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Abstract

In this paper we study constructions leading to the formation of belief sets by agents. We focus

on the situation when possible belief sets are built incrementally in stages. We call an infinite

sequence of theories that represents such a process a reasoning trace. A set of reasoning traces

describing all possible reasoning scenarios for the agent is called a reasoning frame. Default

logic by Reiter is not powerful enough to represent reasoning frames. In the paper we introduce

a generalization of default logic of Reiter by allowing infinite sets of justifications. We call this

formalism infinitary default logic. In the main result of the paper we show that every reasoning

frame can be represented by an infinitary default theory. A similar representability result for

antichains of theories (belief frames) is also presented.

1 Introduction

An agent that has to act in a world situation usually has incomplete knowledge about
that world. Such knowledge is often not sufficient for the agent to base its actions
on, if only classical deductions are used. The agent requires, and adopts, additional
assumptions extending its partial understanding of the world. In general, several sets
of additional assumptions may be possible or consistent with the agent’s knowledge,
as there may be alternative ways of interpreting the available (incomplete) information
about the world. This leads to several extensions of the agent’s initial knowledge. A
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single one of these extensions (one possible view) will be called a belief set, and the set
of all of these possible views (given the initial knowledge) will be called a belief frame.
Belief frames are not arbitrary collections of theories. Since agents are seeking possibly
complete descriptions of the world, theories contained in other possible world views are
discarded. Hence, belief frames form antichains - no belief set is a proper subset of
another in the same reasoning frame.

The belief sets may not be available to the agent immediately. We assume that the
agent will have to construct these belief sets by reasoning in a step by step construction
process generating a reasoning trace that finds its limit in a belief set. A set of these
reasoning traces is called a reasoning frame. We will require that the limits of all traces
in a reasoning frame form a belief frame.

These notions will be formalized as follows. A belief set will be defined as a logical
theory (a set of sentences closed under classical deduction). A belief frame will be defined
as a collection of theories forming an antichain. A reasoning trace will be defined as a
countable increasing (under set inclusion) sequence of theories. The limit of a reasoning
trace is its union. A reasoning frame is defined as a set (or family) of reasoning traces.

Given this conceptualization, two levels of specification of the agent can be described.
The most abstract level only defines the outcomes of the reasoning and abstracts from
the way the outcome was found. A specification at this level defines a belief frame,
abstracting from any reasoning frame behind this belief frame. At the more specific
level of specification a reasoning frame is defined. The set of traces represents the
reasoning processes of the agent, their limits — the outcomes.

The question studied in this paper is how a variant of default logic can be used as
specification languages for nonmonotonic reasoning at these two levels of abstraction.
The problem whether a belief frame can be represented as the collection of extensions
was studied in [MTT96]. Complete results in the case of representability by default
theories with finite sets of defaults were obtained there. While the general problem of
representability remained unresolved, it was shown in [MTT96] that the default logic
by Reiter is insufficient for specification of belief frames. Specifically, several examples
of belief frames were exhibited, which cannot be represented as families of extensions of
default theories. In the current paper we show that infinitary default logic, a stronger
variant of default logic, allowing infinite sets of justifications, provides an adequate
specification language. In particular, prerequisite-free infinitary default logic provides
an adequate specification language for belief frames. Moreover, infinitary default logic
in general provides an adequate specification language for reasoning frames.

In Section 2 we will give the basic definitions and properties of infinitary default logic
(IDL), as a generalization of Reiter’s default logic. For example, the notion of Reiter
extension is generalized to the notion of an idl-extension, and a fixpoint construction for
idl-extensions is given, generalizing the fixpoint construction in [Rei80]. We also formally
define the notions of a reasoning trace and frame there, and relate these concepts to
infinitary default theories.

In Section 3 we focus on the prerequisite-free case. It is proven that the non-including
belief frames are precisely the belief frames that can be obtained as the set of all idl-
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extensions of a prerequisite-free infinitary default theory. This implies that, in contrast
to Reiter’s default logic, IDL is expressive enough to serve as an adequate specification
language of belief frames.

In Section 4 we focus on reasoning frames. It is established that for any reasoning
frame there is an infinitary default theory such that the fixpoint construction of its idl-
extensions precisely provides the reasoning traces in the given reasoning frame. The idea
is that by using the right prerequisites any given reasoning trace can be obtained.

In Section 5 we discuss how the notions as presented depend on the initially given
set of facts. The notions of a belief set operator and a reasoning trace operator are
introduced to express this dependency. Conclusions and suggestions for further research
are given in Section 6.

2 Preliminaries

In this section, we will introduce two key concepts of the paper: reasoning trace and
reasoning frame. These concepts are designed to represent the reasoning process of
an agent that starts with some incomplete knowledge and, in a step-by-step process
constructs a sequence of theories, each providing a more complete picture of the situation
(world). We will then introduce the infinitary default logic and show that infinitary
default theories can be used to encode reasoning traces and frames of an agent. In the
following sections of the paper we will present a detailed study of this relationship.

In this paper, by L we denote a language of propositional logic with a denumerable
set of atoms At. By a theory we always mean a subset of L closed under propositional
provability. We will often refer to a theory as a belief set.

When specifying reasoning agents, collections of belief sets that form antichains (no
belief set is a proper subset of another) are of particular importance.

Definition 2.1 (Belief frame) A belief frame is a collection of belief sets (theories)
such that no belief set is a proper subset of another.

As discussed in the introduction, belief frames capture only the outcomes of the
reasoning process and abstract from the way these outcomes were found. To get a
detailed specification of an agent we need to represent the process in which a belief set
is constructed. In this paper, we propose to represent such a process by a sequence of
theories — a reasoning trace. Collections of such reasoning traces, in turn, will form
reasoning frames. Throughout the paper we will use the following notational convention.
If an upper case symbol, say E, stands for a sequence of theories, then the elements of
the sequence will be referred to as E1, E2, . . ., and their union,

⋃∞
i=1Ei will be denoted

by E∞.

Definition 2.2 (Reasoning trace and reasoning frame) Let T = 〈T1, T2, . . .〉 be a
sequence of theories from L.
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(i) The sequence T is a reasoning trace if:

(a) Ti ⊆ Ti+1 for i = 0, 1, . . .

(b) Ti = Ti+1 implies Ti = Tj for j > i.

(ii) The union of a reasoning trace T is called the limit of T .

(iii) A collection T of reasoning traces is called a reasoning frame if for every T, S ∈ T :

(a) T0 = S0.

(b) If T∞ ⊆ S∞, then T = S.

It is easy to see that the limit of a reasoning trace is a theory, that is, it is closed
under propositional provability, and that the limits of reasoning traces in a reasoning
frame form a belief frame, that is, form an antichain.

Definition 2.3 (Belief frame of a reasoning frame) Let T be a reasoning frame.
The belief frame BT associated with T is defined by:

BT = {T∞:T ∈ T }

In this paper we will show that the language of infinitary default logic can be used to
describe specifications of an agent both on the level of belief frames as well as reasoning
frames. Some results in this direction were already obtained in [MTT96], where the
problem of encoding belief frames by (finitary) default theories was studied in detail. In
addition to a number of positive results, it is proved in [MTT96] that not every belief
frame can be represented as the family of all extensions of a default theory. In this paper
we will generalize default logic by allowing infinite sets of justifications. Then we will
prove that infinitary default logic is powerful enough to serve as a specification language
for arbitrary belief and reasoning frames.

An infinitary default (idl-default, for short) is an expression d:

d =
α: Γ

β
, (1)

where α and β are formulas from L, and Γ is a set, possibly infinite, of formulas from
L. The formula α is called the prerequisite of d (p(d), in symbols) and β is called the
consequent of d (c(d), in symbols). The set of formulas Γ is called the justification set of
d and is denoted by j(d). If p(d) is a tautology, d is called prerequisite-free. In such case,
p(d) is usually omitted from the notation of d. This terminology is naturally extended
to a set of defaults D. Namely, the prerequisite, consequent and justification sets of D,
in symbols p(D), c(D) and j(D), are defined by:

p(D) =
⋃

d∈D

{p(d)}, c(D) =
⋃

d∈D

{c(d)}, j(D) =
⋃

d∈D

j(d).
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A pair (D,W ), where D is a set of idl-defaults and W ⊆ L is a set of formulas, is
called an infinitary default theory (or IDT). Rules with infinite sets of justifications were
considered in [Fer91] in the context of logic programs.

We will now generalize the notion of an extension, introduced by Reiter [Rei80] for
standard default theories, to the case of IDTs. To this end, we will introduce the concept
of an S-trace. This notion is closely related to the fixpoint construction of extensions
presented by Reiter [Rei80].

Definition 2.4 Let (D,W ) be an IDT. Let S ⊆ L be a theory. By the S-trace of (D,W )
we mean the sequence E of theories defined recursively as follows:

1. E0 = Cn(W ),

2. for every integer n ≥ 0:

En+1 = Cn(En ∪ {c(d): d ∈ D, p(d) ∈ En and for all γ ∈ j(d), ¬γ /∈ S}).

The notion of an S-trace allows us to introduce the notion of an idl-extension of an
IDT.

Definition 2.5 Let (D,W ) be an IDT. A set S ⊆ L is an idl-extension of (D,W ) if

S = E∞,

where E is the S-trace for (D,W ).

Clearly, each standard (finitary) default theory (with each default having only finitely
many justifications) is, in particular, an IDT. Moreover, it is easy to see that if an
IDT happens to be finitary, then the notion of an idl-extension coincides with that of
extension. Therefore, throughout the paper we will refer to the idl-extensions simply as
extensions.

We will denote by ext(D,W ) the collections of all extensions of an IDT (D,W ). The
collection of all S-traces of (D,W ), where S ∈ ext(D,W ) will be denoted by tr(D,W ).

There are several alternative characterizations of standard default theories [MT93].
We will now generalize one of them to the case of infinitary default theories. It can be
stated in terms of the reduct of the set of defaults. A default d (a set of defaults D) is
applicable with respect to a theory S (is S-applicable) if S 6⊢ ¬γ for every γ ∈ j(d) (j(D),
respectively). By the reduct DS of D with respect to S we mean the set of monotone
inference rules:

DS =

{

α

β
: for some Γ ⊆ L,

α: Γ

β
∈ D, and

α: Γ

β
is S-applicable

}

.

Each set B of standard monotone inference rules determines a formal proof system,
denoted by PC+B, in which derivations are built by means of propositional provability
and rules in B. The corresponding provability operator will be denoted by ⊢B and the
consequence operator by CnB(·) [MT93]. In particular, each set DS determines the
provability operator ⊢DS

and the consequence operator CnDS(·).
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Proposition 2.1 Let D be a set of idl-defaults,and let W and S be subsets of L. Then,
S is an extension if and only if S = CnDS(W ).

Let us introduce one more useful notion. A default d is generating for a theory S
if p(d) ∈ S and S 6⊢ ¬γ for every γ ∈ Γ. The set of all defaults from D which are
generating for S is denoted by GD(D,S).

Once the reduct is computed the distinction between infinitary and standard defaults
disappears. This explains why many of the properties of default logic remain true in the
infinitary case. In particular, we have the following results.

Proposition 2.2 Let (D,W ) be an IDT. Then:

1. If S is an extension of (D,W ), then S is a belief set (theory).

2. The operator CnDS(W ) is monotone in D and W , and antimonotone in S.

3. The collection ext(D,W ) is a belief frame. That is, if T1, T2 ∈ ext(D,W ) and
T1 ⊆ T2, then T1 = T2.

4. If S is an extension of (D,W ) then S = Cn(W ∪ c(GD(D,S))).

5. If all defaults in D are prerequisite-free then S is an extension of (D,W ) if and
only if S = Cn(W ∪ c(GD(D,S))).

Parts (1) and (3) of Proposition 2.2 show that IDTs can be used to represent belief
frames. The next result shows that they can also be used to represent reasoning frames.

Proposition 2.3 Let (D,W ) be an IDT.

1. Let S be a theory in L. If E is the S-trace for (D,W ) then E is a reasoning trace.

2. The collection of reasoning traces tr(D,W ) is a reasoning frame.

We can now formally introduce the notions of representability of belief frames and
reasoning frames by default theories.

Definition 2.6 Let T be a family of theories contained in L. The family T is repre-
sentable by an IDT ∆ if ext(∆) = T . Similarly, if T is a family of reasoning traces,
then it is representable by an IDT ∆ if tr(∆) = T .

The notion of representability by default theories was studied in [MT93, MTT96].
A complete description of families of theories that are representable by default theories
with a finite set of defaults was given there. However, the general question of repre-
sentability by general default theories remained unsettled. The main difference between
a standard and an infinitary default is that the latter can encode an infinite set of con-
straints determining its applicability (in the form of infinite sets of justifications). Our
results in the next section show that the infinitary default logic is more expressive than
the default logic by Reiter. In particular, we show that every family of theories satisfy-
ing the necessary condition for the representability, described in Proposition 2.2(3), is
representable by an infinitary default theory.
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3 Representability of belief frames by IDTs

We start with the result that allows us to replace any IDT with an equivalent IDT in
which all defaults are prerequisite-free.

Theorem 3.1 For every IDT ∆, there is a prerequisite-free IDT ∆′ equivalent to ∆.

Proof: Let ∆ = (D,W ). By a quasi-proof from D and W we mean any proof from W
in the system PC +Dm, where

Dm =

{

α

β
: for some Γ ⊆ L,

α: Γ

β
∈ D

}

.

For every quasi-proof ǫ from D and W , let Dǫ be the set of all defaults used in ǫ. For
each such proof ǫ, define

dǫ =
: j(Dǫ)

∧

cons(Dǫ)

(observe that Dǫ is finite and, so, dǫ is well-defined). Next, define

E = {dǫ: ǫ is a quasi-proof from W}.

Each default in E is prerequisite-free. Put ∆′ = (E,W ). We will show that ∆′ has
exactly the same extensions as (D,W ). To this end, we will show that for every theory
S and for every formula ϕ,

W ⊢DS
ϕ iff W ⊢ES

ϕ.

Assume first that W ⊢DS
ϕ. Then, there is a quasi-proof ǫ of ϕ such that all defaults

in Dǫ are applicable with respect to S. Moreover, W ∪ c(Dǫ) ⊢ ϕ. Observe that
c(dǫ) ⊢ c(Dǫ). Since dǫ is prerequisite-free and S-applicable, W ⊢ES

W ∪ c(Dǫ). Hence,
W ⊢ES

ϕ.
To prove the converse implication, observe that since all defaults in E are prerequisite-

free,
{ϕ:W ⊢ES

ϕ} = Cn(W ∪ c(ES)).

Hence, it is enough to show that

W ⊢DS
W ∪ c(ES).

Clearly, for every ϕ ∈ W , W ⊢DS
ϕ. Consider then ϕ ∈ c(ES). It follows that there is

a quasi-proof ǫ such that dǫ is S-applicable and c(dǫ) = ϕ. Consequently, all defaults
occurring in ǫ are S-applicable. Thus, for every default d ∈ Dǫ,

W ⊢DS
c(d).

Since ϕ =
∧

c(Dǫ),
W ⊢DS

ϕ.

7



2

Proposition 2.2 implies that for every infinitary default theory (D,W ), its family of
extensions ext(D,W ) is a belief frame (cf. parts (1) and (3)). To answer the question
whether the converse is true as well, by Theorem 3.1 we can concentrate on prerequisite-
free IDT’s. It turns out that every belief frame is representable by a (prerequisite-free)
IDT.

Theorem 3.2 Let T be a family of belief sets. Then the following statements are equiv-
alent:

(i) T is a belief frame,

(ii) T is representable by a prerequisite-free IDT.

Proof: It suffices to prove that any belief frame is representable by a prerequisite-free
IDT. To this end, let us consider a belief frame T . If T = ∅ then take any (Reiter) default
theory without extensions. If T = {T}, then define D = ∅. Clearly, ext(D,T ) = T .

Hence, assume that T contains at least two theories. Since no theory in T is a proper
subtheory of another, it follows that all theories contained in T are consistent.

For every S, T ∈ T such that S 6= T , define ϕS,T to be any formula belonging to
S \ T . For every T ∈ T , define

DT =

{

: {¬ϕS,T :S ∈ T , S 6= T}

ϕ
: ϕ ∈ T

}

.

Finally, define
D =

⋃

T∈T

DT .

We will show that ext(D, ∅) = T .
Consider T ∈ T . Then DT = { :

ϕ
:ϕ ∈ T}. Hence, CnDT (∅) = T and T is an

extension of (D, ∅).
Conversely, let T be an extension of (D, ∅). We have just proved that T ⊆ ext(D, ∅).

Consequently, (D, ∅) has at least two extensions. It follows that Cn(∅) is not an extension
of (D, ∅) (the theory Cn(∅) is a subset of every extension of (D,W )). In particular,
T 6= Cn(∅). Consequently, the set DT is not empty.

Consider a set S ∈ T . Observe that all defaults in DS have the same set of justifi-
cations. Consequently, either all of them are generating for T or none. It follows that
T is the union of a nonempty (since DT 6= ∅) family of theories in T . If T is the union
of at least two theories, than DT = ∅, a contradiction. Hence, T = S, for some S ∈ T .
That is, T ∈ T . 2

Theorem 3.2 and the results in [MTT96] imply that infinitary default logic is a more
powerful knowledge representation formalism than that of default logic. In other words,
allowing infinite justification sets leads to a more expressive representation formalism.
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Corollary 3.3 There are families of theories representable by an IDT but not repre-
sentable by a standard default theory.

As another corollary, we obtain the result already proved in [MTT96].

Proposition 3.4 Let T be a finite antichain of theories. Then T is representable by a
default theory (possibly with infinite set of defaults).

4 Representability of reasoning frames by IDTs

In the previous section we proved that any antichain of theories (belief frame) can be
represented by a prerequisite-free IDL-theory. In this section we will look not only
at the outcomes of a reasoning process (the belief frame), but also at the process in
which these outcomes are constructed. Note that by using prerequisites that logically
depend on consequents of other defaults, it is possible to express constraints on the
order in which states occur in a trace. Using this observation, we will study the question
whether infinitary default logic can be used as a specification language for collections of
traces — reasoning frames. In the main result of this section we will show that every
reasoning frame is representable by an IDT.

Theorem 4.1 Let T be a collection of reasoning traces. Then the following statements
are equivalent:

(i) T is a reasoning frame,

(ii) T is representable by an IDT.

Proof: If there is an IDT ∆ such that T = tr(∆), then T is a reasoning frame by
Proposition 2.3. To prove the converse implication, we proceed as follows. If T is
empty, we can take ∆ to be any default theory without extensions. So suppose that
T 6= ∅. Take any trace T ∈ T , and define W = T0. As T is a reasoning frame, we have
that W = S0 for all traces S ∈ T .

Consider a trace T ∈ T . Then T is increasing, and may become constant from a
certain index on. We define this index kT by

kT =

{

min{i:Ti = Ti+1} if there exists an i with Ti = Ti+1

∞ otherwise

Now for 0 < i < kT , define ψi,T to be any formula in Ti \ Ti−1, and define ψ0 as any
formula in T0. These formulae will serve as prerequisites for defaults that will “fire” in
order to form Ti+1.

For the justifications of rules, we will use the same construction as used in the proof
of Theorem 3.2. For any S ∈ T such that S 6= T , define ϕS,T to be any formula belonging
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to S∞\T∞. Since T is a reasoning frame and S 6= T , S∞ 6⊆ T∞. Hence, ϕS,T can indeed
be found. Now define

DT =

{

ψi,T : {¬ϕS,T :S ∈ T , S 6= T}

χ
:χ ∈ Ti+1 \ Ti, 0 ≤ i < kT

}

.

Finally, define
D =

⋃

T∈T

DT .

We will show that tr(D,W ) = T .
Consider T ∈ T . First observe that, by definition, T0 = W = Cn(W ). Furthermore,

the set of defaults in D which are applicable for T∞ is exactly DT . It follows that

{c(d): d ∈ D, p(d) ∈ Ti, d is T∞–applicable} = {χ:χ ∈ Ti+1 \ T0}.

As T0 ⊆ Ti, we have that

Ti+1 = Cn(Ti ∪ {c(d): d ∈ D, p(d) ∈ Ti, d is T∞–applicable}).

¿From this we conclude that T ∈ tr(D,W ).
For the converse, suppose that T ∈ tr(D,W ). If none of the defaults in D are T∞–

applicable, then Ti = W for all i. Consider an S ∈ T . Then, we have S ∈ tr(D,W ).
Now, since S∞ ⊇ W and extensions form an antichain, S∞ = W . Hence, S = T and
T ∈ T .

So suppose there is a T∞–applicable default in D. Then there exists a trace S ∈ T
such that all defaults in DS are T∞–applicable. We will show by induction that Si ⊆ Ti.
Indeed, if i = 0, then S0 = W = T0. For the induction step, observe that

Ti+1 = Cn(Ti ∪ {c(d): d ∈ D, p(d) ∈ Ti, d is T∞–applicable}) ⊇

Cn(Si ∪ {c(d): d ∈ D, p(d) ∈ Si, d ∈ DS})

Since S ∈ tr(D,W ) and DS is exactly the set of defaults of D which are S∞–applicable,
the last term is equal to Si+1.

Now we have that S∞ ⊆ T∞. Moreover, since both S∞ and T∞ are extensions of
(D,W ), it follows that S∞ = T∞. But then a default is S∞–applicable if and only if it
is T∞–applicable, so that Si = Ti for all i, or S = T . We conclude that T ∈ T . 2

As was the case in the construction of an IDL-theory in the previous section, we again
have considerable freedom in choosing the formulae ϕS,T . A second source of freedom
comes from the choice of the prerequisites in the above construction. Thus, in general
there are many different theories which all specify the same reasoning frame.

One could ask if finitary representability of the belief frame of a reasoning frame
implies that the reasoning frame itself has a finitary representation. A cardinality ar-
gument shows that this is not the case. Specifically, let us consider the belief frame B
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consisting of all complete theories over the set of atoms {p1, p2, . . .}. This belief frame
has a finitary representation (see [MTT96], Corollary 5.5). It is easy to see that there
are more than continuum reasoning frames with belief frame B. On the other hand,
there is only continuum many finitary default theories.

Until now, we have looked at the specification of belief sets and reasoning frames
which represent the reasoning process of an agent from a given set of initial facts. In
the next section we will take a broader perspective and look at the different belief sets
and reasoning frames an agent may have when varying the set of initial facts.

5 Varying the initial facts

In the preceding sections we have seen that infinitary default logic can be used for the
specification of belief frames and reasoning frames. These two notions are a formalization
(at two levels of abstraction) of the reasoning process of an agent from a fixed initial
situation. This initial situation is described by (part of) the intersection of theories
in a belief frame, or the common first point in the traces of a reasoning frame. Thus,
a belief frame or reasoning frame gives no information about the reasoning process of
the same agent from different sets of initial facts. In order to take into account these
different initial situations, we consider belief set operators and reasoning trace operators
(see [EHT95, EHT96]).

Definition 5.1 (Belief set operators and reasoning trace operators)

1. A belief set operator is a function which assigns a collection of belief sets to each
X ⊆ L.

2. A reasoning trace operator is a function which assigns a collection of reasoning
traces to each X ⊆ L.

We would like to specify these operators using (infinitary) default logic, and an
obvious way of doing this is using families of sets of defaults, indexed by sets of formulae.

Definition 5.2

1. Let B be a belief set operator. The operator B is representable by an indexed family
of sets of defaults (DX)X⊆L if for all X ⊆ L: B(X) = ext(DX , X).

2. Let F be a reasoning trace operator. The operator F is representable by an indexed
family of sets of defaults (DX)X⊆L if for all X ⊆ L: F(X) = tr(DX , X).

Given the results in the previous sections, the following is easy to see:

Proposition 5.1
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1. A belief set operator B is representable by an indexed family of sets of (prerequisite-
free) defaults iff B(X) is a belief frame for all X ⊆ L.

2. A reasoning trace operator F is representable by an indexed family of sets of de-
faults iff F(X) is a reasoning frame for all X ⊆ L.

In principle, this is a valid way of specifying belief set operators and reasoning trace
operators. However, it is intuitively not very likely that an agent should use a (com-
pletely) different set of defaults in every situation. Instead, it seems more plausible that
the agent has one set of defaults which it uses regardless of the initial facts (meaning
that DX = DY for all X,Y ). This leads to a different representability question: given a
belief set operator B, does there exist a set of (prerequisite-free) defaults D, such that
for all X ⊆ L we have B(X) = ext(D,X) (and similarly for reasoning trace operators).
It seems that this is a non-trivial question; we will leave this for future research.

6 Conclusions

In [MTT96] the usefulness of Reiter’s Default Logic for specifying multiple belief sets
of an agent was investigated. It was established that every finite non-including family
of belief sets is representable by a default theory. However, examples of denumerably
infinite non-including families were constructed that are not representable by a default
theory. In the current paper these results are extended in two manners. Firstly, a new
variant of default logic was introduced, Infinitary Default Logic, that allows to represent
every non-including family of belief sets, independent of its cardinality.

Secondly, not only the representability of families of belief sets as an outcome of
default reasoning processes was investigated, but also the representability of default
reasoning traces constructing these belief sets. Here a positive answer was also obtained
for infinitary default logic, whereas Reiter’s Default Logic fails for the non-finite case.

Thus specification of default reasoning is made possible at two levels of abstrac-
tion. For specification at the level of families of belief sets that are the outcomes of
default reasoning processes (abstracting from the reasoning traces constructing them),
prerequisite-free infinitary default theories are adequate means. Using them no commit-
ment is made to any particular traces to construct the belief sets. For specification at
the level of reasoning traces general infinitary default theories are adequate means. They
specify both the families of belief sets that are the outcomes and the traces constructing
them.

It is interesting to note that from a representation viewpoint, the only role played
by the prerequisites lies in guiding the construction process. Of course, even when
specifying only belief sets, it may be the case that an IDL-theory with prerequisites exists
which is more compact than a prerequisite-free theory. However, this would also give a
specification at a lower level of abstraction since it not only specifies the outcomes of the
reasoning but also the way outcomes are generated. One can then choose to commit to
this particular specification of the traces, but one could also consider the specification
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as meant only to specify the outcomes and give a different specification for the traces.
One way of changing the specification for the traces is by introducing so-called lemma
default rules are (see e.g. [Sch92]). This causes conclusions to be added earlier in a
trace.

A specification language for belief set operators and reasoning trace operators based
on temporal logic was introduced in [ET96].

Further issues for research include representability of belief set operators and rea-
soning trace operators using default logic (as mentioned in Section 5) and the general
question of representability using finitary default logic (with infinite sets of defaults).
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