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1. INTRODUCTION

Logic programming has its roots in the investigations of the resolution principle
[Robinson 1965], an inference method for first order logic. Restricting the first or-
der theories to Horn theories consisting of definite clauses and a definite goal, one
could design proof procedures that avoid many of the redundancies showing up in
the search spaces of the more general theorem provers of those days. Moreover, one
could give a procedural reading to the definite clauses that corresponds to the strat-
egy followed by SLD-proof procedures as explained in the seminal Kowalski [1974]
paper. Meanwhile, the group of Colmerauer developed a programming language
along the same lines and called it Prolog [Colmerauer et al. 1973] as abbreviation
for PROgrammation en LOGique.

Many researchers were attracted by the new paradigm: application programmers
by the ability to program at a, until then, unprecedented level of abstraction;
implementors by the challenge to design and develop efficient implementations;
theoreticians by the opportunity to analyze a paradigm rooted in logic.

Originally, logic programming was often summarized as programming in a subset
of first order logic. Specifically, this subset is the Horn logic, based on Horn theories,
that is theories consisting of clauses with at most one positive literal. Despite the
fact that this view is still wide-spread, it broke down soon after Logic Programming
originated. The introduction of the negation as failure rule raised the following
dilemma to the Logic Programming community:

—On the one hand, the negation as failure inference rule was unsound with respect
to the declarative reading of a program as a first order Horn theory [Clark 1978].

—On the other hand, negation as failure derived conclusions with a strong common
sense appeal and turned out to be very useful and natural in many practical
situations.

The way out was either to drop the negation as failure rule or to strengthen the
interpretation of logic programs as Horn theories. The multiple and natural appli-
cations of negation as failure resulted in choosing the second option. What at the
start seemed to be a hack became a feature. As Przymusinski [1989b] expressed
it later, the Logic Programming community decided that “we really do not want
classical logic semantics for logic programs. . . .We want the semantics of a logic
program to be determined more by its common sense meaning.”. This raised the
following fundamental question: what is this common sense meaning and how can
we provide a formal semantics for it? The search for an answer to this question
started in the late seventies and was intensively pursued until the early nineties.
These investigations resulted in a complex and heterogeneous landscape of Logic
Programming.

With respect to definite programs (i.e. programs without negation), the ques-
tion was soon settled. While logicians [Smullyan 1968] knew for long time that
consistent Horn theories possess a least Herbrand model, van Emden and Kowalski
[1976] showed the existence of the least Herbrand model as the least fixpoint of a
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monotone operator, the immediate consequence operator. A few years later, Reiter
[1978] showed that the least Herbrand model was the unique intended interpreta-
tion of a Horn program augmented with the common sense reasoning principle of
the Closed World Assumption. The least Herbrand model is now widely accepted
as the intended interpretation of a definite logic program.

With respect to programs with negation, things turned out to be much more
complex. There seemed to be different common sense ways in which a logic program
could be interpreted. This resulted in three major research directions.

Clark [1978] proposed to interpret a logic program as a first order theory, called
the completion of the program. It consists of a set of logical iff-definitions of which
the rules of the programs represent only the if-parts, augmented with a theory that
axiomatizes the unification. Although this approach resulted in a large body of
research, including a three valued completion semantics for programs with nega-
tion [Fitting 1985], a basic shortcoming of it is that it fails to capture the intuitive
meaning, even in the case of definite programs. A notorious example is the tran-
sitive closure program. The unique intended interpretation of this program is its
least Herbrand model. However, the completed theory can have also other mod-
els. In fact, every fixpoint of the van Emden-Kowalski operator is a model of the
completion.

The canonical model, standard or preferred model approach is the second major
research direction. The idea is to select one model among the Herbrand models as
the intended model. The justification for the chosen model is typically based on the
appeal to common sense, i.e. on what the reader naturally expects to be the meaning
of the program. The approach was initiated by Reiter [1978] for definite programs.
Later, the canonical model approach was extended to larger classes of programs.
It started with work on the perfect model semantics for stratified programs [Apt
et al. 1988; Van Gelder 1988], which was extended to locally stratified [Przymusinski
1988] and weakly stratified [Przymusinska and Przymusinski 1990] programs. This
direction culminated in the well-founded semantics which defines a unique (possibly
3-valued) model for all normal programs [Van Gelder et al. 1991].

A third major direction was motivated by the research in Non-monotonic Rea-
soning. The idea was introduced by Gelfond [1987], who proposed to interpret
failure to prove literals not p as epistemic literals I do not know p and represented
them by the modal literal ¬Kp in auto-epistemic logic (AEL) [Moore 1985]. In this
embedding, a logic programming rule:

p :- q, not r

is interpreted as the following AEL formula:

p← q ∧ ¬Kr

Marek and Truszczyński [1989] proposed a similar embedding in Default Logic
[Reiter 1980] which maps the above rule to the default:

q : ¬r
p

In this view, Logic Programming is seen as a restricted form of default logic or
auto-epistemic logic. This approach resulted in stable semantics of logic programs
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[Gelfond and Lifschitz 1988] and was the foundation for Answer Set Programming
[Niemelä 1999; Marek and Truszczyński 1999].

It is easy to see that the above approaches are based on different common sense
interpretations of Logic Programming. Consider for example the definite program
{p : −q}. In the completion, stable and well-founded semantics, its unique model
is the empty set {}.

—Under completion semantics, the meaning of the program is given by the theory
{q ↔ false, p ↔ q} which entails the falsity of p and q. The same holds for the
canonical model views which all coincide for this program.

—Interpreted as an answer set program, its meaning is given by the unique answer
set {}. Since an answer set is to be interpreted as a first order theory consisting
of literals, the meaning of this answer set program is given by the empty first
order theory and entails neither ¬p, nor ¬q, nor even p← q. This interpretation
matches with the embedding of the program in default logic. The unique default
extension of the default

q :
p

is the (deductive closure of the) empty first order logic theory.

This example illustrates that “the” common sense meaning of logic programs
does not exist; in fact a number of different intuitions exist. The existence of
multiple “common sense” meanings of logic programming is responsible for the
complex landscape of Logic Programming semantics. Consequently, common sense
gives little hope for defining a generally accepted single semantics. In view of this
multiplicity of viewpoints, we need to find other, more solid information principles
that can serve as an epistemological foundation for Logic Programming.

The goal of this paper is to propose such an alternative epistemological foun-
dation for logic programming. It is not based on a common sense principle but
on a solid mathematical information principle1. The thesis is developed that logic
programming can be understood as a natural and general logic of inductive def-
initions. In this view, logic programs represent definitions; logic programs with
recursion represent inductive definitions. In particular, viewing logic programs as
inductive definitions yields a solid justification for the well-founded model as the
unique intended model of a logic program. Thus, our work provides an epistemo-
logical foundation for the well-founded model as the canonical model of a logic
program. Moreover, it equips logic programs with an easy to comprehend meaning
that corresponds very well with the intuitions of programmers.

The main argument for the thesis comes from the comparison of Logic Program-
ming with studies of inductive definitions in mathematical logic. Such a comparison
shows a strong congruence between these studies and Logic Programming at the
knowledge theoretical, syntactical, semantical and complexity-theoretical level. In
particular, this paper compares definite logic programs with positive and mono-
tone Inductive Definitions, and programs with negation with two approaches for

1With the term “information principle” we mean a semantic principle, disconnected from any
particular inferential mechanism.
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generalized non-monotone inductive definitions, Inflationary Inductive Definitions
and Iterated Inductive Definitions. Moreover, it is pointed out that there are nat-
ural types of inductive definitions that can be represented by logic programs that
have no counterpart in mathematical logic studies of inductive definitions. It is ar-
gued therefore that Logic Programming under well-founded semantics can make an
original knowledge-theoretical contribution to the formal study of inductive defini-
tions and can help to improve our understanding of what non-monotone inductive
definitions are.

We believe that appealing to the reading of logic programs as inductive definitions
provides a much stronger justification for the intended model than appealing to
common sense; it explains why the intended model has a common sense appeal.

Our paper is structured as follows. Sections 2 and 3 offer brief overviews of the
syntax and semantics of Logic Programming and of Inductive Definitions. These
sections define the necessary background for the main arguments in the text, the
comparison of both areas in Section 4. In section 5 we discuss the implications of
our view. We conclude in Section 6.

2. A BRIEF OVERVIEW OF LOGIC PROGRAMMING SYNTAX AND SEMANTICS

We assume familiarity with basic syntactical and semantical concepts of classical
logic and logic programming [Lloyd 1987]. A logical alphabet Σ consists of variables,
constants, function symbols and predicates. The first order logical language based
on Σ is the set of all well-formed first order formulas using symbols of Σ. Terms are
defined in the usual inductive process from constants and variables of the language
by application of function symbols. Atoms are formulas of the form p(t1, .., tn)
where p is a predicate symbol and t1, . . . , tn are terms; literals are atoms or their
negation. The Herbrand-universe HU is the set of all ground terms. The Herbrand
base HB is the set of all ground atoms.

A definite rule is of the form a :- B where a is an atom and B a conjunction
of atoms. A normal rule can also have negative literals in the body B. Note that
we use the rule operator :- to distinguish rules from classical logic implications. A
definite (respectively: normal) program is a set of definite (respectively: normal)
rules. A normal program P is called stratified [Apt et al. 1988; Van Gelder 1988] if
it can be split in a sequence of nP strata (Pi)0≤i<nP

such that for each predicate
symbol p, there exists a unique natural number ip called the level of p such that
for each rule C = p(t1, .., tn):-B ∈ P , it holds that (1) C ∈ P iff C ∈ Pip

, (2) if
predicate symbol q occurs in a positive literal of B then iq ≤ ip and (3) if predicate
symbol q occurs in a negative literal of B, then iq < ip. Pi is called the i’th stratum
of P .

Local stratification generalises the concept by considering the grounding of the
program: the possibly infinite propositional2 logic program, denoted ground(P ),
consisting of all rules that can be obtained by substituting all variables of a rule
by ground terms. A normal program P is called locally stratified [Przymusinski
1988] if there is a possibly infinite ordinal number nP and the grounding of P
can be split in a sequence of nP strata (Pi)0≤i<nP

such that for each atom p,
there exists a unique ordinal number ip called the level of p such that for each rule

2Ground atoms are considered propositions in the corresponding propositional system.
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C = p:-B ∈ ground(P ), it holds that (1) C ∈ ground(P ) iff C ∈ Pip
, (2) if atom q

occurs in a positive literal of B then iq ≤ ip and (3) if atom q occurs in a negative
literal of B, then iq < ip.

As usual in logic programming, we will use the grounding of a program P rather
than the program itself to provide the meaning of the program3.

We now give an overview of the semantics of Logic Programming. The theory
outlined here is the algebraic approach to Logic Programming semantics based on
operators in lattices, mostly due to Fitting [1985], Gelfond and Lifschitz [1988],
Przymusinski [1990] and Fitting [1991], Fitting [1993]. To make this paper self-
contained we will introduce the main concepts of this approach.

The lattice T WO = {f, t} is ordered by the natural ordering ≤ with f ≤ t.
This defines a complete lattice ordering of T WO. We will also consider the lattice
FOUR that consists of elements ⊥,⊤, f4, t4. There are two natural lattice orderings
in FOUR. Namely the truth ordering ≤t where f4 ≤t ⊥, f4 ≤t ⊤,⊥ ≤t t4,⊤ ≤t t4

and the knowledge ordering ≤k where ⊥ ≤k f4,⊥ ≤k t4, f4 ≤k ⊤, t4 ≤k ⊤. Each
element has its inverse ⊥−1 = ⊥,⊤−1 = ⊤, f4

−1 = t4, t4
−1 = f4. T HREE is the

restriction of FOUR to ⊥, f4, t4. Note that t4, f4 have no least upperbound with
respect to ≤k in T HREE , hence ≤k is not a complete lattice ordering in T HREE .

To define semantics for logic programs we will need to discuss interpretations.
Those are defined as mappings from the Herbrand base HB of the program into
the set of truth values: two-valued interpretations map atoms into T WO, three-
valued interpretations into T HREE and four-valued interpretations into FOUR.
The orderings ≤ in T WO, and ≤t and ≤k in FOUR lift to interpretations. So,
for two-valued interpretations, I ≤ J holds if I(a) ≤ J(a) for each atom a. The
orders ≤ and ≤t define complete lattice orderings in the corresponding sets of two-,
three- and four-valued interpretations; the order ≤k is a complete lattice ordering
of four-valued interpretations but not of three-valued interpretations.

We will use a slightly different representation for three-valued and four-valued
interpretations which will allow to simplify the formalization of the semantics. It
is based on the fact that FOUR can be defined alternatively as the product lattice
of T WO. Namely, we can define ⊥ = (f, t),⊤ = (t, f), f4 = (f, f), t4 = (t, t). In this
representation, the orders ≤t,≤k, and the inverse in FOUR are generated by the
simple laws: (v, w) ≤t (v1, w1) iff v ≤ v1 and w ≤ w1; (v, w) ≤k (v1, w1) iff v ≤ v1
and w ≥ w1; (v, w)−1 = (w−1, v−1). Note that T HREE is the set of tuples (v, w)
such that v ≤ w.

With this representation in mind, it is easy to see that there is a one-to-one
correspondence between three- and four-valued interpretations v and pairs (I, J) of
two-valued interpretations, namely, for each symbol p, v(p) = (I(p), J(p)). Thus,
a four-valued interpretation can also be defined as a pair 〈I, J〉 of two-valued in-
terpretations. Three-valued interpretations correspond to pairs 〈I, J〉 such that
I ≤ J . The orders are then defined by: 〈I, J〉 ≤t 〈I1, J1〉 iff I ≤ I1 and J ≤ J1;
〈I, J〉 ≤k 〈I1, J1〉 iff I ≤ I1 and J ≥ J1. If we view the two-valued interpretations
I and J in the four-valued interpretation 〈I, J〉 as sets of true atoms, then the set

3Using the grounding of a program boils down to restricting models to Herbrand interpretations.
In section 5.4, we briefly discuss the effect of this restriction and the extension of the semantics
to general interpretations.
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I ∩ J identifies the atoms that are true in 〈I, J〉; the set HB \ (I ∪ J) defines the
false atoms; the set J \ I those that are undefined and finally, the set I \ J those
that are inconsistent.

A useful and natural way of interpreting a three-valued interpretation is as an
approximation of two-valued interpretations. A three-valued interpretation 〈I, J〉
approximates every two-valued interpretation I ′ such that I ≤ I ′ ≤ J . Here I is an
underestimate of I ′, whereas J is an overestimate. The knowledge ordering of ap-
proximations corresponds to the intuition of a tighter, more precise approximation.
As we will show, the four-valued semantics of logic programs can be considered
as a computation of a sequence of improving approximations until some fixpoint is
reached. The sequence is obtained by iterating some operator that takes an approx-
imation and refines it by deriving a better approximation consisting of a greater
underestimate and lower overestimate. While we are really interested in approx-
imations (i.e. three-valued interpretations), the considerations of the bilattice of
four-valued interpretations considerably simplifies the arguments because the set of
three-valued interpretations does not form a lattice under the ordering ≤k, whereas
the set of four-valued interpretations does.

Now we are ready to discuss the operators in the lattices of interpretations. The
first operator is the immediate consequence operator TP defined by van Emden and
Kowalski [1976]. There exists three versions of it: the two-valued operator denoted
TP was defined by van Emden and Kowalski [1976]; the three-valued version ΦP was
introduced by Fitting [1985] and the four-valued version was introduced by Fitting
[1991] and will be denoted by TP . These operators can be defined uniformly in the
following way. Let I be any two-valued interpretation (respectively three-valued,
four-valued interpretation). We define J = TP (I) (respectively ΦP (I), TP (I)) so
that for each atom a, J(a) is computed in two steps:

(a) Compute the truth value4 of the body B of each clause a:- B with respect to
I.

(b) Take the maximum5 of the values computed in point (a). This is J(a).

Obviously, TP generalises ΦP , which in turn generalises TP ; so, for a three-valued
interpretation I, TP (I) = ΦP (I).

The operator TP is ≤-monotone if P is a definite program, but not in general.
The Knaster-Tarski theorem [Tarski 1955] asserts that every monotone operator in a
complete lattice possesses a fixpoint, that the fixpoints themselves form a complete
lattice, and that the least fixpoint can be computed by iteration of the operator
starting at the least element of the lattice. Thus in case of a definite program P ,
TP has a unique least fixpoint called the least Herbrand model [van Emden and
Kowalski 1976]. But in the general case of normal programs, there is no guarantee
that TP has a least fixpoint; it may have no fixpoint at all or multiple minimal
ones. Fixpoints of TP have been identified as Herbrand models of the completion
of P [Apt and Emden 1982].

4In the case of three- and four-valued interpretations, the truth value of B is the ≤t-minimum of

the truth values of the literals in B.
5In the case of three- and four-valued interpretations, the maximum with respect to ≤t is to be
computed.
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The operators ΦP and TP can be defined equivalently on pairs of two-valued
interpretations. It can be easily verified that TP maps a pair 〈I, J〉 to a pair
〈I1, J1〉 such that for each atom a ∈ HB, a is true in I1 if a rule a :- B can be
found such that each positive literal in B is true in I and each negative literal in
B is true in J ; a is true in J1 if a rule a :- B can be found such that all positive
literals of B are true with respect to J and all negative literals of B are true with
respect to I. This observation is interesting for two reasons. First, it defines the
three- and four-valued operators in terms of standard 2-valued truth arithmetic.
Second, it illuminates the way TP computes new approximations. Assume that we
have obtained a pair 〈I, J〉 that approximates some intended but so far unknown
interpretation I ′. The operator TP produces a new approximation 〈I1, J1〉 of I ′: I1 is
obtained by underestimating all literals in the bodies of rules, hence by evaluating
positive literals with respect to I and negative literals with respect to J . I2 is
obtained by overestimating all literals. Thus, I1 and J1 provide a new under- and
overestimate.

Given this intuition, it is now easy to see that better approximations produce
(via TP ) yet better approximations. That is, if 〈I, J〉 ≤k 〈I

′, J ′〉 then TP (〈I, J〉) ≤k

TP (〈I ′, J ′〉). In other words TP is ≤k-monotone. Moreover, for approximations
〈I, J〉 (that is when I ≤ J), the value TP (〈I, J〉) is also an approximation. The
effect of the first of these two facts is that the Knaster-Tarski theorem is applicable
and so the operator TP possesses a least fixpoint (in the ordering ≤k). The second
fact implies that the least fixpoint computation generates more and more precise
approximations and the fixpoint is also an approximation. In other words, the
least fixpoint has no inconsistent atoms. Hence, it is also the least fixpoint of
the three-valued immediate consequence operator. Since a similar construction has
been applied by Kleene in his fixpoint theorem for partial recursive functions and
by Kripke in his famous paper on truth, the least fixpoint of the operator TP is
often called the Kripke-Kleene fixpoint [Fitting 1985].

We will now discuss the other two operators important for our investigations.
Let I be a two-valued interpretation. The Gelfond-Lifschitz reduct, P I of the

propositional program P is obtained in two steps.

(a) We eliminate from P all clauses C such that the body of C contains a literal
¬a false in I (i.e. a is true in I);

(b) in the remaining clauses, we eliminate all negative literals in the bodies. Note
that negative literals in these clauses are true in I.

The program P I is a definite program and so it possesses a least model N . This
interpretation N is the value of the two-valued Gelfond-Lifschitz operator GLP on
I [Gelfond and Lifschitz 1988].

The larger the I, the less clauses are being left in P I , and so it follows that
the operator GLP is anti-monotonic, that is I1 ≤ I2 implies GLP (I2) ≤ GLP (I1).
The fixpoints of GLP , if they exist, are called the stable models of P [Gelfond and
Lifschitz 1988]. When P is a program with variables, the stable models of P are
stable models of the grounding of P .

The Gelfond-Lifschitz operator has been generalised to three-valued interpreta-
tions by Przymusinski [1990] and to four-valued interpretations by Fitting [2001].
Here we provide a simplified but equivalent definition of these operators presented
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in [Denecker et al. 2000]. The four-valued operator GLP is defined on the bilattice
of four-valued interpretations as follows:

GLP (〈I, J〉) = 〈GLP (J),GLP (I)〉.

As was the case with TP , also the operator GLP can be understood as an operator
for refining approximations. Assume that we obtained an approximation 〈I, J〉 of
the intended but unknown interpretation I ′ such that I ≤ I ′ ≤ J . A common
intuition about I ′ is that true atoms in I ′ should be supported, that is they should
be provable from the false atoms in I ′. This intuition indicates how to revise the
approximation 〈I, J〉. The new overestimate for I ′ is computed by fixing the truth
values of the negative literals in the bodies of P by some safe overestimation, and
then performing a fixpoint computation using the resulting definite program. A
safe overestimate of the negative literals not p is given by interpreting p by the
current underestimate I. Analogously, the new underestimate is obtained by fixing
the truth values of the negative literals not p in rules by a safe underestimation, and
performing the fixpoint computation. A safe underestimation of not p is obtained
by interpreting p by the current overestimation J .

The anti-monotonicity of the operator GLP implies two important properties of
GLP analogous to those of the operator TP . First, the operator GLP is monotone
with respect to the ordering ≤k. Second (which, in fact was outlined above, when
we discussed the intuition for GLP ), GLP maps approximations to approximations.
Consequently, just like in case of the operator TP , we find that the Knaster-Tarski
theorem is applicable in case of GLP , and so GLP possesses a ≤k-least fixpoint.
Moreover, this least fixpoint is an approximation (as defined above).

The least fixpoint of GLP is called the well-founded model of P . The well-founded
model happens to be a fixpoint of the operator TP . Consequently, the well founded
model is ≤k-greater than the Kripke-Kleene fixpoint.

The well-founded model was originally defined by Van Gelder, Ross, and Schlipf
[1991] using a different construction. Its characterization as the least fixpoint of
the three-valued Gelfond-Lifshitz operator is due to Przymusinski [1990]. The un-
derlying algebraic structure of the product lattice of interpretations, the role of the
four-valued generalization of the van Emden-Kowalski operator TP and of the alge-
braic structure of the three-valued and four-valued versions of the Gelfond-Lifschitz
operator have been presented by Fitting [1993], [Fitting 2001] and [Denecker et al.
2000].

3. A BRIEF OVERVIEW OF INDUCTIVE DEFINITIONS IN MATHEMATICAL LOGIC

3.1 Monotone induction

The study of induction can be defined as the investigation of a class of effective
construction techniques in mathematics. There, sets are frequently defined through
a constructive process of iterating some recursive recipe that adds new elements to
the set given that one has established the presence or absence of other elements in
the set. Such a recipe corresponds naturally to an operator on sets (mapping any set
S to the set obtained by applying the recipe to elements of S). The set defined by
the inductive definition can be obtained through some iterated application of this
operator until a fixpoint is reached. Consequently the study of inductive definitions
is closely related to the study of operators and their fixpoints [Aczel 1977].
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Originally, mathematical logicians focused on monotone inductive definitions.
When an operator Γ is monotone (i.e. R ⊆ R′ implies Γ(R) ⊆ Γ(R′)), it follows
from the Knaster-Tarski theorem that Γ possesses a least fixpoint. This set can
be characterized either in a non-constructive way as the intersection of all sets
that are closed under Γ (i.e. Γ(S) ⊆ S) or in a constructive way as the limit of the
increasing sequence obtained by iterated applications of Γ. For this reason, Tarski’s
least fixpoint theory of monotone operators [Tarski 1955] can be considered as the
algebraic theory of monotone induction.

Applications of monotone induction are frequent in mathematics. Typical ex-
amples are sets closed under some operation. For instance, the subgroup G(B)
generated by a set B of elements in a group 〈G, ., (·)−1〉 is defined as the least sub-
set S ⊆ G such that B ⊆ S and for each x, y ∈ S : x.y−1 ∈ S. Other examples are
the definitions of terms and formulas of logic, or the deductive closure Cn(T ) of a
logic theory T — the least set of formulas containing T and closed under application
of all inference rules of logic.

Let L be a language of predicate calculus with predicate symbols p1, . . . , pk and
one additional n-ary relational symbol p. Let ϕ[x1, . . . , xn] be a formula of L with
n free variables x1, . . . , xn. Let us fix an interpretation of the symbols p1, . . . , pk

by 〈A,R1, . . . , Rk〉. Here A fixes the domain and interpretation of constant and
function symbols and Ri is an n-ary relation interpreting pi. We say that ϕ is
monotone (in relational symbol p) if for all interpretations S1 and S2 of symbol p,
such that S1 ⊆ S2 and for all tuples of domain elements d1, . . . , dn

〈A,R1, . . . , Rk, S1〉 |= ϕ[d1, . . . , dn] implies 〈A,R1, . . . , Rk, S2〉 |= ϕ[d1, . . . , dn].

Given such interpretation 〈A,R1, . . . , Rk〉 and the monotone formula ϕ, we can
define an operator Γϕ : An → An by

Γϕ(R) = {〈d1, . . . , dn〉 : 〈A,R1, . . . , Rk, R〉 |= ϕ[d1, . . . , dn]}.

The operator Γϕ is monotone, thus it possesses a least fixpoint S. The fixpoint S
possesses the property:

{〈d1, . . . , dn〉 : 〈A,R1, . . . , Rk, S〉 |= ϕ[d1, . . . , dn]} = S.

By the Knaster-Tarski theorem, S = Γβ
ϕ(∅) for a least ordinal β. The sets Γα

ϕ for
α ≤ β are called levels. The ordinal β is called the length of the recursion.

The Knaster-Tarski theorem tells us that when we deal with a monotone inductive
definition then a highly non-constructive definition of a fixpoint (defined as the
intersection of a large, possibly non-denumerable, family of sets) can be turned
into a constructive one (iterate the operator until the fixpoint is reached; when the
universe is denumerable, the fixpoint will be reached at a denumerable ordinal).
The logical theory of inductive sets in mathematical logic studies the complexity of
sets that are inductively definable, the complexity of levels, and the length of the
process to reach the fixpoint. Pioneering work in this area was done by Kleene and
Spector.

Spector [1961] discussed the question of monotone inductive definability of sets of
integers and sets of elements of the Baire space NN (that is sets of number-theoretic
functions). Spector announced that recursively enumerable sets are precisely those
definable by positive existential inductive definitions (that is positive formulas with-
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out universal quantifiers). Moreover the length of induction is at most ω, that is
the fixpoint is reached in ω steps. Even earlier, Kleene [1955] studied so-called
Π1

1 sets of natural numbers6. Spector [1961] noticed that Kleene’s results imply
that all Π1

1 sets are one-to-one reducible to a set defined inductively by a Π0
1 pos-

itive inductive definition, that is a positive inductive definition where the defining
formula ϕ is of the form ∀nψ and ψ does not contain quantifiers. The length of
induction is, however, ωCK

1 where ωCK
1 is the least ordinal that is not the type of

a recursive well-ordering. Even the Π1
1 positive inductive definitions (that is those

with the formula ϕ being Π1
1) do not increase the complexity of the fixpoint; it is

still Π1
1. Spector found the exact bounds on the complexity classes of the levels of

monotone inductive definitions. An abstract version of Spector’s results is given in
Aczel [1977].

The fundamental study of the abstract version of the results of Kleene and Spector
was performed by Moschovakis [1974] (see also [Aczel 1977], [Barwise 1977]).

3.2 Extensions for non-monotone induction

In mathematical logic, there exists two very different extensions of the above frame-
work to deal with non-monotonic forms of induction.

Moschovakis [1974] considered a scheme where formulas ϕ are not necessarily
monotone. Operators associated to such definitions are non-monotone and may
have no fixpoints or multiple minimal fixpoints. To avoid this problem he modified
the definition of level, by adding the previously defined level, that is by setting

Sα+1 = Sα ∪ Γϕ(Sα)

(and Sλ =
⋃

α<λ Sα for limit λ).
It is easy to see that the sequence of levels is increasing and has a limit Sϕ which

we call the inflationary fixpoint defined by ϕ. Note that Sϕ = Sϕ ∪ Γϕ(Sϕ) or
equivalently Γϕ(Sϕ) ⊆ Sϕ. In other words, Sϕ is a pre-fixpoint of Γϕ. In general, it
is not a fixpoint of Γϕ, and it is not even a minimal pre-fixpoint. As an example,
consider the predicate p(x) defined by the formula x = a ∧ ¬p(b) ∨ x = b ∧ ¬p(a).
The set defined by this formula is {a, b}. It is not a fixpoint and is strictly larger
than both fixpoints ({a} and {b}) of this formula.

Moschovakis called this type of definitions non-monotone inductive definitions.
Later, Gurevich and Shelah [1986] called them inflationary inductive definitions.

A very different account of non-monotone induction is found in Iterated Inductive
Definitions (IID’s). These were first introduced in [Kreisel 1963] and later studied
in [Feferman 1970; Martin-Löf 1971; Buchholz et al. 1981]. Aczel [1977] formulates
the intuition of Iterated Inductive Definitions in the following way. Given a math-
ematical structure M0 fixing the interpretation of the function symbols and some
set of interpreted predicates, a positive or monotone inductive definition defines
one or more new predicates in terms of M0. The definition of these new predi-
cates may depend positively or negatively on the interpreted predicates. Once the
interpretation of the defined symbols p is fixed, M0 can be extended with these
interpretations, yielding a new interpretation M1. On top of this structure, again

6These are sets of integers definable as {m : ∀f∃n R(m, n, f(n))} where R is a recursive relation
(quantifier ∀f ranges over all number-theoretic functions, that is elements of the Baire space NN ).
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new predicates may be defined in the similar way as before. The definition of these
new predicates may now depend positively or negatively on the defined predicates
p as their interpretation is now fixed by M1. This modular principle can be iterated
arbitrarily many times, yielding a possibly transfinite sequence of positive inductive
definitions.

Though the intuition is simple, it is not straightforward to see how this idea is
implemented in IID-approaches. [Feferman 1970; Buchholz et al. 1981] investigate
IID’s encoded in an IID-form, a single FOL formula of the form F [n, x,Q, P ]7, and
expresses its semantics in a circumscription-like second order formula. The problem
is that this encoding is extremely tedious and blurs the simple intuitions behind
this work. For more details on the encoding of iterated inductive definitions, we
refer the reader to [Denecker 1998].

Inflationary inductive definitions and Iterated Inductive definitions are not equiv-
alent and are based on very different intuitions. At present, there is no standard
well-motivated treatment of non-monotone inductive definitions.

3.3 Discussion of non-monotone induction

When evaluating the two different approaches to non-monotone induction, the ques-
tion arises which of them has an empirical basis in mathematical practice. The
specific question is: can we find inductive constructions in mathematics that use a
recipe that adds new elements to the constructed relations based on the established
absence of other elements in the relation (and hence modeling a non-monotone op-
erator)? And if such applications can be found, do such constructions correspond
to inflationary induction or to iterated induction, or can we find both types?

Non-monotone iterated induction occurs frequently in the context of inductive
definitions over a well-founded set. A well-founded set is a partial order without
infinite descending chains x0 > x1 > x2 > . . .. Equivalently, it is a partial order
such that each subset contains a minimal element. Such orderings are also called
Noetherian orderings. Inductive definitions of this kind describe the membership of
an element, say a, of the defined predicate X in this domain in terms of the presence
(or absence) of strictly smaller elements in the defined predicate. Thus, to check if
an element a belongs to X we need to check some properties of predecessors of a.
By applying this definition recipe to the minimal elements and then iterating it for
higher levels, the defined predicate can be completely constructed. Consequently,
this type of definition correctly and fully defines a predicate, even when it is non-
monotone.

The following example illustrates this principle. We can define an even natural
number n by induction on the natural numbers:

—n = 0 is even;

—if n is not even then n+ 1 is even; otherwise n+ 1 is not even.

7The meaning of the variables is as follows: x is a candidate element of the set defined by the
IID, n is an ordinal number, Q is a set of elements and P a set of elements defined in the nth

stratum. Roughly speaking, F [n, x, Q, P ] is true when x belongs to the nth stratum and x can be
obtained from the set P and the restriction of the set Q to the elements defined in strata m < n

by an application of a rule of the nth stratum.
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Representing this definition in the same style as monotone inductions yields the
following non-monotone formula defining even in the language of arithmetic:

x = 0 ∨ ∃y.x = s(y) ∧ ¬even(y) (1)

It turns out that the set of even numbers is the unique fixpoint of the opera-
tor associated to this formula. Equivalently, the set of even numbers is correctly
characterized with respect to the natural numbers by the following recursive iff-
definition:

∀x.even(x)↔ x = 0 ∨ ∃y.x = s(y) ∧ ¬even(y)

It is easy to see that the inflationary approach applied on this formula does not
yield the intended set of even numbers. Indeed, applying the operator to the empty
set produces the set of all natural numbers, which is necessarily the inflationary
fixpoint.

On the other hand, it is natural to consider this definition as an iterated inductive
definition if we split up the definition in a sequence of definitions compatible with
the order on the natural numbers. The following list depicts the splitting of the
definition in small definitions each defining a single atom:

(0) even(0) := true.
(1) even(1) := ¬even(0)
(2) even(2) := ¬even(1)

...
(n+ 1) even(n+ 1) := ¬even(n)

...

It is clear, at least intuitively, that the iterated induction correctly constructs the
predicate even.

Although intuitively correct, it is unfortunate that in the IID approach this
inductive definition cannot be encoded by the simple formula (1) defined above.
Instead, it must be encoded by a rather complex formula in which the level of the
defined atoms are explicitly encoded. This formula is8:

n = 0 ∧ x = 0 ∨ ∃m.(n = s(m) ∧ x = s(m) ∧ ¬Q(m)) (2)

For more details on this we refer to [Buchholz et al. 1981] and [Denecker 1998].
Notice that induction over a well-founded order is frequently non-monotone. A

common example is that of rank of an element in a well-founded order 〈P,�〉. The
rank of an element x of P is defined by transfinite induction as the least ordinal
which is a strict upper-bound of the ranks of elements y ∈ P such that y ≺ x.

Formally, let F [x, n] denote the following formula expressing that n is a larger
ordinal than the ranks of all elements y ≺ x:

∀y, n′.(y ≺ x ∧ rank(y, n′)→ n′ < n)

Intuitively, rank(x ,nx ) is represented by the following formula:

F [x, nx] ∧ ∀n.(F [x, n]→ nx ≤ n)

8Note that there is no positive induction involved, so only the variable Q representing the elements
of lower strata occurs (see the discussion in footnote 7).
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Note that rank occurs negatively in this definition (it occurs as a condition in the
implication in the first conjunct) and that the associated operator is non-monotone.
As in the case of even, the meaning of this definition cannot be obtained via in-
flationary induction9. Instead, iterated induction is required. In the context of a
well-founded structure, rank is also correctly described by the corresponding iff-
definition:

∀x, nx.rank(x, nx)↔ F [x, nx] ∧ (∀n.F [x, n]→ nx ≤ n)

Possibly the most important application of this form of induction is the defini-
tion of the levels of a monotone operator in Tarski’s least fixpoint theory. Given
an operator O in a complete lattice 〈L,⊥,⊤,≤〉, Tarski defines the levels of the
operator O by transfinite induction:

—O0 = ⊥

—Oα+1 = O(Oα)

—Oα = lub({Oα′

|α′ < α}) if α is a limit ordinal.

This induction defines a function mapping ordinal numbers from some pre-selected
segment γ of ordinals to the lattice L. The function is defined by transfinite iterated
induction in the well-founded order of the segment of ordinals. It is of interest to
see if this definition is monotone or non-monotone. It is not straightforward to see
this due to the use of the functional notation and of the higher order lub function.
Therefore, consider the following reformulation using a predicate notation. We
introduce the binary predicate levelO such that levelO(α, x) iff Oα = x. Using
this notation, one could represent the above inductive definition by the following
formula:







α = 0 ∧ x = ⊥∨
∃α′, y.(α = α′ + 1 ∧ x = O(y) ∧ levelO(α′, y))∨
limit(α) ∧ x = lub({y|∃β < α : levelO(β, y)})

The operator Γ associated to this definition is an operator on the power-set of the
cartesian product γ × L. It is easy to see that even if O is monotone, Γ is non-
monotone. This is due to the rule describing the predicate levelO at limit ordinals
and the fact that lub has a non-monotone behaviour with respect to ⊆. Indeed,
take some limit ordinal α and two sets S ⊆ S′ ⊆ γ × L. If (α, x) ∈ Γ(S), then
x is the lub of the set {y|∃β < α : (β, y) ∈ S}, but in general not of the set
{y|∃β < α : (β, y) ∈ S′}. Hence (α, x) does not in general belong to Γ(S′).

The above definition still contains the higher order function lub but can be ex-
pressed as a first order inductive definition which (necessarily) contains negative
occurrences of the defined predicate levelO:























α = 0 ∧ x = ⊥∨
∃α′, y.(α = α′ + 1 ∧ x = O(y) ∧ levelO(α′, y))∨




limit(α)∧ (1)
∀β, v.(β < α ∧ levelO(β, v)→ x ≥ v)∧ (2)
∀z.(∀β, v.(β < α ∧ levelO(β, v)→ z ≥ v))→ x ≤ z (3)





9The inflationary fixpoint assigns rank 0 to all elements.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



Logic Programs as Inductive Definitions · 15

In this formula, (2) expresses that x is an upper bound; (3) expresses that x is less
or equal than upperbounds. Note that levelO has a negative occurrence in (2).

Induction on a well-founded order defines elements in terms of strictly earlier
elements. This excludes that such definitions contain positive (or negative) loops.
Iterated induction generalizes this form of induction by allowing positive loops. An
example illustrating this principle is the definition of a stable theory [Moore 1985].
A stable theory extends the notion of closure Cn(T ) of a first order theory T and
represents the known formulas of a first order theory T expressible in the language
of modal logic. It can be defined through the following fixpoint expression:

S = Cn(T ∪ {KF : F ∈ S} ∪ {¬KF : F 6∈ S})

Alternatively, Marek [1989] gives a definition by iterated induction, based on the
standard inference rules and two additional inference rules:

⊢ F
KF

6⊢ F
¬KF

The first expresses that if we can infer F , then we can infer KF ; the second that
if we cannot infer F , then we can infer ¬KF . Note that the second rule is non-
monotone. The iterated induction proceeds as follows: first Cn(T ) is computed,
using the classical inference rules on first order formulas; next the two new inference
rules are applied, and the extended set is again closed for all modal formulas without
a nested modal operator. This can be iterated for formulas of increasing nesting of
modal operators until a fixpoint is reached in ω steps. This process constructs the
unique stable theory of T .

Notice that the iterated inductive definition of a stable theory is not a definition
in a well-founded set. Indeed, for any pair of logically equivalent formulas φ and ψ,
there is a sequence of inference steps leading from ψ to φ and vice versa. Hence, ψ
belongs to the stable theory if φ belongs to it and vice versa. Hence, formulas and
inference rules cannot be well-ordered in a way that the conditions of all inference
rules are strictly less than the derived formula. This definition is a simple example
of an inductive definition in a well-founded semi-order10 ≤ in which membership
of a domain element a in a defined relation X is defined in terms of the presence
of domain elements b ≤ a in X and in terms of absence of domain elements b < a
in X.

It is certainly much easier to find applications of iterated induction than of infla-
tionary induction. The applications of inflationary induction, e.g. in [Moschovakis
1974], tend to be for defining highly abstract concepts in set theory. Although
inflationary induction is expressive [Moschovakis 1974; Kolaitis and Papadimitriou
1991; Gurevich and Shelah 1986], it turns out to be very difficult to use it to encode
even simple concepts. This is illustrated by Van Gelder [1993] with a discussion of
the definition of the complement of the transitive closure of a graph. This concept
can be defined easily by an iterated definition with 2 levels: at the first level, the
transitive closure is defined; at the second level, the complement is defined as the

10This concept extends well-founded order. A semi-order ≤ is a reflexive and transitive relation.
Let x < y denote that x ≤ y and y 6≤ x. Then ≤ is a well-founded semi-order if there is no infinite
descending chain x0 > x1 > x2 > ...
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negation of the transitive closure. On the other hand, it was considered as a sig-
nificant achievement when a (function-free) solution was found using inflationary
induction. Van Gelder [1993] adds: “Presumably, in a practical language, we do
not want expression of such simple concepts to be significant achievements!”.

The cause for this may lay in the weakness of the characterization of the inflation-
ary fixpoint. A positive feature of inflationary semantics is its simple and elegant
mathematics. A negative property is that the set characterized by inflationary in-
duction, though unique, apparently has rather weak mathematical properties. The
inflationary fixpoint is not a fixpoint of the semantic operator of the definition, only
a pre-fixpoint and not even a minimal one. The property of being just a pre-fixpoint
seems too weak to be useful. Notice that in all above applications of non-monotone
induction, the intended sets are fixpoints of the operator of the inductive definition.

Let us summarize this discussion. Which form of non-monotone induction has
an epistemological foundation in mathematical practice? In the case of inflationary
induction, while we don’t exclude that it exists, we are not aware of it. For Iterated
Induction, we showed that such a basis exists. However, the current logics of
iterated induction impose an awkward syntax which makes them unsuitable for
practical use. To their defence, we must say that IID’s were never intended for
practical use but rather for constructive analysis of mathematics. But it is a natural
and modular principle. As will be argued below, logic programming builds on the
same principle and, from an epistemological point of view, contributes by offering
a more general and much more elegant formalization of this principle.

4. INDUCTIVE DEFINITIONS AS AN EPISTEMOLOGICAL FOUNDATION FOR

LOGIC PROGRAMMING

4.1 Definite programs - monotone induction

The relationship between logic programs and inductive definitions is already ap-
parent in many standard prototypical logic programming examples. Recall the
following programs:

list([]).

list([X|Y]) :- list(Y).

member(X,[X|T]).

member(X,[Y|T]):- member(X,T).

append([],T,T).

append([X|Y],T,[X|T1]):-append(Y,T,T1).

sorted_list([]).

sorted_list([X]).

sorted_list([X,Y|Z]):-X<Y,sorted_list([Y|Z]).

arc(a,a).

arc(b,c).

connected(X,Y) :- arc(X,Y).

connected(X,Y) :- arc(X,Z), connected(Z,Y).
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These programs are natural representations of inductive definitions of the con-
cepts. Interpreting them as inductive definitions provides a justification for deduc-
ing that the atoms member(a,[b,c]), append([a,b],[c,d],[a,d]) as well as
sorted list([1,3,2]) are false, facts which could not be justified by interpreting
these programs as Horn theories. Indeed, only positive facts can be deduced from
a Horn theory.

At the syntactical level, there is a close relationship between the way inductive
definitions are represented in logic programs and in mathematical logic. In partic-
ular, the mathematical logic form corresponds exactly to the right hand side of the
completed definition of the predicate. For example, the completed definition [Clark
1978] of the member-program is:

∀x, y.member(x, y)↔ ∃z.y = [x|z] ∨ ∃z, t.y = [z|t] ∧member(x, t)

The right hand side of the equivalence is the formula that inductively defines the
member relation. Thus, (finite) definite logic programs correspond to (a subclass
of) positive existential inductive definitions.

Also at the semantical level, there is congruence between semantical methods in
mathematical logic and in Logic Programming. Aczel [1977] gives an overview of
three equivalent mathematical principles for describing the semantics of a (positive)
inductive definition. They are equivalent with the way the least Herbrand model
semantics of definite logic programs can be defined:

—the least set or least Herbrand model definition.

—the least fixpoint characterization.

—The model can be expressed also as the interpretation in which each atom has a
proof tree11. Also this formalization has been used in Logic Programming, e.g.
in [Denecker and De Schreye 1993].

The Logic Programming community devoted considerable attention to the study
of the complexity and expressivity issues of definite logic programs. Not surpris-
ingly, the results thus obtained resemble those found by Spector. Andréka and
Németi [1978] found that definite (Horn) programs compute the same sets as pos-
itive existential inductive definitions, i.e. recursively enumerable sets (for the case
of Herbrand interpretations, this result has been established already by Smullyan
[1968]). That is, for a given recursively enumerable set S there is a normal program
PS such that the language of PS contains a predicate sol/1 and a function symbol
s/1 and S = {n : sol(sn(0)) ∈ MP } where MP is the least Herbrand model of PS .
In other words, the least fixpoint of the operator TP allows for the computation of
all recursively enumerable sets. But the converse is also true - sets computed by
definite programs are recursively enumerable.

4.2 Stratified programs - iterated inductive definitions

Consider now the following examples of stratified or locally stratified logic programs:

% Using list/1, sorted_list/1

unsorted_list(L):-list(L), not sorted_list(L).

11We will discuss those in detail below.
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% Using connected/2

disconnected(X,Y):-node(X), node(Y), not connected(X,Y).

% Using person/1, man/1

woman(X):-person(X),not man(X).

even(0).

even(s(X)):- not even(X).

These are clearly examples of iterated definitions. There is an obvious corre-
spondence between (locally) stratified logic programs under perfect model seman-
tics [Apt et al. 1988; Van Gelder 1988; Przymusinski 1988] and Iterated Inductive
Definitions.

Let P be a stratified (or locally stratified) program with stratification (Pi)0≤i<nP
.

Let Di be the set of all symbols that are defined in Pi. Then the perfect model of
P is the union MnP

of the sequence of Herbrand models (Mi)1≤i≤nP
:

—M1 is the least Herbrand model of P0;

—Mn+1 is the least Herbrand model of Pn such that the restriction of Mn+1 to the
symbols in

⋃

i≤nDn is Mn.

—In case when nP is infinite, for a limit ordinal λ, Mλ is the union of the increasing
sequence (Mi)1≤i<λ.

Though at the intuitive and semantical level, (locally) stratified logic program-
ming and iterated inductive definition formalisms are analogous, there are substan-
tial differences at the level of the syntactical sugar (and thus in their availability for
programming). In the IID formalisms, a possibly transfinite sequence of positive
inductive definitions is encoded in one (often quite complex) finite iterated induc-
tion formula. As the above examples, in particular the even program, illustrate
(locally) stratified logic programs offer a much more simple and elegant syntax to
represent inductive definitions. Yet, as will be argued in the next section, also this
formalism imposes severe disadvantages.

The expressivity of the class of stratified programs has been studied by Apt
and Blair [1990]. Specifically, they have shown that the Andréka-Németi-Smullyan
result can be lifted in a very natural way. Namely, the stratified programs with n
strata, n ≥ 1 compute precisely all Σ0

n+1 sets in the Kleene-Mostowski hierarchy12.
Thus the programs with n strata are complete for Σ0

n+1 sets of integers, and
stratified programs compute precisely arithmetic sets. This result was significant for
the following reasons. On one hand it pinpointed the expressive power of a natural
class of programs. On the other hand it demonstrated that normal programs go

12The formulas of the form ∃k1∀k2∃k3...R (with n − 1 alternations of quantifiers), where R has
no quantifiers, are called Σ0

n -formulas. Sets with the definition of the form {n : ϕ(n)} where, ϕ is
a Σ0

n formula, are called Σ0
n sets of natural numbers. Notice that in Π1

1
definitions defined above

the quantifier over f was a function-theoretic quantifier. Here there are only number quantifiers.
The classification of sets of natural numbers defined by Σ0

n formulas and dually, by Π0
n formulas

is called the Kleene-Mostowski hierarchy.
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beyond the generally accepted class of computable sets13.

Remark 4.1. It is interesting to note that the inflationary fixpoint construc-
tion resurfaced in the context of logic programming, more precisely in the context
of database investigations of logic programs with negation. Kolaitis and Papadim-
itriou [1991] advocate the use of the inflationary fixpoint as the semantics of nor-
mal programs. It is easy to see that in none of the above programs with negation,
the inflationary fixpoint corresponds to the perfect model and with what most logic
programmers would consider as the intended interpretation. For example, the in-
flationary fixpoint of even is the set of natural numbers; that of disconnected the
total binary relation of nodes, that of unsorted list the set of all lists, etc..

4.3 A critique of syntactic stratification

A problem with stratification is that stratifiability of a program or definition is
broken even by the most innocent syntactic changes. The following variant of the
even program illustrates this. Assume that we introduce the predicate successor/2
to represent the successor relation. In what is essentially an innocent linguistic
variant of the even program defined in the previous section, we can write down the
following definitions for successor/2 and even/1:

successor(s(X),X).

even(0).

even(Y):- successor(Y,X),not even(X).

This variant program is not longer locally stratified due to the presence of rule
instances of the form:

even(m) :- successor(m,m), not even(m).

This simple example is just one out of a broad class of simple transformations that
transform a stratified logic program into an unstratified logic program. A detailed
study of semantics-preserving transformations has been conducted by Brass and
Dix [1999] who showed that several classes of semantics can be characterized in
these terms.

Another familiar example is the vanilla meta-interpreter [Bowen and Kowalski
1982] which consists of the following rules:

demo(true).

demo((P,Q)):-demo(P),demo(Q).

demo(P):-atomic(P),clause(P:-Q),demo(Q).

demo(not P):- not demo(P).

This program induces a transformation of a normal program to the vanilla meta-
program consisting of the above definition of demo augmented with the clause

13[Blair et al. 1995] generalized the Apt-Blair result for the case of locally stratified programs and
the hyperarithmetical hierarchy. Further, Schlipf [1995b] proved that a complete Π1

1
set can be

defined using the well-founded model (this result generalizes [Blair et al. 1995] result mentioned
above). A further relationship between the set of all stable models of a normal program and

effectively closed subsets of the Baire space has been established by Marek, Nerode, and Remmel
[1994]. Finally, Ferry [1994] characterized the family of stable models of a normal program in
terms of the inverse-Scott topology of Cantor space.
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representation of the program. This transformation transforms any normal program
into a non-stratifiable program [Martens and De Schreye 1995]. For example, for
any atom p, the grounding contains the following unstratifiable rules:

demo(p):- atomic(p),clause(p:-not p), demo(not p).

demo(not p):- not demo(p).

Consequently, syntactical restrictions such as stratification or local stratification
are untenable in the sense that they cannot lead to robust formalisms for the repre-
sentation of inductive definitions. At the same time, the above examples show that
also general, syntactically unstratifiable logic programs can still be interpreted as
inductive definitions.

However, dropping the stratifiability constraint introduces several problems at
the semantical level. In IID and stratified logic programming, the construction of
the formal semantics of a definition is strongly based on the explicit stratification.
Such base does not longer exist in the unstratified case. Consequently, alternative
semantic techniques are needed to characterize the model of a generalized inductive
definition. A second problem is that for some logic programs, in particular those
with recursion through negation, the interpretation as inductive definitions breaks
down. This problem is considered in section 5.1.

4.4 Normal programs - general non-monotone inductive definitions

This section presents and argues the main thesis of this paper, that the well-founded
semantics of logic programming [Van Gelder et al. 1991] provides a more general
and more robust formalization of the principle of iterated inductive definition that
applies beyond the stratified case. Under this semantics, logic programming can be
naturally seen as a generalized non-monotone inductive definition logic not suffer-
ing from the aforementioned limitations imposed by syntactic stratification. The
arguments below are based on and extend the discussion in [Denecker 1998].

First, the well-founded semantics is a conservative extension of the perfect model
semantics; the well-founded model of a (locally) stratified program is its perfect
model. Second, many transformations of the type illustrated in the previous sec-
tion which may transform stratified into unstratified programs, preserve the well-
founded model — see [Brass and Dix 1999].

The third argument is based on the analogy between the well-founded semantics
and the semantic principle used in IID and stratified logic programming. Przy-
musinski [1989a] showed that each logic program P has a dynamic stratification
(Pi)0≤i<nP

such that the well-founded model can be obtained by an iterated least
model construction. In particular, Pi consists of all rules p :- B of P such that i
is the least ordinal for which p is not undefined in the level i + 1 of GLP . Then
the well-founded fixpoint can be obtained by an iterated process of extending a
3-valued interpretation defining the atoms of level < i by extending it with the
least model of Pi.

Below is an alternative attempt to show the deep structural similarities in the way
the perfect model and the well-founded model are constructed. The well-founded
semantics formalizes the same intuition of iterated induction but implements them
in a superior, more robust and syntax independent way. To illustrate this, let us
compare the formalizations. A stratified program P can be split up in a (possibly
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transfinite) sequence (Pi)0≤i<nP
of definitions Pi of a subset Di of the atoms. If

we fix the meaning of the already defined atoms, each Pi is a monotone definition.
The perfect model is the limit MP of the sequence (Mi)0<i≤nP

where each Mi+1 is
obtained by applying the positive inductive definition Pi on Mi. Each Mi approx-
imates MP and gives the correct truth values on all atoms of

⋃

j<iDi. The role of
the stratification in this process is to delay the use of some part of the definition
until enough information is available to safely apply the positive induction principle
on that part of the definition.

The same idea could be implemented in a different way, without relying on an
explicit syntactical partitioning of the definition. As in perfect model semantics,
the model could be obtained as the limit of a sequence of gradually more refined
interpretations (monotonically increasing with respect to the knowledge ordering≤k

defined in section 2). But rather than approximating by 2-valued interpretations
of sub-alphabets, partial interpretations can be used; they also define the truth
value of a subset of the atoms. Rather than extending at each level i the given
interpretation Mi by applying the positive definition Pi, Mi is extended by applying
an operator that implements the positive induction principle. This operator takes
as input a partial interpretation I representing well-defined truth values for a subset
of atoms, and derives an extended partial interpretation defining the truth values
of other atoms that can be derived by positive induction. Definition of truth values
of atoms for which not enough information is available is delayed.

The key challenge in the above enterprise is to define an operator that embod-
ies the principle of positive induction in the context of definitions with negation.
In [Denecker 1998], it is argued that the multi-valued Gelfond-Lifschitz operator
GLP (·) of section 2 is an answer to this problem. Below we give an alternative def-
inition for this operator based on proof-trees; this formalization shows very clearly
the correspondence with positive induction. The definition is restricted to the three-
valued case; this suffices for our purposes: the approximations of the well-founded
model computed during fixpoint computation are three-valued.

Let P be a ground program. We assume that each atom occurs as the head of
a rule, and that each rule has a non-empty body. To obtain this, it suffices to add
to the program the rule p:-f for each atom p with the empty definition and to
transform every atomic rule p. to the rule p:-t. This preprocessing allows for a
more uniform treatment.

Definition 4.2. A proof-tree T for an atom p in a normal program P is a tree
labeled with literals such that:
• p is the root of T ;
• each non-leaf node is an atom q; its direct descendants are the literals in the
body B of some rule q:- B of P ;
• each leaf is either t, f or a negative literal.
• there are no infinite branches.

This definition formalizes the notion of a candidate proof. Note that the leaves
of proof-trees of a definite program P are all t or f. The least model of a definite
program can be characterized as the set of all atoms that have a proof-tree without
f among the leaves.

The intuition of the positive induction operator can be expressed as follows.
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Assume that we have constructed a partial interpretation I which assigns correct
truth values to a subset of atoms as defined by P . We can extend I in the following
way. Assume that an atom p has a proof-tree with only true leaves w.r.t. I: either
t or negative literals not q where I(q) = f. In that case, it is justified to extend I
by assigning t to p. On the other hand if each proof-tree for p contains a false leaf
(either f or a negative literal not q where I(q) = t), then it is impossible to prove
p no matter how I is further extended; consequently, it is justified to extend I by
assigning f to p. All other atoms have at least one proof-tree without false leaves
and at least one undefined leaf not q and no proof-tree with only true leaves; the
computation of the truth value of such an atom must be delayed until all leaves of
one of its proof trees are known to be true or all proof-trees are known to contain
at least one false leaf.

The above intuition is formalized as follows:

Definition 4.3. The Positive Induction Operator PIP maps partial interpre-
tations I to I ′ such that for each atom p :

—I ′(p) = t if p has a proof-tree with all leaves true in I.

—I ′(p) = f if each proof-tree of p has a false leaf in I;

—I ′(p) = u otherwise, i.e. if no proof-tree of p has only true leaves but there exists
at least one without false leaves.

It is straightforward to see that PIP is monotone (w.r.t. ≤k): indeed, if I ≤k J ,
each proof tree with only true leafs in I has only true leaves in J ; each proof tree
with a false leaf in I has a false leaf in J . Consequently, if p is true or false in
PIP (I), then it has the same truth value in PIP (J).

Given a partial interpretation I, PIP computes the truth value of all atoms that
can be obtained by applying monotone induction starting from I; PIP delays the
computation of the truth value of all other atoms. Thus, iterating the operator
PIP corresponds to the process of iterating monotone induction.

Proposition 4.4. PIP coincides with GLP on 3-valued interpretations.

Proof. We begin by showing that our proposition is true for 2-valued interpre-
tations.

Let I be an arbitrary 2-valued interpretation. First, we show that if an atom p

is true in PIP (I), then p is true in GLP (I).
Consider the set S of all proof-trees of the program P with only true leaves

in I, with a root false in GLP (I). We must show that this set is empty. It is
straightforward to see that the collection of proof-trees of P is a well-founded order
under the subtree relation. That is, each non-empty set of proof-trees contains a
minimal element. Consequently, S contains a minimal element T with a root p

false in GLP (I). At the top level of T , some rule p :- B of P is used such that
(1) T comprises a strict subtree without false leaves for each atom q in B and (2)
all negative literals in B are true in I. From (1) and the minimality of T it follows
that each q is true in GLP (I). From (2) it follows that P I contains the rule p :-

B’ where B′ is obtained from B by eliminating all negative literals. Consequently,
applying TP I on GLP (I) yields p. This is a contradiction, because GLP (I) is a
fixpoint of TP I . This proves the ⇒.
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For the opposite direction, assume that atom p is true in GLP (I). We construct
a proof-tree for p by induction on the levels of the operator TP I . Assume that for
some ordinal α, each atom of level β < α has a proof-tree without false leaves.
Let p be an atom of level α. Then for some rule p :- B of P I , each atom in B

belongs to a level β < α and by the induction hypothesis, it has a proof-tree. By
construction of P I , there exists a rule p :- B’ of P such that B′ extends B with
negative literals that are true in I. Obviously, this rule and the proof-trees of the
atoms in B can be used to construct a proof-tree for p.

Finally, we extend the argument to the general 3-valued interpretations. Given an
arbitrary 3-valued interpretation I = 〈I1, I2〉 (i.e. I1 ≤k I2). Recall that GLP (I) =
〈GLP (I2),GLP (I1)〉, and let PIP (I) = 〈J1, J2〉.

Note that an atom p is true (resp. false) in PIP (I) iff it is true in J1 (resp. false
in J2). Vice versa a literal not q is true (resp. false) in I iff it is true in I2 (resp.
false in I1). Therefore, a proof-tree of P has only true leaves in I iff it has only
true leaves in I2, and has a false leaf in I iff it has a false leaf in I1. Consequently,
J1 = PIP (I2) and J2 = PIP (I1). Since PIP and GLP coincide on the 2-valued
interpretations, the argument is complete.

This proposition shows that GLP is an operator performing monotone induction,
and that the well-founded model is the model obtained by iterating monotone
induction. This, together with our discussion of Iterated Inductive Definitions,
shows that the well-founded semantics is an alternative formalization of iterated
induction.

4.5 Conclusions

The well-founded model of a stratified program coincides with the perfect model and
is preserved by transformations that destroy syntactic stratification. Beyond the
class of stratified programs, we have pointed to the strong structural resemblances
between IID and perfect model construction and the way the well-founded model
is constructed. We find essentially the same ingredients:

—Computation by ≤k-monotonically increasing sequence of approximating partial
interpretations.

—Delaying computation of truth values of atoms for which no sufficient information
is available.

—Deriving truth values by monotone induction.

The superiority of the well-founded model construction lies in the fact that there
is no need for an a priori splitting of the program in different levels. The Positive
Induction Operator PIP looks at the complete program and derives truth values
whenever sufficient information is available.

Consequently, we postulate the thesis that the well-founded semantics formalizes
the principle of non-monotone iterated induction. This thesis is about the relation
between a mathematical theory and an empirical reality, in particular the notion
of (general) inductive definition as found in mathematics. Such a thesis of course
cannot be formally proven; it is a thesis of a similar nature as e.g. Church’s thesis.
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5. DISCUSSION

5.1 Total definitions

An aspect that we have ignored so far is that for some programs, the well-founded
model is partial. Consider for example the following program which is a formaliza-
tion of the barber’s paradox.

shaves(b,X) :- citizen(X), not shaves(X,X).

citizen(a).

citizen(b).

...

The well-founded model of this program is partial and does not define the truth
value of the atom shaves(b,b). The reason is the recursion through negation. If
shaves(b,b) is false then the rule body is true and one can infer that shaves(b,b)
is true; however the rule by which that atom is inferred is then no more applicable
and the support for its truth is lost.

A natural quality criterion for definitions is that they define the truth values of
all atoms of the defined predicates. This criterion boils down to the requirement
that good definitions should have a two-valued well-founded model. We call such
definitions total definitions. When the requirement of stratifiability is dropped, the
formalism allows definitions for which this quality criterion does not hold. Partial
models point to bugs in the definition. The set of undefined atoms identifies exactly
the atoms that are ill-defined. For programs with a partial well-founded model, the
interpretation as inductive definitions breaks down to some extent.

There seem to be two sensible treatments for definitions that are not total. A
rigorous treatment would be to simply consider them as inconsistent. In this strict
view, we would define that the model of a normal program is the well-founded
model if it is total; otherwise the program has no model. The result is a 2-valued
logic in which definitions that are not total have no models and entail everything.

The approach to reject partial models and thus to treat non-total programs as
inconsistent logical theories can be questioned. The problem of such a rigorous
position is that it seriously complicates the design of query-answering systems which
then not only should compute answers to a query but also check the consistency of
the program, that is the fact that the well-founded model is total. The latter is in
general an undecidable problem [Schlipf 1995a]14. Even for programs for which it
is feasible to prove that they are total, the cost of doing so could be prohibitive15.
Moreover, in some complex applications, partial models simply cannot be avoided.
An illustration is the theory of truth presented in Fitting [1997]. Fitting uses the
well-founded semantics to define the truth predicate and obtains one in which the
liar paradox (“I am a liar”) is undefined (⊥) but the truth sayer (“I am true”) is
false.

Hence a more reasonable position is to accept definitions with partial well-founded
models. The result is a kind of paraconsistent definition logic, i.e. a logic in which
definitions with local inconsistencies do not entail every formula. In the context

14Schlipf showed that the set of indices of finite programs for which the well-founded semantics is
2-valued forms a Π1

1
-complete set.

15But note that showing totality of the program should be done only once, not for every query.
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of logics for definitions, 3-valued well-founded semantics offers an answer to an old
critique on classical logic, namely that it collapses totally in the case of inconsis-
tency.

5.2 Computational aspects

As discussed in [Apt and Blair 1990], the perfect model and hence the well-founded
model is not recursively enumerable for all programs and no effective proof proce-
dure is possible for the general case. However computation is effective for function
free logic programs (Datalog). As proven in [Van Gelder 1993], the data com-
plexity of Datalog16 under the well-founded semantics is polynomial time; this is
better than the computational complexity of the stable model semantics [Gelfond
and Lifschitz 1988]. For instance the existence problem for stable models of Dat-
alog programs is NP-complete. Similarly, “membership-in-some” problem for such
programs is also NP-complete, while the “membership-in-all” problem is co-NP-
complete [Marek and Truszczyński 1991].

With the introduction of tabling [Tamaki and Sato 1986] and the development
of the SLG resolution procedure [Chen and Warren 1996], more powerful top down
proof procedures became available. It is proven in [Chen and Warren 1996] that
SLG is sound and search space complete with respect to the well-founded partial
model and is polynomial time in case of function free programs.

The impossibility of a complete proof procedure could be considered a drawback
with respect to the completion semantics. Indeed, the SLDNF proof procedure
[Lloyd 1987] is known to be complete for certain classes of programs under the
completion semantics — see [Apt and Bol 1994] for an overview. First, we believe
it is more important to use a semantics that corresponds to the intuitive meaning
of a program than one for which complete proof procedures exist. Second, de-
spite completeness results for SLDNF, in practice the completeness of SLD(NF) is
lost anyway due to the use of the depth-first search strategy of Prolog implementa-
tions. So, Prolog programmers are used to (sound but) incomplete proof procedures.
In the current systems, incompleteness is caused either by non-termination or by
floundering. Users know that they have to reason about this and have developed
methodologies to avoid these problems. To some extent, reasoning about the decid-
ability of a class of queries of interest can even be automated. Indeed, as mentioned,
decidability of a query is closely related to non-floundering termination of the query.
Techniques for analysis of termination of SLD [De Schreye and Decorte 1994] and
of SLG [Verbaeten et al. 2001] exist. Floundering can be analyzed by means of
abstract interpretation [Cousot and Cousot 1977], more specifically by groundness
analysis [Marriott and Søndergaard 1993]. Of course, due to the undecidability
results, these techniques cannot be complete.

5.3 Inductive definitions in the absence of complete knowledge

A logic program, which expresses a correct inductive definition has a unique well-
founded total model. This presupposes that the programmer, when writing the
program, has complete knowledge of the problem domain and can define each pred-
icate of the program.

16As defined in [Vardi 1982].
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In recent years, several Logic Programming extensions capable of representing
incomplete knowledge have been proposed. One is Abductive Logic Programming
[Kakas et al. 1992; Denecker 1995], an extension of logic programming by means of
abductive reasoning. An abductive logic program is a triple 〈A,P, IC〉 consisting
of a set A of abducible (or open) predicates, a logic program P defining the set
of non-abducible predicates and a set IC of classical logic constraints. Another
new paradigm is Answer Set Programming [Marek and Truszczyński 1999; Lifschitz
1999; Niemelä 1999]. This approach is based on the stable model semantics [Gelfond
and Lifschitz 1988] and is fundamentally different from the view we have developed
so far. Under the stable model semantics, a normal program is viewed not as a set
of definitions but as a set of rules expressing constraints on the problem domain.
Stable models are “possible sets of beliefs that a rational agent might hold” given
the rules of the program [Gelfond and Lifschitz 1988].

There are more possibilities, in fact. For instance, the interpretation of a normal
program as an inductive definition can and has been adapted to cope with missing
knowledge at the predicate level. The approach consists of distinguishing between
defined predicates and open predicates. The latter are predicates for which the
program contains no definition (to be distinguished from predicates with empty
definition). We illustrate it with an example for finding the Hamiltonian cycles
in a finite directed graph17. The unknown Hamiltonian cycle can be expressed by
a binary predicate in/2; the property that all nodes have to be reachable from a
particular node (say node 1) can be defined by a predicate reachable/1. This gives
the following piece of code:

open in/2

node(1).

...

edge(1,2).

...

reachable(U) :- in(1,U).

reachable(V) :- reachable(U), in(U,V).

Note that the reachable/1 predicate depends on the open predicate in/2. Given
a definition for in/2, it is a correct inductive definition and determines a unique
model. However not every model (in the language of the program) of in/2 is a
Hamiltonian cycle. As in Answer Set Programming, the set of candidate models
has to be constrained. For this task, first order logic is an excellent tool. The
constraints that the cycle must pass over the edges and must visit all nodes exactly
once can be expressed as the following set of constraints18:

edge(U,V) <- in(U,V).

V=W <- in(U,V), in(U,W).

U=V <- in(U,W), in(V,W).

reachable(U) <- node(U).

17The interested reader can find a solution by means of the Answer Set Programming paradigm
in [Lifschitz 1999].
18We use ← to stress that these are FOL integrity constraints and not program rules or queries.
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Under these constraints, models of in/2 are restricted to be Hamiltonian cycles.
Note that the last constraint does not involve directly the open predicate (but
reachable/ depends on it).

The distinction between definitions and partial knowledge is similar to the dis-
tinction in the literature of knowledge representation between assertional knowledge
and definitional knowledge [Reichgelt 1991].

As the example shows, combining inductive definitions of defined predicates in
terms of open predicates with FOL formulas gives an expressive language facilitat-
ing the declarative formulation of problems. The idea is elaborated in the inductive
definition logic presented in [Denecker 2000]. A theory of this logic, called ID-logic,
consists of a set of FOL formulas and a set of definitions. In models of such theo-
ries, the defined predicates of a definition are interpreted by the well-founded model
of the definition extending some interpretation of the open predicates. The FOL
assertions filter away those well-founded models in which these assertions do not
hold. This logic is closely related to and provides the epistemological foundation for
abductive logic programming [Kakas et al. 1992] (under extended well-founded se-
mantics [Pereira et al. 1991]), which in turn can be viewed as the study of abductive
reasoning in the context of ID-logic.

5.4 Herbrand interpretations versus General interpretations

The use of the grounding of a program as a basis for defining semantics boils down
to the use of Herbrand interpretations. The restriction to Herbrand interpretations
imposes two assumptions at the knowledge level:

—Domain Closure: every element of the domain of discourse is named by at least
one ground term.

—Unique Names: two different ground terms denote different objects.

These two restrictions imply that there is an isomorphism between the Herbrand
Universe and the objects in the problem domain, i.e. that one knows all objects of
interest and can distinguish between them. These axioms express complete knowl-
edge of the domain of discourse. However as stated in [Denecker 2000], these restric-
tions are independent of each other and of the view of logic programs as inductive
definitions. The inductive definition logic ID-logic introduced in [Denecker 2000]
is based on general interpretations rather than Herbrand interpretations and com-
prises neither domain closure nor unique names axioms (but both can be expressed
in ID-logic).

5.5 Closing the circle: a fixpoint theory for non-monotone operators.

Throughout this paper we have argued that the theory of inductive definitions in
mathematical logic provides an epistemological foundation for Logic Programming.
Vice versa, Logic Programming can contribute to the study of non-monotone in-
duction in two ways. First, as argued above, the well-founded semantics can be
seen as a more general and more robust formalization of the principle of iterated
induction. Second, Logic Programming can also contribute to the algebraic theory
of induction, namely the fixpoint theory of generalized operators.

Until recently, no fixpoint theory for general (monotone or non-monotone) oper-
ators was known that was modeling the principle of iterated induction. Building
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on Fitting’s work [Fitting 1993] on semantics of Logic Programming in bilattices,
[Denecker et al. 2000] developed Approximation Theory, an algebraic fixpoint the-
ory for general (monotone and non-monotone) operators in a lattice. This theory
defines for each operator O a set of stable fixpoints and a unique well-founded fix-
point which is a pair (x, y) of lattice elements such that (x, y) approximates each
stable fixpoint z (that is x ≤ z ≤ y). This theory has two key properties: (1) it
extends Tarski’s fixpoint theory in the sense that if the operator O is monotone,
then its well-founded fixpoint is the pair (x, x) where x is the least fixpoint of O
(in this case, x is also the unique stable fixpoint of O), and (2), the well-founded
fixpoint of the immediate consequence operator TP of a normal program is exactly
the well-founded model of P .

In combination with the arguments in section 5.1 that well-founded semantics is
a generalized principle of non-monotone induction, we put forward the thesis that
Approximation Theory is the natural fixpoint theory of generalized non-monotone
induction.

6. CONCLUSIONS

We have revisited the semantics of logic programming. We have developed the the-
sis that logic programs can be understood as inductive definitions. Elaborating on
ideas originally proposed by one of the authors in [Denecker 1998], we have argued
that their interpretation as inductive definition gives a more solid epistemological
foundation for their canonical models than a reference to common sense. More-
over, this interpretation corresponds to the well-founded semantics. Next, we have
shown that this reading of logic programs extends the notion of iterated inductive
definitions as studied so far in mathematical logic. Finally, we have elaborated on
some of the consequences of this thesis.

We believe that logic programs as definitions offer a simple, elegant and powerful
conceptualization of logic programming, within reach of comprehension for a broad
audience not versed in the literature on semantics of negation and moreover, that
it reconciles the semantics of logic programs with the intuitions and expectations
of programmers inspired by Kowalski’s vision of logic as a programming language.
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