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Abstract. We study properties of rough sets, that is, approximations to sets of records ina database or, more formally, to subsets of the universe of an information system. A roughset is a pair hL;Ui such that L;U are de�nable in the information system and L � U . Inthe paper, we introduce a language, called the language of inclusion-exclusion, to describeincomplete speci�cations of (unknown) sets. We use rough sets in order to de�ne a semanticsfor theories in the inclusion-exclusion language. We argue that our concept of a rough set isclosely related to that introduced by Pawlak. We show that rough sets can be ordered by theknowledge ordering (denoted �kn). We prove that Pawlak's rough sets are characterized as�kn-greatest approximations. We show that for any consistent (that is, satis�able) theoryT in the language of inclusion-exclusion there exists a �kn-greatest rough set approximatingall sets X that satisfy T . For some classes of theories in the language of inclusion-exclusion,we provide algorithmic ways to �nd this best approximation. We also state a number ofmiscellaneous results and discuss some open problems.1. IntroductionIn this paper we look at fundamental methodological issues underlying the concept of a roughset. Rough sets have been introduced by Pawlak [14] to serve as approximate descriptions of setsthat are unknown, incompletely speci�ed, or whose exact speci�cation is complex. The approachpioneered by Pawlak allows us to reason about such sets given only their representations as rough�This is an extended version of the �rst part of the presentation made by the authors at the RSCTC98, RoughSets and Current Trends in Computing, an international meeting held in Warsaw, Poland, in June 1998.Addressfor correspondence: Department of Computer Science, University of Kentucky, Lexington, KY 40506{0046



2 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Setssets. It found applications in databases, data mining, learning, approximate reasoning and manyother areas of computer science. For more details on the theory and applications of rough setswe refer the reader to the monograph by Pawlak [15] and to several conference proceedings andcollections of papers [23, 20, 13, 16, 17]. A good source of references is the Rough Sets website http://www.cs.uregina.ca/~roughset/. Another useful reference is the the Bulletin ofInternational Rough Set Society http://www.cs.uregina.ca/~yyao/irss/bulletin.html.The study of rough sets is well motivated by practical applications. To illustrate the point,let us consider the following three scenarios.1. The database language is inadequate to describe all subsets of some universe. This mayhappen when we want to reason about characteristics of objects represented by databaserecords that become of interest after the database was designed and are not part of thelanguage. For instance, in data mining we may be interested in consumer preferences withrespect to a new group of products based on the past credit card data.2. A set X of interest is unknown and we have only some information about it. We knowabout some sets that are disjoint with X and some that are included in X. We want tobuild good approximations to X and use them to reason about X. This situation occurs inmany applications. For instance, in medicine a group of individuals at risk for a particulardisease may be described in such terms. We want to be able to derive meaningful andcorrect, but not necessarily complete, information about people in this group.3. The set X is known, and may even be de�nable in our database. Yet any descriptionof X is so complex that it cannot be manipulated. In such case, we may have to useapproximations of such a set that admit simple descriptions in order to be able to reasonabout it.In this paper, we extend slightly the original de�nition of a rough set but change, quitedramatically, a perspective. Pawlak de�ned a rough set as an approximation to a speci�c set,say X. Pawlak's rough set corresponding to X is a pair hX;Xi of two sets such that X � X � X.The sets X and X (de�ned with respect to a �xed information system | an issue to be madeprecise later in the paper) are called the lower and upper approximations to X. The emphasison the set X, present in the original de�nition of a rough set, is what we strive here to freeourselves from. After all, in most (if not all) applications set X we want to reason about isunknown or is incompletely speci�ed. Consequently, it may be that an approximation we use toreason about it is not its rough set (in the strict sense of Pawlak's de�nition).In our proposal, the fundamental concept and the starting point is that of an approximationrather than that of a set to be approximated. This choice seems appropriate as approximationsare known and can be reasoned about. An approximation is any pair of sets hL;Ui such that L �U (we will also require that these sets be de�nable in an information system). An approximationhL;Ui serves as an approximation to any set X such that L � X � U . The main goal of ourresearch is to study properties of approximations hL;Ui and relate them to properties of sets Xthat they approximate.



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 3It turns out that Pawlak's rough sets and our approximations are closely related. Clearly,all Pawlak's rough sets are approximations. More interestingly, one can show that the classof approximations is only slightly larger than the class of Pawlak's rough sets. Therefore, wepropose to extend the use of the term rough set to all approximations. Our earlier statementmay be made clearer now. The main contribution of the paper is a new perspective on roughsets, the notion itself being only slightly modi�ed.In the paper, we formally de�ne rough sets (in the extended sense) and construct severalassociated algebraic structures and two ordering relations. One of them, the knowledge orderingis especially important and describes the tightness of approximation. It turns out that Pawlak'sapproximations are best (or maximal) approximations in terms of the knowledge ordering.In our research we were most strongly motivated by the scenario (2). Consequently, in thepaper, we introduce a language of inclusion-exclusion that allows us to formulate incompletespeci�cations of sets based on constraints of the form: \an unknown set contains a given set"or \an unknown set is disjoint with a given set". We use 3-valued Kleene logic to providesemantics to formulas and theories in this language. The connection of rough sets to 3-valuedlogic is known. It had been noticed early on in [10] and then, more recently, in [2]. Thisconnection is also present implicitly in several other papers on rough sets. Our use of the Kleenelogic is, however, novel. We obtain results on the following three key problems underlying awide range of applications associated with rough sets:P1: Given a speci�cation T in the language of inclusion-exclusion of a (possibly unknown) setX, what is the tightest rough set approximating X?P2: How can such approximation be computed?P3: Given an approximation hL;Ui of an unknown set, which properties are satis�ed by anunknown set X approximated by hL;UiThe study of problems P1 - P3 is the main focus of our paper.The paper is organized as follows. The next section provides a brief overview of informationsystems. The (extended) notion of a rough set and associated algebraic structures are introducedin Section 3. The relationship to Pawlak's de�nition is also discussed there. The logic ofinclusion-exclusion and the problems P1 - P3 are studied in Sections 4 and 5. Some directionsfor future research are outlined in Section 6.The study of problems P1 - P3 brings up several interesting computational issues related tothe question of existence of short and simple descriptions of sets and their approximations. Thesequestions are related to scenario (3) listed earlier. The area is mostly untouched. Some studies(see, for instance, [18, 3]) point to problems of complexity of descriptions of sets in informationsystems, thus, potentially, also to complexity of descriptions in terms of rough sets. Yet, nosystematic study, to our knowledge, has been undertaken. This and other possible directions forfuture research are discussed in Section 6.We hope that our paper o�ers a new look at rough sets, and an e�ective and elegant settingin which the theory and applications of rough sets can be investigated.



4 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Sets2. Information systemsIn this section, we recall the notion of an information system and describe the correspondingquery language [11]. For a detailed treatment of the subject the reader is referred to [11, 15].An information system is a pair I = hU ;Ai, where U is a nonempty set called the universeof I and A = fA1; : : : ; Ang is a list of functions, called attributes of I. A function (attribute)Ai 2 A assigns to each element of U an element from a set Di called the domain of Ai. The listA of attributes of an information system is often called the schema of I.With each information system I we can associate a function vI which, to each element x 2 Uassigns the description of x in I, that is, the tuple hA1(x); : : : ; An(x)i. Note that it may bethe case (in fact, it is a crucial observation for the theory of rough sets) that di�erent elementsx; y 2 U have the same description. Informally, it means that our information system is notpowerful enough to distinguish between them. For instance, two di�erent individuals may havethe same birth date and the same sex and, consequently, will be indistinguishable from the pointof an information system based on the schema with these two attributes only. Thus, informationsystem implies an important relation:x �I y , vI(x) = vI(y):Clearly, the relation x �I y is an equivalence relation that identi�es those elements of theuniverse that have the same description.To each schema A we assign now a query language, denoted by LA. It consists of termsbuilt by means of functor symbols + (sum), � (product) and � (negation). The terms of LA arede�ned recursively, as follows:1. For every attribute Ai 2 A and for every element a in the domain Di of an attribute Ai,the expression Ai = a is a term2. If s and t are terms then so are �s, s+ t and s � t.Terms of the form (A1 = a1) � (A2 = a2) � : : : � (An = an)where ai 2 Di for every i, 1 � i � n, are called constituent terms and play an important rolein the theory of information systems and rough sets. Clearly, checking if two constituent termsare identical can be accomplished in time proportional to the number of attributes in A.Terms of LA serve as queries to information systems with the schema A. Given an infor-mation system I = hU ;Ai, the value of the term (query) t in I, jtjI , is de�ned recursively bysetting: jAi = ajI = fx 2 U : Ai(x) = agand by interpreting the product as the set intersection, the sum as the set union, and the negationas the complement with respect to U . Sets assigned to constituent terms are called constituents.Let us note that our notion of a constituent is a generalization of a classical set-theoretical notionof a constituent (see [9], Section 1.7). Let us also note that non-empty constituents are precisely



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 5the equivalence classes of the relation �I . Finally, let us observe that equality of terms in LA,interpreted as equality of their values under all information systems with the schema A, can bechecked by a propositional prover.The theory of information systems becomes especially interesting when we adopt one of the�niteness conditions:First �niteness condition: The domains of all attributes are �niteSecond �niteness condition: The universe of an information system is �nite.These conditions are independent of each other. It is easy to construct information systemssatisfying the �rst one of them but not the second one and vice versa. Most of the results in thepaper hold under any of these two conditions. Some, however, rely on the �rst one and do not,in general, hold under the second one.In particular, under the �rst �niteness condition, one can prove the following normal formresult for terms: for every term t 2 LA there is another term, t0, such that1. t0 is the sum of constituent terms, and2. for every information system I, jtjI = jt0jI .Let I = hU ;Ai be an information system. The crucial notion for the theory of rough sets isthat of a de�nable set. A subset X � U is said to be de�nable in I, if there is a term (query) tsuch that jtjI = X. In particular, each constituent (the set corresponding to a constituent term)is de�nable.Observe that for every two constituents X and X 0, either X = X 0 or X \ X 0 = ;. It isalso easy to see that nonempty constituents are minimal nonempty de�nable sets and that everyde�nable set is a union of, possibly in�nitely many, constituents. In fact, one can show thatde�nable sets form a Boolean algebra and that nonempty constituents are its atoms.Under any of the �niteness conditions a stronger observation holds: any de�nable set is aunion of �nitely many constituents. Moreover, under the �rst �niteness condition, there is abound on the number of terms in such a union that depends only on the schema A and noton the information system. This observation follows from the normal form result for terms andfrom the fact that under the �rst �niteness condition, there are only �nitely many constituentterms.Second �niteness condition has also another related consequence: if every constituent has nomore than one element, then every subset of the universe is de�nable.It is quite clear that there is a strong database connection. In fact, if we prepend each tuplevI(z), z 2 U , by the unique identi�er of z, say oid(z), then the collection of all such extendedtuples forms a table that can be viewed as a single class, \at", object-oriented database1.In addition, the query language described here clearly corresponds to a fragment of SQL: thequeries are on a single table, the select clause consists of all attributes (with the exception ofthe unique identi�er attribute oid), and range queries, statistical queries and string-matchingqueries are not permitted. In the paper we will often make references to database intuitions.1We need to use unique identi�ers for the elements from the universe since, as mentioned earlier, di�erentelements of the universe of an information system may have the same descriptions and, consequently, would berepresented by a single tuple in the database.



6 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Sets3. Approximations and rough setsIn general, not every subset of the universe of an information system I = hU ;Ai is de�nable. Inother words, knowledge contained in an information system I is incomplete. Even if a subset ofthe universe U is de�nable, its description may be very complex or we may simply not know it.Therefore, we often have to resort to incomplete or approximate descriptions. In this section weintroduce algebraic foundations of the theory of approximations of subsets of the universe of aninformation system and relate it to the concept of rough sets by Pawlak.Let I = hU ;Ai be an information system. The key role in our discussion will be played bythe boolean algebra of all subsets of U that are de�nable in I, that is, can be described by termsof the language LA. We will denote this algebra by DI . Under any of the �niteness conditions,the algebra DI is a complete boolean algebra.A straightforward way to approximate a subset X of the universe U is to provide a lower andan upper bound for it. Since we are interested in approximations that can be expressed in I asvalues of terms of LA, we will require that both the lower and the upper bounds be de�nable inI. Formally, by an approximation we mean a pair hL;Ui such that L;U 2 DI and L � U . Eachsuch pair hL;Ui can be viewed as an approximation of any set Z � U (de�nable in I or not)such that L � Z � U . An approximation is not the same notion as that of a rough set as de�nedby Pawlak. But both concepts are very closely related (we will introduce Pawlak's rough setsand discuss this relationship later in this section). Thus, somewhat abusing the terminology,throughout the paper we refer to approximations as rough sets.We denote the collection of all rough sets (approximations) in an information system I byRI . This structure can be endowed with an ordering called the knowledge ordering. It is denotedby �kn, and is de�ned as follows:hL1; U1i �kn hL2; U2i if L1 � L2 and U2 � U1:
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RFigure 1. Two rough sets in the relation �knFigure 1 presents two rough sets P = hL1; U1i and R = hL2; U2i. The lower approximationsL1 and L2 are shown as lightly shaded. Complements of the upper approximations U1 and U2are darkly shaded. These sets are de�ned by the following terms:L1: ((A = a1) � (B = b1)) + ((A = a2) � (B = b1)) + ((A = a1) � (B = b2))U1: �(((A = a4) + (A = a5)) � (B = b5))



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 7L2: (((A = a1) + (A = a2)) � ((B = b1) + (B = b2)))+((A = a3) � (B = b1))U2: (A = a1) + (A = a2) + (B = b1) + (B = B2)+((A = a3) � (B = b3)) + (A = a3) � (B = b4))+(A = a4) � (B = b3))Clearly, P �kn R.The knowledge ordering is crucial for our considerations and requires some explanation. Ifpairs hL1; U1i and hL2; U2i are approximations and hL1; U1i �kn hL2; U2i then the pair hL2; U2iis a tighter approximation (contains more precise knowledge about an unknown set Z that bothpairs approximate). In particular, the set X of elements \to the left" of the curved line inFigure 1 is approximated both by P and by R. It is clear that R is a tighter approximation,that is, provides more knowledge about the set X. This intuition motivates the use of the termknowledge in reference to the ordering �kn.If L is not a subset of U , the pair hL;Ui cannot be interpreted as an approximation (unlesswe want to interpret all such pairs as inconsistent approximations). Still, the ordering �kncan be extended to the whole cartesian product DI � DI and, in fact, also to the cartesianproduct P(U) � P(U). We will consider these two structures, too, since they simplify some ofthe technical arguments later in the paper. The following result gathers the most importantproperties of sets RI , DI �DI , P(U) �P(U) and the ordering �kn.Proposition 3.1. For every set U , hP(U) �P(U);�kni is a complete lattice. For every infor-mation system I satisfying any of the �niteness conditions, the structure hDI � DI ;�kni is acomplete lattice and hRI ;�kni is a complete lower semi-lattice.Let us note that h;;Ui is the least and hU ; ;i is the greatest element of hP(U)�P(U);�kniand of hDI � DI ;�kni. The pair h;;Ui is also the least element of the poset hRI ;�kni. Themaximal elements in hRI ;�kni are pairs hX;Xi, where X 2 DI .Proposition 3.1 allows us to derive properties of rough sets. Most importantly, it allows usto apply the theorem by Knaster and Tarski [21] on existence of �xpoints of monotone operatorson complete lattices.The sets hP(U)�P(U)i, hDI �DIi and RI (in fact, any collection of pairs of sets) can alsobe ordered by the so-called inclusion ordering �in. It is de�ned as follows:hL1; U1i �in hL2; U2i if L1 � L2 and U1 � U2:It is easy to see that all three sets are complete lattices under the ordering �in (in the case ofDI �DI and RI we need to assume one of the �niteness conditions).It is not clear whether the ordering �in plays any major role in the theory of rough sets.However, let us note that the structures hP(U)�P(U);�kn;�ini and hDI �DI ;�kn;�ini (thislatter one under any of the �niteness conditions) form complete bilattices [6, 5].We will now discuss connections between the concept of a rough set as de�ned above andthe original one introduced by Pawlak [14]. Pawlak observed that when an information system



8 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough SetsI = hU ;Ai satis�es any of the �niteness conditions then, for every set X � U , there exists agreatest de�nable set X 0 such that X 0 � X and, similarly, there exists a smallest de�nable setX 00 such that X � X 00. These sets are denoted by X and X, respectively, and called lowerand upper approximations of X. It is necessary to adopt at least one �niteness condition as, ingeneral, there are information systems in which, for some subsets X of the universe, the loweror the upper approximations (or both) are not de�ned. Pawlak called pairs of the form hX;Xi,where X � U , rough sets.If hL;Ui is a rough set, and X is a subset of U , then we say that X is dense in hL;Ui ifX = L and X = U . In such case, we also say that the rough set hL;Ui is concrete. Thus,Pawlak's rough sets are precisely those rough set according to our de�nition that are concrete.In Figure 2, we present the concrete rough set corresponding to the set X of elements \to theleft" of the curved line (light shade indicates the lower approximation, dark shade indicatesthe complement of the upper approximation). The set X was also discussed in the context ofFigure 1. Clearly, P �kn R �kn S (P and R are as in Figure 1). In fact, S is the �kn-largestapproximation to the set X.
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Figure 2. A subset X of U dense in a rough set SIt follows directly from the de�nition that X � X and that both approximations are de�n-able. Thus, Pawlak's rough sets are rough sets in our sense, as well. In general, the conversedoes not hold. However, the connection is very strong, as explained in the next result.Proposition 3.2. A rough set hL;Ui is of the form hX;Xi, for some set X � U if and only iffor every x 2 U n L, the constituent of x has at least two elements.Proposition 3.2 implies immediately that if every constituent of an information system has atleast two elements, the class of rough sets according to the de�nition by Pawlak coincides withthe class RI of rough sets as de�ned in this paper. Thus, both concepts are very closely relatedwhich justi�es our use of the term. Let us stress again that the main contribution of our work



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 9is not in the change of the de�nition but in the change of perspective. A rough set as de�ned byPawlak is intimately connected to the underlying subset of the universe that determines it. Thisset is, however, usually unknown. Starting with the notion of an approximation, not tied to anysubset of the universe in particular, seems to be more natural. It leads directly to orderings �knand �in and allows us to exploit algebraic techniques in our study of approximations.We conclude this section by discussing some simple properties of rough sets. Our �rst resultstates that Pawlak's rough sets provide the best approximations.Proposition 3.3. Let I satisfy one of the �niteness conditions. Then, for every set X � U ,hX;Xi is the �kn-greatest rough set approximating X.Proof: If R = hL;Ui approximates X, then L � X. Since L is de�nable, L � X. Similarly,X � U . Thus R �kn hX;Xi. 2The next result, due to Pawlak [14], deals with the ordering �in. It says that as sets grow,so do, with respect to �in, their Pawlak's approximations.Proposition 3.4. If X � Y then hX;Xi �in hY ; Y i.Finally, let us observe that unknown sets (concepts) are often, especially in learning, speci�edby positive and negative examples, that is, two �nite and disjoint sets of elements (subsets ofthe universe of an information system I): those that are in and those that are out. We will callsuch a pair of sets a sample.Consider a sample hP;Ni. We say that an information system I is adequate for hP;Ni if forno elements x 2 P and y 2 N we have x �I y. Informally, I is adequate for a sample hP;Ni ifit allows us to distinguish between positive and negative examples of the set (concept) that weattempt to describe.In general, samples provide only an incomplete description of a set. Therefore, we will beinterested in approximations (rough sets) that can be associated with (learned from) a sample.We say that a rough set hL;Ui is consistent with a sample hP;Ni if P � L, N \ U = ;. Aninformation system I is consistent with a sample hP;Ni if there is a rough set over I consistentwith hP;Ni. We have the following simple result.Proposition 3.5. Let I = hU ;Ai be an information system. Then:1. I is consistent with hP;Ni if and only if I is adequate for hP;Ni2. If I is consistent with hP;Ni then there is a �kn-least rough set R consistent with hP;Ni.Proof: (1) Let hL;Ui be a rough set over I consistent with hP;Ni. Consider x 2 P and y 2 N .Then, x 2 L and y 2 U n U . Since both L and U n U are de�nable and disjoint, x and y are notequivalent with respect to �I . Thus, I is adequate for hP;Ni.Conversely, assume that I is adequate for hP;Ni. Let P = fx1; : : : ; xmg andN = fy1; : : : ; yng.For 1 � i � m, let ti be the constituent term such that xi 2 jtijI and, for 1 � j � n, let sj bethe constituent term such that yj 2 jsjjI . The terms ti, sj are well-de�ned, as each element ofU belongs to some constituent set. By the assumption of adequacy, ti 6= sj, for all i; j. De�ne



10 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Setst = t1 + : : : + tm and s = �(s1 + : : : + sn). Put L = jtjI and U = jsjI . Then, by the remarksabove, hL;Ui is consistent with hP;Ni.(2) It can be shown that the rough set constructed in the second part of the proof of (1) is the�kn-least rough set consistent with a sample hP;Ni. 2We will denote the rough set constructed in the proof of Proposition 3.5 by R(P;N). Itencodes the entire knowledge (with respect to the underlying information system I) carried bythe sample hP;Ni. Namely, it approximates every de�nable in I set X such that P � X andN \X = ; (there is a close similarity here with the notion of version space in learning [12]).In the context of rough sets (and 3-valued logic) we can extend our discussion to the casewhen I is not adequate for the sample hP;Ni. In such case, there is no set X de�nable in I andsuch that P � X and N \X = ;. That is, P and N cannot be \separated" in I. But they canbe separated \as much as possible". Given a sample hP;Ni, let us call any sample hP 0; N 0i suchthat P 0 � P and N 0 � N 0 a subsample of hP;Ni.Proposition 3.6. Let I be an information system and let hP;Ni be a sample. Then, there is a�in-largest subsample of hP;Ni with which I is consistent.Proof: Clearly, h;; ;i is a subsample of hP;Ni consistent with I. Moreover, it is easy to seethat if subsamples (P 0; N 0) and (P 00; N 00) of (P;N) are consistent with I, the subsample (P 0 [P 00; N 0 [N 00) of (P;N) is also consistent with I. Thus, the assertion follows. 2Let us denote this �in-largest subsample of (P;N), guaranteed by Proposition 3.6, by(P I ; N I). The rough set R(P I ; N I), guaranteed by Proposition 3.5, describes all those de-�nable sets in I that separate P I from N I or, speaking informally, separate as much of P fromN as possible.We will now �nd an alternative characterization of the rough set R(P I ; N I). To this end,let us call a rough set hL;Ui weakly consistent with hP;Ni, if N \ L = ;, and P \ (U n U) = ;.Rough sets that are weakly consistent with a sample hP;Ni always exist. For instance, h;;Uiis one such set. Moreover, under any of the �niteness conditions, every �kn-chain consisting ofrough sets weakly consistent with hP;Ni has a least upper bound. It is also easy to see thatthis least upper bound is itself weakly consistent with hP;Ni. Thus, for every rough set hL;Uiweakly consistent with hP;Ni, there exists a �kn-maximal rough set hLm; Umi weakly consistentwith hP;Ni and such that hL;Ui �kn hLm; Umi.We then have the following property.Theorem 3.1. Let I satis�es any �niteness condition and let hP;Ni be a sample. Then,R(P I ; N I) is the greatest lower bound of all maximal rough sets that are weakly consistent withhP;Ni.Proof: Assume that R(P I ; N I) = hRl; Rui. Consider an arbitrary maximal rough set weaklyconsistent with hP;Ni, say hL;Ui. Let x 2 Rl. De�ne tx to be a constituent term of x and letCx = jtxjI .



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 11Assume that Cx \ U 6= ;. Since U is de�nable, Cx � U . By the de�nition of Rl, there isp 2 P such that p 2 Rl and x �I p. Thus, p 2 U , a contradiction (as hL;Ui is weakly consistentwith hP;Ni). It follows then that Cx \ U = ;. Consequently, hL [Cx; Ui is a rough set.Assume that for some element n 2 N , n 2 L [ Cx. Since hL;Ui is weakly consistent withhP;Ni, n 2 Cx. It follows that n �I x. Consequently, n �I p and, thus, n 2 Rl. This is acontradiction as R(P I ; N I) is weakly consistent with hP;Ni.Thus, hL[Cx; Ui is a weakly consistent rough set with hP;Ni. Since Cx 6= ; and since hL;Uiis a maximal rough set weakly consistent with hP;Ni it follows that Cx � L. In particular x 2 L.Hence, Rl � L. Similarly, one can show that U � Ru. Consequently, R(P I ; N I) �kn hL;Ui.Consider now a rough set hL0; U0i such that hL0; U0i �kn hL;Ui for every hL;Ui that is amaximal rough set weakly consistent with hP;Ni. Let x 2 L0. Assume that x =2 Rl. As before,de�ne tx to be a constituent term of x and let Cx = jtxjI . By the de�nition of Rl, there are twopossibilities: (1) Cx \ (P [N) = ;, and (2) Cx \N 6= ;.Since L0 is de�nable, it follows that Cx � L0. Let hL;Ui be a maximal rough set weaklyconsistent with hP;Ni (as we observed earlier, any of the �niteness conditions implies that suchmaximal sets exist). Then, hL0; U0i �kn hL;Ui and so Cx � L. In the case when (2) holds, weget an immediate contradiction with weak consistency of hL;Ui. So, assume that (1) holds. Itis clear that the rough set hL n Cx; U [ Cxi is also a rough set weakly consistent with hP;Ni.Consequently, there is a maximal rough set hL0; U 0i weakly consistent with hP;Ni and such thatCx \ L0 = ;. Thus, hL0; U0i 6�kn hL0; U 0i, a contradiction. It follows that x 2 Rl and thatL0 � Rl. in a similar way, one can prove that Ru � U0. Thus, hL0; U0i �kn R(P I ; N I), and theassertion follows. 2Finally, let us observe that when an information system is inadequate for a sample hP;Ni,adding new attributes to the language yields information systems allowing for more completeseparation of positive and negative elements. We have the following straightforward result.Proposition 3.7. Let I = hU ;Ai and J = hU ;A0i be information systems. If A � A0 then forevery sample hP;Ni, hP I ; N Ii �in hP J ; NJi.4. Logic of inclusion-exclusionPawlak's rough sets and rough sets introduced here are motivated by the need to reason aboutunknown sets of records | sets for which we have only an incomplete speci�cation. We willnow investigate this main application of rough sets in more detail.It is often the case that a set of interest is unknown but some information about it is available.For instance, we may know about some sets being contained in it and some other sets beingdisjoint with it. We will introduce a language to describe constraints of these types.Given the schema A of an information system and the corresponding language LA we de�nethe language of inclusion-exclusion for A, LieA as follows. The atoms of LieA are expressions of theform in(t) and ex(t), where t 2 LA. Next, if '1 and '2 are formulas of LieA then so are '1 ^'2,'1 _ '2, '1 ) '2 and :'1.



12 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough SetsIntuitively, a formula in(t) describes the constraint that an unknown subset of the universeof an information system I contains the answer to the query t, that is, the set jtjI . Similarly, aformula in(r) ) in(s)_ex(t) describes the constraint that if a set contains jrjI then it containsjsjI or is disjoint with jtjI . We will now make this intuition precise by de�ning the satis�abilityrelation between subsets of the universe of an information system and formulas in the languageLieA.Given an information system I = hU ;Ai and a set X � U (X may but does not have to bede�nable) we de�ne [in(t)]X = ( 1 if jtjI � X0 otherwise.Similarly we de�ne [ex(t)]X = ( 1 if jtjI \X = ;0 otherwise.Next, we extend the de�nition of [']X to all formulas of LieA interpreting :, ^, _ and ) ina standard way in the boolean algebra of logical values. That is, [:']X = 1 � [']X , and[' ^  ]X = min([']X ; [ ]X ), etc. We say that X j=I ' if [']I = 1. When T is a theory, that is,a set of formulas of LieA, we say that X is a model of T (or that X satis�es T ) if X j=I ' for all' 2 T . We will denote it by X j=I T and de�ne ModI(T ) = fX � U :X j=I Tg.We say that a theory T in the language LieA is consistent with I = hU ;Ai if there is a setX � U such that X j=I T .Before we proceed to the main questions listed in the introduction, let us note some simplebut interesting properties of the 2-valued semantics of the language of inclusion-exclusion. LetI = hU ;Ai be an information system. We say that a set X � U is constituent-complete (withrespect to I) if for every constituent term t, X j=I in(t) or X j=I ex(t). We now have thefollowing characterization of de�nable sets.Proposition 4.1. If an information system I = hU ;Ai satis�es the �rst �niteness assumption,then a set X � U is de�nable in I if and only if X is constituent-complete.The language of inclusion-exclusion can distinguish between empty constituents, 1-elementconstituents and constituents with more than one element. It does not, in general, distinguishbetween cardinalities greater than or equal to 2.Proposition 4.2. Let I = hU ;Ai be an information system and let X � U .1. jtjI = ; if and only if for every set X � U , X j=I in(t) ^ ex(t).2. jtjI is a one-element set if and only if for every set X � U , X j=I :in(t) , ex(t).3. If t is a constituent such that jtjI � 2 then for any k � 2 there is an information systemI 0 = hU 0;Ai (notice that the set of attributes is the same as in I) such that:(a) jtjI0 = k



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 13(b) For every X � U there is X 0 � U 0 such that X and X 0 satisfy precisely the sameformulas of LieA.Next, let us note that sets that are indistinguishable in an information system I satisfyprecisely the same formulas from LieA. Recall that a set X � U is dense in a rough set hL;Ui ifX = L and X = U (that is, if hL;Ui is the rough set of X in the sense of Pawlak). Sets X andY are indistinguishable if they are dense in the same rough set (that is, if both have the samerough set in the sense of Pawlak).Theorem 4.1. (Indistinguishability theorem) Let I satisfy one of the �niteness conditions.Then, for X;Y � U , X and Y are indistinguishable if and only if for every formula ' of thelanguage of inclusion-exclusion X j=I ', Y j=I ':Theorem 4.1 demonstrates that rough sets are, really, about indistinguishability in the lan-guage LieA. Thus, any strengthening of the concept of a rough set (for instance so we would beable to formally express the quality of approximation) requires strengthening of the language ofinclusion-exclusion.We will now formally state and study general problems that arise in the context of reasoningabout properties of unknown sets speci�ed by means of formulas from LieA. First, given aninformation system I = hU ;Ai and a theory from LieA describing available information aboutan unknown set X � U , the question is to determine, as accurately as possible, the extent ofX (problem P1). Next, there is a question of computing this tightest approximation (problemP2). Finally, given a rough set that approximates an unknown set X � U , the question is toestablish properties (expressed as formulas of LieA) that X has (problem P3). The study of thesequestions is the main goal for the remainder of the paper.We start with the �rst problem. We will show that given a theory T in the language LieA,there exists a rough set providing the best approximation to all sets X that satisfy T .Indeed, let T be a consistent theory in the language of inclusion-exclusion LieA. Let AT bethe class of all rough sets hL;Ui such that for every X 2 ModI(T ), L � X � U (that is, ATconsists of all rough sets hL;Ui such that hL;Ui �kn hX;Xi whenever X j=I T ). Then, clearly,AT is nonempty | h;;Ui 2 AT . Now, we can prove the following fact.Theorem 4.2. (Approximation theorem) Assume I satis�es one of the �niteness condi-tions. Let T be a consistent theory in the language of inclusion-exclusion. Then AT possesses a�kn-greatest element. That is, there exists the �kn-greatest rough set hL;Ui such that if X � Uand X j=I T then L � X, and X � U .Proof: Let X be a model of T (such a model exists since T is consistent). Then, the class AT isnonempty. Moreover, the class AT is closed under �nite joins. That is, for every hL;Ui; hL0; U 0i 2AT , hL [ L0; U \ U 0i 2 AT . Indeed, let hL;Ui; hL0; U 0i 2 AT . Then, hL;Ui �kn hX;Xi andhL0; U 0i �kn hX;Xi. Consequently, hL [ L0; U \ U 0i �kn hX;Xi. Since X is an arbitrary model



14 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Setsof T , hL [ L0; U \ U 0i 2 AT . By a �niteness condition, the class AT is �nite. Hence, it containsthe join of all its elements and this element is the �kn-greatest element of AT . 2Earlier we used notation hX;Xi, where X � U , to denote lower and upper approximationsto a set X (or, equivalently, a concrete rough sets determined by X). The rough set hX;Xi isthe �kn-greatest approximation to X. Given a theory T , by hT ; T i we denote the �kn-greatestelement of AT , whose existence is guaranteed by Theorem 4.2. Since hT ; T i is the �kn-greatestelement of AT , if x =2 T , then there is X satisfying T such that x =2 X. Similarly, if x =2 T , thenthere is X satisfying T such that x 2 X. Thus, hT ; T i is the best approximation of an unknownset speci�ed by T , if T is all we know about it, justifying extending the notation h�; �i to thecase of theories in LieA.Theorem 4.2 asserts only the existence of the set hT ; T i. It does not imply a method toconstruct it (note that our proof of Theorem 4.2 relies on the knowledge of the family of AT ofall possible sets that could be represented by T ). In the next section we will develop tools thatwill allow us to tackle the second problem listed earlier and, in addition, will yield techniquesto construct the approximation hT ; T i for some special classes of theories T .5. Three-valued logic of inclusion-exclusionIn order to further study the problems stated in the previous section we need to introduce a3-valued semantics for theories in the language LieA. We use the 3-valued logic of Kleene andintroduce the 3-valued satis�ability relation between rough sets and formulas from LieA in asimilar way as the 2-valued satisfaction relation was introduced in Section 4.Kleene 3-valued logic, [8], pp. 332-335, is based on three logical values, 1, 0, and u. Theselogical values are ordered by a relation �tr (often referred to as the truth ordering) 0 �tr u �tr 1.The operations ^ and _ on the truth values 1, 0, and u are de�ned as meet and join with respectto relation �tr. The complement operation, (�)�1, is de�ned as follows:0�1 = 1; 1�1 = 0; u�1 = u:The truth values in the Kleene logic are also ordered by another ordering, the knowledge ordering,�kn in which u is the least element and 1, 0 are the maximal elements.We will now de�ne a 3-valued satis�ability relation. Let I = hU ;Ai be an information systemand let hL;Ui 2 P(U) �P(U) be a pair of subsets of U . We �rst de�ne[in(t)]hL;Ui = 8><>: 1 if jtjI � L0 if jtjI n U 6= ;u otherwiseand [ex(t)]hL;Ui = 8><>: 1 if jtjI \ U = ;0 if jtjI \ L 6= ;u otherwise



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 15Next we extend the de�nition of [']hL;Ui to all formulas of LieA. We interpret :, ^ and _ as theKleene complement, meet and join. The interpretation of ) is implied by the fact that p ) qis equivalent, in Kleene's logic, to :p _ q. Finally, as in Section 4, we de�nehL;Ui j=I;3 ' if [']hL;Ui = 1:The notions of 2-valued and 3-valued satis�ability are closely related. First, for completerough sets, that is, for rough sets of the form hX;Xi they coincide.Proposition 5.1. Let X be a de�nable set in I and let ' 2 LieA. Then X j=I ' if and only ifhX;Xi j=I;3 '.Moreover, the relation j=I;3 approximates j=I for dense sets.Theorem 5.1. Let R = hL;Ui be a rough set and let ' 2 LieA. If R j=I;3 ' then for every Xsuch that X is dense in R (that is X = L and X = U) we have X j=I '.Theorem 5.1 tells us that the satisfaction relation for a rough set R (de�ned by means of3-valued logic) truly approximates 2-valued satisfaction relation for all subsets X of U that aredense in R.We now resume our study of the three main problems listed in the introduction. We have thefollowing key property connecting the satisfaction relation j=I;3 with the knowledge ordering.Theorem 5.2. Let R1 = hL;Ui and R2 = hL0; U 0i be two elements of P(U) � P(U) such thatR1 �kn R2. Let ' 2 LieA. Then, [']R1 �kn [']R2 . In particular, if R1 �kn R2 and R1 j=I;3 ',then R2 j=I;3 '.Proof: We prove only the �rst assertion. The second one is its immediate consequence. Weproceed by induction on the complexity of the formula '. First, let ' = in(t). If [']hL;Ui = 1then jtjI � L. From the assumption hL;Ui �kn hL0; U 0i it follows that L � L0 so jtjI � L0.Thus [']hL0 ;U 0i = 1. If [']hL;Ui = 0 then jtjI \ U = ;. But U 0 � U , and so jtjI \ U 0 = ;. Thus[']hL0;U 0i = 0. When [']hL;Ui = u then there is nothing to prove since u is the least element ofthe ordering �kn. The argument for the case of ' = ex(t) is similar.In the inductive step, three cases need to be considered. If [:']hL;Ui = 0 then [']hL;Ui = 1.By the inductive assumption, [']hL0;U 0i = 1, and so [:']hL0 ;U 0i = 0. The case of [']hL;Ui = 0is similar. In the case [:']hL;Ui = u, there is nothing to prove as u is the least element. If' = '1 _ '2 and [']hL;Ui = 1 then ['1]hL;Ui = 1 or ['2]hL;Ui = 1. By inductive assumption['1]hL0;U 0i = 1 or ['2]hL0 ;U 0i = 1, thus [']hL0;U 0i = 1. The case of [']hL;Ui = 0 is similar andthe case of u can be dealt with as before. The case of conjunction is similar to the case ofdisjunction. 2Theorem 5.2 provides an additional justi�cation for the term knowledge ordering used inreference to the ordering �kn. Namely, as approximations get more precise (grow with theknowledge ordering), our knowledge about formulas from LieA grows, too.Theorem 5.2 has a corollary that provides an answer to the problem P3 listed in the in-troduction. It allows us to draw conclusions about properties of unknown sets based on theproperties of their approximations.



16 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough SetsCorollary 5.1. Let I = hU ;Ai be an information system and let X be a subset of U . Let R bea rough set that approximates X, that is, R �kn hX;Xi. Then, for every ' 2 LieA, if R j=I;3 'then X j=I '.Proof: Since R �kn hX;Xi, it follows by Theorem 5.2 that if R j=I;3 ' then hX;Xi j=I;3 '. Butfor complete rough sets, the relation j=I;3 coincides with j=I (Proposition 5.1). 2Corollary 5.1 implies that if we are given an approximation R of an unknown set X then allproperties satis�ed by R (in 3-valued logic) are also satis�ed by X (in 2-valued logic).We return now to the question left open at the end of the previous section: how to computethe best approximation of an unknown set speci�ed only by theory T in the language LieA (recallthat Theorem 4.2 guarantees the existence of such best approximation).We will focus on a special class of formulas in LieA. A rule is every formula ' of the languageLieA such that ' is of the form B ) h, where B 2 LieA and h is an atomic formula from LieA (thatis, a formula in(t) or ex(s) for some t; s 2 LI). We refer to B as the body and to h as the head ofa rule '. Atomic formulas are special cases of rules (with empty body, which can be interpretedas true formula) as are formulas � ) �, where � and � are atomic formulas in LieA.A rule B ) in(t) captures the following constraint: if a set X satis�es B then it mustcontain all elements that have property t. A rule B ) ex(s) has a similar interpretation. Thus,in particular, a rule ex(s) ) in(t) captures the constraint that if a set X does not contain anyrecord from query s then it must contain all records from query t.In what follows we will consider the class of rule theories, that is, theories consisting ofrules. We start with rule theories that consist of atomic formulas only. Let I = hU ;Ai be aninformation system. Let T be a set of atomic formulas from LieA. De�ne:LT =[fjtjI : in(t) 2 Tg; UT = U n[fjsjI : ex(s) 2 Tg:Clearly, under any of the �niteness conditions, both LT and UT are de�nable. We have thefollowing straightforward result.Proposition 5.2. Let T be a rule theory consisting of atomic formulas of LieA. Then, T isconsistent if and only if hLT ; UT i is a rough set. Moreover, if T is consistent then hLT ; UT i isthe �kn-least 3-valued model of T and it coincides with the rough set hT ; T i.Proof: First, assume that T is consistent. Then there is a set X satisfying T . It is easy to seethat X satis�es T if and only if LT � X � UT . Thus LT � UT , and hLT ; UT i is a rough set.Moreover, clearly, hLT ; UT i = hT ; T i.Conversely, if LT � UT , then for any t such that in(t) 2 T and for any s such that ex(s) 2 T ,jtjI \ jsjI = ;. But then every set X such that LT � X � UT is a model of T . It follows that Tis consistent. 2We will now extend this result to all rule theories. To this end, we introduce, for each ruletheory T , an operator OT on the lattice DI � DI of pairs of de�nable sets of an information



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 17system I (notice that DI�DI in addition to rough sets contains additional, \inconsistent" pairs,too). Let T be a rule theory and let R be a a pair of de�nable sets. De�neK(R) = f�:B ) � 2 T and R j=I;3 BgClearly, K(R) is a rule theory consisting of atomic formulas only. De�neOT (R) = hLK(R); UK(R)i:It is easy to see that under any of the �niteness conditions, for every pair of de�nable sets R,OT (R) is also a pair of de�nable sets, although not always a consistent one.The fundamental property of the operator OT is its monotonicity with respect to the ordering�kn.Proposition 5.3. Let T be a rule theory. Then, the operator OT is �kn-monotone.Proof: Let R1 �kn R2 be two rough sets. We claim thatK(R1) � K(R2). Indeed, let � 2 K(R1).Then, there is a rule in T , say B ) �, such that R1 j=I;3 B. Then, by Theorem 5.2, R2 j=I;3 B.Consequently, � 2 K(R2).Next, observe that if T1; T2 are two sets of atomic formulas such that T1 � T2, then LT1 � LT2and UT2 � UT1 . Applying this remark to K(R1) and K(R2), we obtain the result. 2Since DI � DI is a complete lattice, Knaster-Tarski Theorem [21] implies the followingcorollary.Corollary 5.2. If T is a rule theory, then the operator OT possesses a �kn-least �xpoint.The operator OT has the following intuition. It updates an approximation R by replacing itwith the approximation hLK(R); UK(R)i. If we iterate OT starting with h;;Ui, in each step (untilwe reach the �xpoint) we obtain a better approximation to a set X speci�ed by T . We will denotethe �kn-least �xpoint of OT by hlT ; uT i. Our next result shows that hlT ; uT i approximates therough set hT ; T i.Theorem 5.3. Let I be an information system satisfying one of the �niteness conditions andlet T be a consistent rule theory. Then hlT ; uT i �kn hT ; T i.Proof: Recall that hlT ; uT i, the least �xpoint of the operator OT , is obtained by iterating theoperator OT starting at the least element of RI , h;;Ui. Since I satis�es one of the �nitenessconditions, hlT ; uT i = OnT (h;;Ui) for some natural number n. By induction on m, we show thatfor every model X of T , OmT (h;;Ui) �kn hX;Xi. This is certainly true for m = 0. Assume nowthat R = OmT (h;;Ui) has the property R �kn hX;Xi. We will show that OT (R) �kn hX;Xi.Consider the formula in(t) belonging to the set K(R). Then, there is a rule B ) in(t) suchthat R j=I;3 B. Consequently, hX;Xi j=I;3 B. By Proposition 5.1, X j=I B. Since B ) in(t)belongs to T and since X is a model of T , X j=I in(t). Thus, jtjI � X. We have just proved



18 V.W. Marek and M. Truszczy�nski /Contributions to the Theory of Rough Setsthat whenever in(t) belongs to K(R), jtjI � X. It follows that LK(R) � X and, consequently,that LK(R) �\fX : X j=I Tg = T :Similarly we show that T =[fX : X j=I Tg � UK(R):Therefore OT (R) �kn hT ; T i and, consequently, hlT ; uT i �kn hT ; T i. 2Thus, the operator OT allows us to construct a lower estimate to the best approximation ofan unknown set speci�ed by a rule theory. In general, this lower estimate hlT ; uT i is di�erentfrom the best approximation hT ; T i. In some cases, however, they coincide.We say that a formula ' is positive if it is built out of atomic formulas by means of conjunc-tions and alternatives. Thus negation, implication and equivalence symbols are not allowed inpositive formulas.Theorem 5.4. Let I be an information system satisfying one of the �niteness conditions and letT be a consistent theory whose all rules have positive bodies. Assume that hlT ; uT i is a concreterough set. Then hlT ; uT i = hT ; T i.Proof: By Theorem 5.3, hlT ; uT i �kn hT ; T i. Thus, it su�ces to show that hT ; T i �kn hlT ; uT i.First, observe that for every positive formula ', X j=I ' if and only if hX;Xi j=I;3 ' (an easyproof by induction on the length of ' is omitted).Let X be a set dense in hlT ; uT i, that is, X = lT , and X = uT (such a set exists as hlT ; uT iis concrete). Let ' ) � be a rule in T . Assume that X j=I '. Then, since ' is positive, ourobservation implies that hX;Xi j=I;3 '. Since hlT ; uT i = hX;Xi, hlT ; uT i j=I;3 '. Recall thatthe rough set hlT ; uT i is the �xpoint of the operator OT . Thus, hlT ; uT i j=I;3 �. By Theorem5.1, it follows that X j=I � and, consequently, X is a model of T . Hence, hT ; T i �kn hX;Xi.Thus, by Theorem 3.3, we obtain hT ; T i �kn hlT ; uT i. 2As noticed above, a rule theory does not need to be consistent. In fact, even a theoryconsisting of atoms need not to be consistent. It should be clear that checking if a theory Tconsisting of atoms is consistent can be done by a number of calls to satis�ability engine that isproportional to the square of the size of T .If a theory T consists of rules with positive body, then, by computing the �xpoint of theoperator OT we arrive at a pair of de�nable sets. If that pair is not consistent, T itself is notconsistent. If that pair is consistent, and if the resulting rough sets is concrete, then we computedthe rough set hT ; T i. It is quite clear that this computation requires only a polynomial numberof calls to the satis�ability engine.There are classes of theories that are guaranteed to be consistent. One example of suchtheories is the class of safe rule theories.A theory T consisting of rules is safe over I if for every formula in(t) occurring as the headof a rule in T and every formula ex(s) occurring as a head of a rule in T , jt � sjI = ;.



V.W. Marek and M. Truszczy�nski / Contributions to the Theory of Rough Sets 19Corollary 5.3. If I is an information system then any positive safe rule theory T over I isconsistent. Thus, if hlT ; uT i is concrete, then it is equal to hT ; T i.Notice, however, that checking safeness is expensive. It requires quadratic (in the cardinalityof T ) number of calls to the satis�ability engine. Thus, given a rule theory, rather than to checkits safeness it is, in general, better to compute the �xed point �rst, and then check its consistencyat the very end.6. Problems and future directionsThe approach to rough sets proposed in this paper opens several interesting research directions.First, let us note that Pawlak's rough sets or rough sets as de�ned in this paper may have verycomplex descriptions. That is, the terms of the language LA de�ning them may have exponentiallength with respect to the number of atomic terms they involve. Thus, we should not only beinterested in �nding approximations to unknown sets but also in �nding short approximations.To formalize the concept of a \short" description we will now introduce the notion of k-de�nability. Let I = hU ;Ai be an information system. A de�nable set X is k-de�nable if thereis a term t 2 LA of length at most k and such that jtjI = X. A rough set hL;Ui is k-de�nableif both L and U are k-de�nable.Asking simply for a short approximation does not lead to interesting research problems.After all the trivial approximation h;;Ui approximates all sets and has a very short description.Interesting problems arise when the requirement for a short description is combined with arequirement for a high precision of the approximation. Pawlak [15] studied several precisionmeasures. For instance, the tightness of an approximation hL;Ui can be measured by the ratiosize(U n L)size(U) :We can now formulate the following basic problem on the trade-o� between length of anapproximation and its tightness. Given integers k, l and m, and given a theory T in the languageof inclusion-exclusion, is there a rough set R such that R approximates all sets satisfying T , Ris k-de�nable and the tightness of R is at most l=m. Both theoretical and algorithmic resultson this problem are of signi�cant practical importance.Another interesting research direction with many promising applications in the area of datamining is related to an observation that the language of inclusion-exclusion is only the �rststep towards the language for specifying unknown sets. In the language of inclusion-exclusionunknown sets are described in terms of de�nable sets which they contain or which they aredisjoint with. However, as demonstrated by Proposition 4.2, the language of inclusion-exclusiondoes not allow us to talk about the sizes of de�nable sets. In particular, in the language ofinclusion-exclusion we cannot formulate requirements that an unknown set intersects with agiven de�nable set on at least (at most) k elements. It is important to generalize the languageof inclusion-exclusion to allow one to formulate also numeric constraints on the unknown sets.
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