQ = U(u) is the content of that
cell. Similarly,v is the index of the cell on which the read-
write head on the query tape is pointing at the time the con-
figuration is observed andR = V (v) is the content of that
cell. Conditions (4) and (5) are coherence conditions which
say that the instructioni is applicable in the configuration.
A valid run C = 〈C0, . . . , Cp(n)〉 of the machineM , where
for m, 0 ≤ m ≤ p(n),

Cm = 〈im, Um, Vm, um, vm〉

such that each transitionCi to Ci+1 is allowed by the tran-
sitions ofM3-SAT. We define the set of atomsNC which
consists of the union of sets of atomsN1 ∪ . . .∪N14 where:

N1 = edbM,p,σ

N2 = {state(S, m) : im = 〈S, Q, R, S1, Q1, D1, Q2, D2〉
& 0 ≤ m ≤ p(m)}

N3 = {positionc(um, m) : 0 ≤ m ≤ p(n)}

N4 = {positionq(vm, m) : 0 ≤ m ≤ p(n)}

N5 = {tapec(r, Um(r), m) : 0 ≤ m ≤ p(n),
0 ≤ r ≤ p(n)− 1}

N6 = {tapeq(r, Vm(r), m) : 0 ≤ m ≤ p(n),

0 ≤ r ≤ 8 ·
(

p(n)
3

)

− 1}

N7 = {yes(m) : im = 〈sq, Q, R, S1, Q1, D1, Q2, D2〉 &
the set if formulas{¬ϕi : Vm(i) = 1} is satisfiable}

N8 = {no(m) : im = 〈sq, Q, R, S1, Q1, D1, Q2, D2〉 &
the set if formulas{¬ϕi : Vm(i) = 1} is unsatisfiable}

N9 = {instr(S, Q, R, S1, Q1, D1, Q2, D2, m) :
im = 〈S, Q, R, S1, Q1, D1, Q2, D2〉, 0 ≤ m ≤ p(n)}

N10 = {otherInstr(S′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2, m) :
S′ 6= sq & (S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2) ∈ δ(S′, Q′, R′),
im 6= 〈S

′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2〉,
0 ≤ m ≤ p(n)}

N11 = {otherInstr(S′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2, m) :
S′ = sq & yes× (S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2) ∈ δ(S′, Q′, R′),
im 6= 〈S

′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2〉, 0 ≤ m ≤ p(n)}

N12 = {otherInstr(S′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2, m) :
S′ 6= sq & no× (S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2) ∈ δ(S′, Q′, R′),
im 6= 〈S

′, Q′, R′, S′

1, Q
′

1, D
′

1, Q
′

2, D
′

2〉, 0 ≤ m ≤ p(n)}

N13 = {instr def (m) : 0 ≤ m ≤ p(n)}

N14 = {completion}

We can then show by induction that that ifC is valid run of
M3-SAT, thenTh(NC) is an extension of〈Dp,n

Trg,W
n,p
Trg ∪

edbM,p,σ〉 and for any extensionE of 〈Dp,n
Trg,W

n,p
Trg ∪

edbM,p,σ〉, there is a valid runC of M3-SAT such that
Th(NC) = E. Thus we have the following.

Theorem 2 The mapping of Turing machines to DL An-
swer Set programs defined by〈M,σ, p〉 7→ 〈Dn,p

Trg,W
n,p
Trg ∪

edbM,p,σ〉 has the property that there is a 1-1 polynomial
time correspondence between the set of generating setsNC

of extensions of〈M,σ, p〉 7→ 〈Dn,p
Trg,W

n,p
Trg ∪ edbM,p,σ〉 and

the set of valid runsC ofM with oracle 3-SAT of the length
p(n), starting on the stateσ of the tape, and ending in the
statef .

Since the problem of finding accepting computations for or-
acle Turing machines with a 3-SAT oracle captures allΣP

2
search problems, it follows that computing generating sets
of extensions of DL Answer Set programs captures allΣP

2 -
search problems. Thus we have the following.

Theorem 3 The class ofΣP
2 search problems is precisely

captured by the problem of computing generating sets for
extensions of DL Answer Set programs.

IV. Conclusions
In this paper, we gave a formulation of an Answer Set Pro-
gramming language based on Default Logic where the basic
defaults are quantifier free and the underlying language has
no function symbols. We showed that our Default Logic
ASP programs capture precisely theΣp

2 search problems.
That is, one can reduce anyΣp

2 search problem to the prob-
lem of finding generating sets for extensions of a Default
Logic ASP program and vice versa, the problem of finding
a generating set for an extension of a Default Logic ASP
program is aΣp

2 search problem. We proved our result by
showing that one could uniformly code the accepting com-
putations nondeterministic oracle Turing machines with an
oracle for 3-SAT as generating sets of appropriate Default
Logic ASP programs. This proof provides a precise way
of explaining why questions about extensions of Default
Logic theories naturally lie at the second level of polyno-
mial time hierarchy since it shows that there is a natural way
in which Default Logic theories can query an NP-complete
oracle. We note that there is an alternative way to derive the
same result by reducing the problem of finding generating
sets for extensions of Default Logic ASP programs to the
problem of answering queries of Default Logic query lan-
guage of Cardoli, Eiter, and Gottlob (Cadoli et. al. 1994;
Cadoli et. al. 1997).

References
N. Bidoit and Ch. Froidevaux. General Logic Databases
and Programs: Default Semantics and Stratification.Infor-
mation and Computation19:15–54, 1991.
M. Cadoli, T. Eiter and G. Gottlob. Default Logic as a
Query Language.Proceedings of the Fourth International
Conference on the Principles of Knowledge Representation
and Reasoning(KR-94), pages 99–108, 1994.
M. Cadoli, T. Eiter and G. Gottlob. Default Logic as a
Query Language.IEEE Transactions on Knowledge and
Data Engineering9:448-463, 1997.
P. Cholewínski, W. Marek, A. Mikitiuk, and
M. Truszczýnski. Programming with default logic.
Artificial Intelligence Journal112:105–146, 1999.
D. East and M. Truszczýnski. Propositional satisfiabil-
ity in answer-set programming, Proceedings of Joint
German/Austrian Conference on Artificial Intelligence,
KI’2001, Lecture Notes in Artificial Intelligence, Springer
Verlag, 2001.
T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
A deductive system for non-monotonic reasoning. InPro-
ceedings of the 4th International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning, Springer LN in
Computer Science 1265, pages 363–374, 1997.
T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
The KR System dlv: Progress Report, Comparisons, and
Benchmarks. InProceedings Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR-98), pages 406–417, 1998.
M.R. Garey and D.S. Johnson.Computers and intractabil-
ity; a guide to the theory of NP-completeness. W.H. Free-
man, 1979.
M. Gelfond and V. Lifschitz. The stable semantics for logic
programs. InProceedings of the 5th International Sympo-
sium on Logic Programming, pages 1070–1080, 1988.
M. Gelfond and V. Lifschitz. Classical negation in logic
programs and disjunctive databases.New Generation Com-
puting9:365–385, 1991.
G. Gottlob. Complexity Results for Nonmonotonic Logics.
Journal of Logic and Computation2:397–425, 1992.
V. Lifschitz. Answer set planning. InLogic program-
ming and nonmonotonic reasoning, volume 1730 ofLec-
ture Notes in Computer Science, pages 373–374. Springer-
Verlag, 1999.
W. Łukaszewicz. Considerations on default logic. In R. Re-
iter, (ed.),Proceedings of the International Workshop on
Non-Monotonic Logic, pages 165–193, 1984.
On the Foundations of Answer Set Programming,Pro-

ceedings of AAAI Symposium on Answer Set Programming,
Stanford, CA. March 26-28, 2001.
V.W. Marek and M. Truszczýnski. Relating Autoepistemic
and Default Logics.Proceedings of the First International
Conference on Knowledge Representation and Reasoning,
pages 276–288, 1989.
V.W. Marek and M. Truszczýnski. Stable Semantics for
Logic Programs and Default Theories. In:Proceedings of
North American Conference on Logic Programming, pages
243–257, 1989.
V.W. Marek and M. Truszczýnski. Nonmonotonic Logic:
Context-Dependent Reasoning. Springer Verlag, 1993.
V.W. Marek and M. Truszczýnski. Stable Models and an
Alternative Logic Programming Paradigm.The Logic Pro-
gramming Paradigm, pages 375–398. Series Artificial In-
telligence, Springer-Verlag, 1999.
A. Mikitiuk and M. Truszczynski. Rational Default Logic
and Disjunctive Logic Programming. In: A. Nerode and
L. Pereira, (eds.),Logic Programming and Nonmonotonic
Reasoning, pages 283–299, 1993.
R. Moore. Semantical Considerations on Nonmonotonic
Logic. Artificial Intelligence Journal, 25:75–94, 1985.
I. Niemel̈a. Logic programs with stable model semantics
as a constraint programming paradigm. InProceedings of
the Workshop on Computational Aspects of Nonmonotonic
Reasoning, pages 72–79, 1998.
I. Niemel̈a and P. Simons. Efficient implementation of the
well-founded and stable model semantics. InProceedings
of JICSLP-96. MIT Press, 1996.
R. Reiter. A logic for default reasoning.Artificial Intelli-
gence, 13(1-2):81–132, 1980.
P. Simons, I. Niemelä, and T. Soininen. Extending and

implementing the stable model semantics.Artificial Intel-
ligence Journal, 138:181–234, 2002.
J. Stillman. The Complexity of Propositional Default
Logic.Proceedings of the 10th National Conference on Ar-
tificial Intelligence, AAAI-92, pages 794-799, 1992.
T. Syrjänen. Manual of Lparse version 1.0,http://
saturn.tcs.hut.fi/Software/smodels, 2001
J. Ullman. Principles of Database and Knowledge-Base
Systems, Computer Science Press, 1988.

