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1.

In this paper we look at fundamental methodological issues underlying the concept of a rough
set. Rough sets have been introduced by Pawlak [14] to serve as approximate descriptions of sets
that are unknown, incompletely specified, or whose exact specification is complex. The approach
pioneered by Pawlak allows us to reason about such sets given only their representations as rough

Abstract. We study properties of rough sets, that is, approximations to sets of records in
a database or, more formally, to subsets of the universe of an information system. A rough
set is a pair (L,U) such that L,U are definable in the information system and L C U. In
the paper, we introduce a language, called the language of inclusion-exclusion, to describe
incomplete specifications of (unknown) sets. We use rough sets in order to define a semantics
for theories in the inclusion-exclusion language. We argue that our concept of a rough set is
closely related to that introduced by Pawlak. We show that rough sets can be ordered by the
knowledge ordering (denoted =<;,). We prove that Pawlak’s rough sets are characterized as
=<rn-greatest approximations. We show that for any consistent (that is, satisfiable) theory
T in the language of inclusion-exclusion there exists a <j,-greatest rough set approximating
all sets X that satisfy T'. For some classes of theories in the language of inclusion-exclusion,
we provide algorithmic ways to find this best approximation. We also state a number of
miscellaneous results and discuss some open problems.
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sets. It found applications in databases, data mining, learning, approximate reasoning and many
other areas of computer science. For more details on the theory and applications of rough sets
we refer the reader to the monograph by Pawlak [15] and to several conference proceedings and
collections of papers [23, 20, 13, 16, 17]. A good source of references is the Rough Sets web
site http://www.cs.uregina.ca/ “roughset/. Another useful reference is the the Bulletin of
International Rough Set Society http://www.cs.uregina.ca/ yyao/irss/bulletin.html.

The study of rough sets is well motivated by practical applications. To illustrate the point,
let us consider the following three scenarios.

1. The database language is inadequate to describe all subsets of some universe. This may
happen when we want to reason about characteristics of objects represented by database
records that become of interest after the database was designed and are not part of the
language. For instance, in data mining we may be interested in consumer preferences with

respect to a new group of products based on the past credit card data.

2. A set X of interest is unknown and we have only some information about it. We know
about some sets that are disjoint with X and some that are included in X. We want to
build good approximations to X and use them to reason about X. This situation occurs in
many applications. For instance, in medicine a group of individuals at risk for a particular
disease may be described in such terms. We want to be able to derive meaningful and
correct, but not necessarily complete, information about people in this group.

3. The set X is known, and may even be definable in our database. Yet any description
of X is so complex that it cannot be manipulated. In such case, we may have to use
approximations of such a set that admit simple descriptions in order to be able to reason
about it.

In this paper, we extend slightly the original definition of a rough set but change, quite
dramatically, a perspective. Pawlak defined a rough set as an approximation to a specific set,
say X. Pawlak’s rough set corresponding to X is a pair (X, 7) of two sets such that X C X C X.
The sets X and X (defined with respect to a fixed information system an issue to be made
precise later in the paper) are called the lower and upper approximations to X. The emphasis
on the set X, present in the original definition of a rough set, is what we strive here to free
ourselves from. After all, in most (if not all) applications set X we want to reason about is
unknown or is incompletely specified. Consequently, it may be that an approximation we use to
reason about it is not its rough set (in the strict sense of Pawlak’s definition).

In our proposal, the fundamental concept and the starting point is that of an approximation
rather than that of a set to be approximated. This choice seems appropriate as approximations
are known and can be reasoned about. An approximation is any pair of sets (L, U) such that L C
U (we will also require that these sets be definable in an information system). An approximation
(L,U) serves as an approximation to any set X such that I C X C U. The main goal of our
research is to study properties of approximations (L, U) and relate them to properties of sets X
that they approximate.



It turns out that Pawlak’s rough sets and our approximations are closely related. Clearly,
all Pawlak’s rough sets are approximations. More interestingly, one can show that the class
of approximations is only slightly larger than the class of Pawlak’s rough sets. Therefore, we
propose to extend the use of the term rough set to all approximations. Our earlier statement
may be made clearer now. The main contribution of the paper is a new perspective on rough
sets, the notion itself being only slightly modified.

In the paper, we formally define rough sets (in the extended sense) and construct several
associated algebraic structures and two ordering relations. One of them, the knowledge ordering
is especially important and describes the tightness of approximation. It turns out that Pawlak’s
approximations are best (or maximal) approximations in terms of the knowledge ordering.

In our research we were most strongly motivated by the scenario (2). Consequently, in the
paper, we introduce a language of inclusion-exclusion that allows us to formulate incomplete
specifications of sets based on constraints of the form: “an unknown set contains a given set”
or “an unknown set is disjoint with a given set”. We use 3-valued Kleene logic to provide
semantics to formulas and theories in this language. The connection of rough sets to 3-valued
logic is known. It had been noticed early on in [10] and then, more recently, in [2]. This
connection is also present implicitly in several other papers on rough sets. Our use of the Kleene
logic is, however, novel. We obtain results on the following three key problems underlying a
wide range of applications associated with rough sets:

P1: Given a specification T' in the language of inclusion-exclusion of a (possibly unknown) set
X, what is the tightest rough set approximating X?

P2: How can such approximation be computed?

P3: Given an approximation (L,U) of an unknown set, which properties are satisfied by an
unknown set X approximated by (L, U)

The study of problems P1 - P3 is the main focus of our paper.

The paper is organized as follows. The next section provides a brief overview of information
systems. The (extended) notion of a rough set and associated algebraic structures are introduced
in Section 3. The relationship to Pawlak’s definition is also discussed there. The logic of
inclusion-exclusion and the problems P1 - P3 are studied in Sections 4 and 5. Some directions
for future research are outlined in Section 6.

The study of problems P1 - P3 brings up several interesting computational issues related to
the question of existence of short and simple descriptions of sets and their approximations. These
questions are related to scenario (3) listed earlier. The area is mostly untouched. Some studies
(see, for instance, [18, 3]) point to problems of complexity of descriptions of sets in information
systems, thus, potentially, also to complexity of descriptions in terms of rough sets. Yet, no
systematic study, to our knowledge, has been undertaken. This and other possible directions for
future research are discussed in Section 6.

We hope that our paper offers a new look at rough sets, and an effective and elegant setting
in which the theory and applications of rough sets can be investigated.



2. Information systems

In this section, we recall the notion of an information system and describe the corresponding
query language [11]. For a detailed treatment of the subject the reader is referred to [11, 15].

An information system is a pair I = (U,.A), where U is a nonempty set called the universe
of I and A = {A,..., A} is a list of functions, called attributes of I. A function (attribute)
A; € A assigns to each element of U an element from a set D; called the domain of A;. The list
A of attributes of an information system is often called the schema of I.

With each information system I we can associate a function vy which, to each element z € U
assigns the description of z in I, that is, the tuple (A;(z),..., A, (z)). Note that it may be
the case (in fact, it is a crucial observation for the theory of rough sets) that different elements
z,y € U have the same description. Informally, it means that our information system is not
powerful enough to distinguish between them. For instance, two different individuals may have
the same birth date and the same sex and, consequently, will be indistinguishable from the point
of an information system based on the schema with these two attributes only. Thus, information

system implies an important relation:

r~ry < or(z) =vr(y).

Clearly, the relation x ~; ¥y is an equivalence relation that identifies those elements of the
universe that have the same description.

To each schema A we assign now a query language, denoted by L4. It consists of terms
built by means of functor symbols + (sum), - (product) and — (negation). The terms of £ 4 are
defined recursively, as follows:

1. For every attribute 4; € A and for every element a in the domain D; of an attribute A;,
the expression A; = a is a term

2. If s and t are terms then so are —s, s+ 7 and s - ¢.

Terms of the form
(A] :(],1)-(142:(1,2)-...'(14“:(1,”)

where a; € D; for every 7, 1 <14 < n, are called constituent terms and play an important role
in the theory of information systems and rough sets. Clearly, checking if two constituent terms
are identical can be accomplished in time proportional to the number of attributes in A.

Terms of £ 4 serve as queries to information systems with the schema A. Given an infor-
mation system I = (U, A), the value of the term (query) ¢ in I, |t|7, is defined recursively by
setting:

‘A,;:(],|[:{.’L‘EZ/{!A,;(.T):(Z}

and by interpreting the product as the set intersection, the sum as the set union, and the negation
as the complement with respect to . Sets assigned to constituent terms are called constituents.
Let us note that our notion of a constituent is a generalization of a classical set-theoretical notion
of a constituent (see [9], Section 1.7). Let us also note that non-empty constituents are precisely



the equivalence classes of the relation ~;. Finally, let us observe that equality of terms in £ 4,
interpreted as equality of their values under all information systems with the schema A, can be
checked by a propositional prover.

The theory of information systems becomes especially interesting when we adopt one of the
finiteness conditions:

First finiteness condition: The domains of all attributes are finite

Second finiteness condition: The universe of an information system is finite.

These conditions are independent of each other. It is easy to construct information systems
satisfying the first one of them but not the second one and vice versa. Most of the results in the
paper hold under any of these two conditions. Some, however, rely on the first one and do not,
in general, hold under the second one.

In particular, under the first finiteness condition, one can prove the following normal form
result for terms: for every term ¢ € L4 there is another term, #', such that

1. # is the sum of constituent terms, and

2. for every information system I, |t|; = |t'|;.

Let T = (U, A) be an information system. The crucial notion for the theory of rough sets is
that of a definable set. A subset X C U is said to be definable in I, if there is a term (query) ¢
such that |t|; = X. In particular, each constituent (the set corresponding to a constituent term)
is definable.

Observe that for every two constituents X and X', either X = X' or X N X' = 0. It is
also easy to see that nonempty constituents are minimal nonempty definable sets and that every
definable set is a union of, possibly infinitely many, constituents. In fact, one can show that
definable sets form a Boolean algebra and that nonempty constituents are its atoms.

Under any of the finiteness conditions a stronger observation holds: any definable set is a
union of finitely many constituents. Moreover, under the first finiteness condition, there is a
bound on the number of terms in such a union that depends only on the schema A and not
on the information system. This observation follows from the normal form result for terms and
from the fact that under the first finiteness condition, there are only finitely many constituent
terms.

Second finiteness condition has also another related consequence: if every constituent has no
more than one element, then every subset of the universe is definable.

It is quite clear that there is a strong database connection. In fact, if we prepend each tuple
v7(2), z € U, by the unique identifier of z, say 0id(z), then the collection of all such extended
tuples forms a table that can be viewed as a single class, “flat”, object-oriented database'.
In addition, the query language described here clearly corresponds to a fragment of SQL: the
queries are on a single table, the select clause consists of all attributes (with the exception of
the unique identifier attribute oid), and range queries, statistical queries and string-matching
queries are not permitted. In the paper we will often make references to database intuitions.

'"We need to use unique identifiers for the elements from the universe since, as mentioned earlier, different
elements of the universe of an information system may have the same descriptions and, consequently, would be
represented by a single tuple in the database.



3. Approximations and rough sets

In general, not every subset of the universe of an information system I = (U, A) is definable. In
other words, knowledge contained in an information system [ is incomplete. Even if a subset of
the universe U is definable, its description may be very complex or we may simply not know it.
Therefore, we often have to resort to incomplete or approximate descriptions. In this section we
introduce algebraic foundations of the theory of approximations of subsets of the universe of an
information system and relate it to the concept of rough sets by Pawlak.

Let I = (U, A) be an information system. The key role in our discussion will be played by
the boolean algebra of all subsets of U/ that are definable in I, that is, can be described by terms
of the language £ 4. We will denote this algebra by D;. Under any of the finiteness conditions,
the algebra Dy is a complete boolean algebra.

A straightforward way to approximate a subset X of the universe U is to provide a lower and
an upper bound for it. Since we are interested in approximations that can be expressed in I as
values of terms of £ 4, we will require that both the lower and the upper bounds be definable in
I. Formally, by an approzimation we mean a pair (L,U) such that L,U € Dy and L C U. Each
such pair (L,U) can be viewed as an approximation of any set 7 C U (definable in T or not)
such that . C Z C U. An approximation is not the same notion as that of a rough set as defined
by Pawlak. But both concepts are very closely related (we will introduce Pawlak’s rough sets
and discuss this relationship later in this section). Thus, somewhat abusing the terminology,
throughout the paper we refer to approximations as rough sets.

We denote the collection of all rough sets (approximations) in an information system I by
Rr. This structure can be endowed with an ordering called the knowledge ordering. Tt is denoted

by =in, and is defined as follows:

(L1, Ur) =gn (L2, Us) if Ly C Ly and Uy C Uy.

al a a3 a a al a2 a a4 a
B B
b1l / bl /
b2 b2
b3 > b3 [ >
X — X—F—
" [ - ” ]

P R

Figure 1. Two rough sets in the relation <,

Figure 1 presents two rough sets P = (L1,U;) and R = (L9, Us). The lower approximations
L; and Ly are shown as lightly shaded. Complements of the upper approximations U; and Us
are darkly shaded. These sets are defined by the following terms:
Li: ((A=al)-(B=0b1))+((A=a2)-(B=0b1))+ ((A=al)-(B="52))
U: —(((A=ad) + (A =ab)) (B =05))



Ly ((A=al)+ (A =a2) (B=0bl)+(B=05))+
((A=a3) - (B = b1)

Uy (A=al)+ (A=a2)+(B=>bl)+(B=B2)+
(A =a3) (B =b3))+ (A =a3) (B =bd))+
(A =ad)- (B =b3))

Clearly, P =g, R.

The knowledge ordering is crucial for our considerations and requires some explanation. If
pairs (L1, Uy) and (Lo, Us) are approximations and (L1, Uy) <g, (Lo, Us) then the pair (Ly, Us)
is a tighter approximation (contains more precise knowledge about an unknown set 7 that both
pairs approximate). In particular, the set X of elements “to the left” of the curved line in
Figure 1 is approximated both by P and by R. Tt is clear that R is a tighter approximation,
that is, provides more knowledge about the set X. This intuition motivates the use of the term
knowledge in reference to the ordering <i.,,.

If I is not a subset of U, the pair (L, U) cannot be interpreted as an approximation (unless
we want to interpret all such pairs as inconsistent approximations). Still, the ordering =<y,
can be extended to the whole cartesian product Dy x Dy and, in fact, also to the cartesian
product P(U) x P(U). We will consider these two structures, too, since they simplify some of
the technical arguments later in the paper. The following result gathers the most important
properties of sets Ry, Dy x Dy, P(U) x P(U) and the ordering <.

Proposition 3.1. For every set U, (P(U) x P(U), <kn) is a complete lattice. For every infor-
mation system I satisfying any of the finiteness conditions, the structure (Dp X Dr, <gp) s a

Let us note that (§,U) is the least and (U, () is the greatest element of (P(U) x P(U), <kn)
and of (D; x Dy, <g,). The pair (§,U) is also the least element of the poset (R, <j,). The
maximal elements in (R, <y,) are pairs (X, X), where X € Dy.

Proposition 3.1 allows us to derive properties of rough sets. Most importantly, it allows us
to apply the theorem by Knaster and Tarski [21] on existence of fixpoints of monotone operators
on complete lattices.

The sets (P(U) x P(U)), (Dr x Dr) and Ry (in fact, any collection of pairs of sets) can also
be ordered by the so-called inclusion ordering <;,. It is defined as follows:

(L1,Uy) =in (L2.Us) if Ly C Ly and U; C Us.

It is easy to see that all three sets are complete lattices under the ordering <;, (in the case of
Dr x Dr and Ry we need to assume one of the finiteness conditions).

It is not clear whether the ordering =<;, plays any major role in the theory of rough sets.
However, let us note that the structures (P(U) x P(U), <gn, <in) and (D; X Dy, <gn, <in) (this
latter one under any of the finiteness conditions) form complete bilattices [6, 5].

We will now discuss connections between the concept of a rough set as defined above and
the original one introduced by Pawlak [14]. Pawlak observed that when an information system



I = (U, A) satisfies any of the finiteness conditions then, for every set X C U, there exists a
greatest definable set X’ such that X’ C X and, similarly, there exists a smallest definable set
X" such that X C X". These sets are denoted by X and X, respectively, and called lower
and upper approzimations of X. It is necessary to adopt at least one finiteness condition as, in
general, there are information systems in which, for some subsets X of the universe, the lower
or the upper approximations (or both) are not defined. Pawlak called pairs of the form (X, X),
where X C U, rough sets.

If (L,U) is a rough set, and X is a subset of U, then we say that X is dense in (L,U) if
X = L and X = U. In such case, we also say that the rough set (L,U) is concrete. Thus,
Pawlak’s rough sets are precisely those rough set according to our definition that are concrete.
In Figure 2, we present the concrete rough set corresponding to the set X of elements “to the
left” of the curved line (light shade indicates the lower approximation, dark shade indicates
the complement of the upper approximation). The set X was also discussed in the context of
Figure 1. Clearly, P <, R <g, S (P and R are as in Figure 1). In fact, S is the <j,,-largest
approximation to the set X.

S

Figure 2. A subset X of U dense in a rough set S

It follows directly from the definition that X C X and that both approximations are defin-
able. Thus, Pawlak’s rough sets are rough sets in our sense, as well. In general, the converse
does not hold. However, the connection is very strong, as explained in the next result.

Proposition 3.2. A rough set (L,U) is of the form (X, X), for some set X CU if and only if
for every x € U\ L, the constituent of x has at least two elements.

Proposition 3.2 implies immediately that if every constituent of an information system has at
least two elements, the class of rough sets according to the definition by Pawlak coincides with
the class R; of rough sets as defined in this paper. Thus, both concepts are very closely related
which justifies our use of the term. Let us stress again that the main contribution of our work



is not in the change of the definition but in the change of perspective. A rough set as defined by
Pawlak is intimately connected to the underlying subset of the universe that determines it. This
set is, however, usually unknown. Starting with the notion of an approximation, not tied to any
subset of the universe in particular, seems to be more natural. It leads directly to orderings <y,
and =;, and allows us to exploit algebraic techniques in our study of approximations.

We conclude this section by discussing some simple properties of rough sets. Our first result
states that Pawlak’s rough sets provide the best approximations.

Proposition 3.3. Let I satisfy one of the finiteness conditions. Then, for every set X C U,
(X, X) is the =<,-greatest rough set approzimating X .

Proof: If R = (L,U) approximates X, then L C X. Since L is definable, L C X. Similarly,
X CU. Thus R =, (X, X). 0

The next result, due to Pawlak [14], deals with the ordering <;,,. Tt says that as sets grow,
so do, with respect to <;;,, their Pawlak’s approximations.

Proposition 3.4. If X CY then (X, X) < (Y, Y).

Finally, let us observe that unknown sets (concepts) are often, especially in learning, specified
by positive and negative examples, that is, two finite and disjoint sets of elements (subsets of
the universe of an information system I): those that are in and those that are out. We will call
such a pair of sets a sample.

Consider a sample (P, N). We say that an information system I is adequate for (P, N) if for
no elements 2 € P and y € N we have z ~; y. Informally, I is adequate for a sample (P, N) if
it allows us to distinguish between positive and negative examples of the set (concept) that we
attempt to describe.

In general, samples provide only an incomplete description of a set. Therefore, we will be
interested in approximations (rough sets) that can be associated with (learned from) a sample.
We say that a rough set (L,U) is consistent with a sample (P,N) if P C L, NNU = (. An
information system [ is consistent with a sample (P, N) if there is a rough set over I consistent
with (P, N). We have the following simple result.

Proposition 3.5. Let I = (U, A) be an information system. Then:

1. T is consistent with (P, N) if and only if T is adequate for (P, N)
2. If I is consistent with (P, N) then there is a <p,-least rough set R consistent with (P, N).

Proof: (1) Let (L,U) be a rough set over I consistent with (P, N). Consider z € P and y € N.
Then, z € L and y € U \ U. Since both L and U \ U are definable and disjoint, z and y are not
equivalent with respect to ~;. Thus, I is adequate for (P, N).

Conversely, assume that I is adequate for (P, N). Let P = {xz1,...,zpm}and N = {y1,...,yn}.
For 1 < i < m, let ¢; be the constituent term such that z; € |t;|; and, for 1 < j < n, let s; be
the constituent term such that y; € |s;|;. The terms t;, s; are well-defined, as each element of
U belongs to some constituent set. By the assumption of adequacy, t; # s;, for all 4, 5. Define



t=t+...+tyand s = —(s;1 +... +8,). Put L = |t/ and U = |s|;. Then, by the remarks
above, (L,U) is consistent with (P, N).

(2) Tt can be shown that the rough set constructed in the second part of the proof of (1) is the
<kn-least rough set consistent with a sample (P, N). i

We will denote the rough set constructed in the proof of Proposition 3.5 by R(P,N). Tt
encodes the entire knowledge (with respect to the underlying information system T) carried by
the sample (P, N). Namely, it approximates every definable in T set X such that P C X and
NN X = (there is a close similarity here with the notion of version space in learning [12]).

In the context of rough sets (and 3-valued logic) we can extend our discussion to the case
when T is not adequate for the sample (P, N). Tn such case, there is no set X definable in T and
such that P C X and NN X = (. That is, P and N cannot be “separated” in I. But they can
be separated “as much as possible”. Given a sample (P, N), let us call any sample (P’ N') such
that P’ C P and N’ C N’ a subsample of (P, N).

Proposition 3.6. Let I be an information system and let (P, N) be a sample. Then, there is a
=<in-largest subsample of (P, N) with which I is consistent.

Proof: Clearly, ((,0) is a subsample of (P, N) consistent with 7. Moreover, it is easy to see
that if subsamples (P, N') and (P",N") of (P, N) are consistent with I, the subsample (P’ U
P" N'"UN") of (P,N) is also consistent with I. Thus, the assertion follows. O

Let us denote this <;,-largest subsample of (P, N), guaranteed by Proposition 3.6, by
(P’,N’). The rough set R(P’,N’), guaranteed by Proposition 3.5, describes all those de-
finable sets in I that separate P/ from N’ or, speaking informally, separate as much of P from
N as possible.

We will now find an alternative characterization of the rough set R(P', N'). To this end,
let us call a rough set (L,U) weakly consistent with (P,N), if NN L=10,and PN U\ U) = 0.
Rough sets that are weakly consistent with a sample (P, N) always exist. For instance, (0,U)
is one such set. Moreover, under any of the finiteness conditions, every =<,-chain consisting of
rough sets weakly consistent with (P, N) has a least upper bound. It is also easy to see that
this least upper bound is itself weakly consistent with (P, N). Thus, for every rough set (L,U)
weakly consistent with (P, N), there exists a <j,-maximal rough set (L, U™) weakly consistent
with (P, N) and such that (L,U) <g, (L™, U™).

We then have the following property.

Theorem 3.1. Let T satisfies any finiteness condition and let (P, N) be a sample. Then,
R(P',NT) is the greatest lower bound of all mazimal rough sets that are weakly consistent with
(P,N).

Proof: Assume that R(P',N') = (R;,R,). Consider an arbitrary maximal rough set weakly
consistent with (P, N), say (L,U). Let z € R;. Define t, to be a constituent term of 2 and let
Cyp = |tglr-



Assume that C,, N U # (. Since U is definable, C,, C U. By the definition of R;, there is
p € P such that p € Ry and x ~; p. Thus, p € U, a contradiction (as (L, U) is weakly consistent
with (P, N)). It follows then that C, N U = (. Consequently, (L U C,,U) is a rough set.

Assume that for some element n € N, n € LU C,. Since (L,U) is weakly consistent with
(P,N), n € C,. It follows that n ~; x. Consequently, n ~; p and, thus, n € R;. This is a
contradiction as R(P', N') is weakly consistent with (P, N).

Thus, (LUC,, U) is a weakly consistent rough set with (P, N). Since C, # () and since (L, U)
is a maximal rough set weakly consistent with (P, N) it follows that C,, C L. In particular z € L.
Hence, R) C L. Similarly, one can show that U C R,,. Consequently, R(P', N') <4, (L,U).

Consider now a rough set (L, Uy) such that (L, Uy) <gpn (L,U) for every (L,U) that is a
maximal rough set weakly consistent with (P, N). Let 2 € Ly. Assume that = ¢ R;. As before,
define t, to be a constituent term of z and let C,, = |t;|;. By the definition of R;, there are two
possibilities: (1) C, N (PUN) =0, and (2) C, N N # 0.

Since Lg is definable, it follows that C, C Lg. Let (L,U) be a maximal rough set weakly
consistent with (P, N) (as we observed earlier, any of the finiteness conditions implies that such
maximal sets exist). Then, (Lg,Uy) =g, (L,U) and so C, C L. In the case when (2) holds, we
get an immediate contradiction with weak consistency of (L,U). So, assume that (1) holds. Tt
is clear that the rough set (L \ C,,U U C,) is also a rough set weakly consistent with (P, N).
Consequently, there is a maximal rough set (I, U’) weakly consistent with (P, N) and such that
CoNL = 0. Thus, (Ly,Up) Arn (L',U"), a contradiction. Tt follows that z € R; and that
Lo C R;. in a similar way, one can prove that R, C Uy. Thus, (Lg, Up) = R(P', NT), and the
assertion follows. O

Finally, let us observe that when an information system is inadequate for a sample (P, N),
adding new attributes to the language yields information systems allowing for more complete
separation of positive and negative elements. We have the following straightforward result.

Proposition 3.7. Let I = (U, A) and J = (U, A’) be information systems. If A C A’ then for
every sample (P, N), (PT NT) <, (P, N’).

4. Logic of inclusion-exclusion

Pawlak’s rough sets and rough sets introduced here are motivated by the need to reason about
unknown sets of records sets for which we have only an incomplete specification. We will
now investigate this main application of rough sets in more detail.

It is often the case that a set of interest is unknown but some information about it is available.
For instance, we may know about some sets being contained in it and some other sets being
disjoint with it. We will introduce a language to describe constraints of these types.

Given the schema A of an information system and the corresponding language £ 4 we define
the language of inclusion-exclusion for A, ;‘{ as follows. The atoms of ZZ are expressions of the
form in(¢) and ex(t), where t € L 4. Next, if @1 and @9 are formulas of E;‘{ then so are @1 A 9,

©1 V2, o1 = @ and —py.



Intuitively, a formula in(#) describes the constraint that an unknown subset of the universe
of an information system I contains the answer to the query #, that is, the set |t|;. Similarly, a
formula in(r) = in(s) V ex(#) describes the constraint that if a set contains |r|; then it contains
|s|r or is disjoint with |t|;. We will now make this intuition precise by defining the satisfiability
relation between subsets of the universe of an information system and formulas in the language
L.

Given an information system I = (U, A) and a set X C U (X may but does not have to be
definable) we define
1 if |t C X
0 otherwise.

[in(?)]x = {

Similarly we define
1 if ‘f‘ FNX =10
0 otherwise.

[ex(#)]x = {

Next, we extend the definition of [p]x to all formulas of ff{ interpreting =, A, V and = in
a standard way in the boolean algebra of logical values. That is, [-¢]x = 1 — [¢]x, and
[ A ]lx = min([p]x, [¥]x), etc. We say that X |=; ¢ if [p]; = 1. When T is a theory, that is,
a set of formulas of £, we say that X is a model of T (or that X satisfies T) if X =7 ¢ for all
w € T. We will denote it by X =7 T and define Mod;(T) ={X CU: X =1 T'}.

We say that a theory T in the language L' is consistent with I = (U, A) if there is a set
X CU such that X =; T.

Before we proceed to the main questions listed in the introduction, let us note some simple
but interesting properties of the 2-valued semantics of the language of inclusion-exclusion. Let
I = (U, A) be an information system. We say that a set X C U is constituent-complete (with
respect to T) if for every constituent term ¢, X |=; in(¢) or X |=; ex(t). We now have the
following characterization of definable sets.

Proposition 4.1. If an information system I = (U, A) satisfies the first finiteness assumption,
then a set X CU is definable in I if and only if X is constituent-complete.

The language of inclusion-exclusion can distinguish between empty constituents, 1-element
constituents and constituents with more than one element. It does not, in general, distinguish

between cardinalities greater than or equal to 2.

Proposition 4.2. Let I = (U, A) be an information system and let X CU.

1. |t|r = 0 if and only if for every set X CU, X =rin(t) A ex(t).
2. |t|; is a one-element set if and only if for every set X CU, X = —in(t) & ex(1).

3. If t is a constituent such that |[t|; > 2 then for any k > 2 there is an information system
I' =U', A) (notice that the set of attributes is the same as in I) such that:

(a) [t|p =k



(b) For every X C U there is X' C U such that X and X' satisfy precisely the same
formulas of ,CZZ

Next, let us note that sets that are indistinguishable in an information system [ satisfy
precisely the same formulas from EZZ Recall that a set X C U is dense in a rough set (L, U) if
X = Land X = U (that is, if (I, U) is the rough set of X in the sense of Pawlak). Sets X and
Y are indistinguishable if they are dense in the same rough set (that is, if both have the same
rough set in the sense of Pawlak).

Theorem 4.1. (Indistinguishability theorem) Let I satisfy one of the finiteness conditions.
Then, for X, Y CU, X and Y are indistinguishable if and only if for every formula ¢ of the
language of inclusion-exclusion

XEreeY = e

Theorem 4.1 demonstrates that rough sets are, really, about indistinguishability in the lan-
guage EZZ Thus, any strengthening of the concept of a rough set (for instance so we would be
able to formally express the quality of approximation) requires strengthening of the language of
inclusion-exclusion.

We will now formally state and study general problems that arise in the context of reasoning
about properties of unknown sets specified by means of formulas from EZZ First, given an
information system I = (U, A) and a theory from E;‘{ describing available information about
an unknown set X C U, the question is to determine, as accurately as possible, the extent of
X (problem P1). Next, there is a question of computing this tightest approximation (problem
P2). Finally, given a rough set that approximates an unknown set X C U, the question is to
establish properties (expressed as formulas of £§) that X has (problem P3). The study of these
questions is the main goal for the remainder of the paper.

We start with the first problem. We will show that given a theory T in the language fj,
there exists a rough set providing the best approximation to all sets X that satisfy 7.

Indeed, let T be a consistent theory in the language of inclusion-exclusion E;‘{ Let A7 be
the class of all rough sets (L,U) such that for every X € Mod;(T), L C X C U (that is, Ar
consists of all rough sets (L, U) such that (L,U) <, (X, X) whenever X =; T). Then, clearly,
Arp is nonempty  (B,U) € Ap. Now, we can prove the following fact.

Theorem 4.2. (Approximation theorem) Assume I satisfies one of the finiteness condi-
tions. Let T be a consistent theory in the language of inclusion-exclusion. Then A possesses a
<kn-greatest element. That is, there exists the <y, -greatest rough set (L,U) such that if X CU
and X =1 T then L C X, and X CU.

Proof: Let X be a model of T' (such a model exists since T' is consistent). Then, the class A is
nonempty. Moreover, the class A is closed under finite joins. That is, for every (L, U), (L', U') €
Ap, (LULUNU'Y € Ap. Tndeed, let (L,UY, (L', U") € Ap. Then, (L,U) <pm (X, X) and
(L', U"Y <pn (X, X). Consequently, (LUL' U NU') <y, (X, X). Since X is an arbitrary model



of T, (LUL',UNU'Y € Ar. By a finiteness condition, the class Ap is finite. Hence, it contains
the join of all its elements and this element is the <j,-greatest element of Ap. O

Earlier we used notation (X, X), where X C U, to denote lower and upper approximations
to a set X (or, equivalently, a concrete rough sets determined by X). The rough set (X, X) is
the =<j,-greatest approximation to X. Given a theory T, by (T, T) we denote the <j,-greatest
element of A7, whose existence is guaranteed by Theorem 4.2. Since (T, T) is the <p,-greatest
element of Ap, if 2 ¢ T, then there is X satisfying T such that x ¢ X. Similarly, if z ¢ T, then
there is X satisfying T such that 2 € X. Thus, (T, T) is the best approximation of an unknown
set specified by T, if T is all we know about it, justifying extending the notation (:,7) to the
case of theories in EZZ

Theorem 4.2 asserts only the existence of the set (T, T). Tt does not imply a method to
construct it (note that our proof of Theorem 4.2 relies on the knowledge of the family of Ay of
all possible sets that could be represented by T'). In the next section we will develop tools that
will allow us to tackle the second problem listed earlier and, in addition, will yield techniques
to construct the approximation (T, T) for some special classes of theories T

5. Three-valued logic of inclusion-exclusion

In order to further study the problems stated in the previous section we need to introduce a
3-valued semantics for theories in the language EZZ We use the 3-valued logic of Kleene and
introduce the 3-valued satisfiability relation between rough sets and formulas from ;‘{ in a
similar way as the 2-valued satisfaction relation was introduced in Section 4.

Kleene 3-valued logic, [8], pp. 332-335, is based on three logical values, 1, 0, and u. These
logical values are ordered by a relation <y, (often referred to as the truth ordering) 0 <; u <y 1.
The operations A and V on the truth values 1, 0, and u are defined as meet and join with respect

to relation <;.. The complement operation, (-) !, is defined as follows:
1'=0, u'=u

The truth values in the Kleene logic are also ordered by another ordering, the knowledge ordering,
<fkn in which u is the least element and 1, 0 are the maximal elements.

We will now define a 3-valued satisfiability relation. Tet I = (U, .A) be an information system
and let (L,U) € P(U) x P(U) be a pair of subsets of U. We first define

1 if|t); CL
[in(t)]ioy=4q 0 if[t\U#0

(u otherwise

and
lex(t)]in,y =4 0 if|t;NL#0

u otherwise



Next we extend the definition of [¢] s, 17y to all formulas of EZZ We interpret —, A and V as the
Kleene complement, meet and join. The interpretation of = is implied by the fact that p = ¢
is equivalent, in Kleene’s logic, to —p V ¢. Finally, as in Section 4, we define

(LU) Erseif [l =1

The notions of 2-valued and 3-valued satisfiability are closely related. First, for complete
rough sets, that is, for rough sets of the form (X, X) they coincide.

Proposition 5.1. Let X be a definable set in I and let ¢ € E:Z Then X =1 ¢ if and only if
<X7X> |:T,3 ®-

Moreover, the relation =3 approximates |=; for dense sets.

Theorem 5.1. Let R = (L,U) be a rough set and let ¢ € Eff{ If R |=13 ¢ then for every X
such that X is dense in R (that is X = L and X = U) we have X |=1 ¢.

Theorem 5.1 tells us that the satisfaction relation for a rough set R (defined by means of
3-valued logic) truly approximates 2-valued satisfaction relation for all subsets X of U that are
dense in R.

We now resume our study of the three main problems listed in the introduction. We have the
following key property connecting the satisfaction relation |=; 3 with the knowledge ordering.

Theorem 5.2. Let Ry = (L,U) and Ry = (L', U') be two elements of P(U) x P(U) such that
Ry <y Ry. Let p € Eff{ Then, [@lr, <kn [@lr,. In particular, if Ry <gn R2 and Ry =13 ¢,
then Ry =13 .

Proof: We prove only the first assertion. The second one is its immediate consequence. We
proceed by induction on the complexity of the formula ¢. First, let ¢ = in(#). If [p]/f ;) = 1
then |t|; € L. From the assumption (L,U) =<y, (L',U’) it follows that L C L' so |t|; C L'
Thus [y = 1. If [@]r,y = 0 then [t]; VU = @. But U' C U, and so [t|; NU" = 0. Thus
[¢l¢rs0ry = 0. When [@](f, 7y = u then there is nothing to prove since u is the least element of
the ordering <g,. The argument for the case of ¢ = ex(#) is similar.

In the inductive step, three cases need to be considered. If [—¢]7, 7y = 0 then [}, 7y = 1.
By the inductive assumption, [o]7/ 7y = 1, and so [~@]rs gy = 0. The case of [y = 0
is similar. In the case [-p]7, 7y = u, there is nothing to prove as u is the least element. If
@ = 1 Ve and [p|, 7y = 1 then |1y = 1 or [po]ry = 1. By inductive assumption
lo1](rr oy = 1 or w2y gy = 1, thus [@]rs gy = 1. The case of [p]7 7y = 0 is similar and
the case of u can be dealt with as before. The case of conjunction is similar to the case of
disjunction. O

Theorem 5.2 provides an additional justification for the term knowledge ordering used in
reference to the ordering <g,. Namely, as approximations get more precise (grow with the
knowledge ordering), our knowledge about formulas from [,fi grows, too.

Theorem 5.2 has a corollary that provides an answer to the problem P3 listed in the in-
troduction. Tt allows us to draw conclusions about properties of unknown sets based on the
properties of their approximations.



Corollary 5.1. Let I = (U, A) be an information system and let X be a subset of U. Let R be
a rough set that approximates X, that is, R <y, (X, X). Then, for every ¢ € fj, if R =13 ¢
then X =1 .

Proof: Since R <y, (X, X), it follows by Theorem 5.2 that if R =73 ¢ then (X, X) |=; 3 ¢. But
for complete rough sets, the relation |=; 3 coincides with |=; (Proposition 5.1). O

Corollary 5.1 implies that if we are given an approximation R of an unknown set X then all
properties satisfied by R (in 3-valued logic) are also satisfied by X (in 2-valued logic).

We return now to the question left open at the end of the previous section: how to compute
the best approximation of an unknown set specified only by theory 7" in the language EZZ (recall
that Theorem 4.2 guarantees the existence of such best approximation).

We will focus on a special class of formulas in EZZ A rule is every formula ¢ of the language

ff{ such that ¢ is of the form B = h, where B € [,ff{ and A is an atomic formula from [,ff{ (that
is, a formula in(z) or ex(s) for some £, s € L1). We refer to B as the body and to h as the head of
a rule ¢. Atomic formulas are special cases of rules (with empty body, which can be interpreted
as true formula) as are formulas # = «, where a and 8 are atomic formulas in EZZ

A rule B = in(t) captures the following constraint: if a set X satisfies B then it must
contain all elements that have property t. A rule B = ex(s) has a similar interpretation. Thus,
in particular, a rule ex(s) = in(¢) captures the constraint that if a set X does not contain any
record from query s then it must contain all records from query #.

In what follows we will consider the class of rule theories, that is, theories consisting of
rules. We start with rule theories that consist of atomic formulas only. Tet I = (U, A) be an
information system. Let T be a set of atomic formulas from [,;‘{ Define:

Ly = J{ltlr - in(t) e T}, Ur =u \ | J{Islr : ex(s) € T}.

Clearly, under any of the finiteness conditions, both Ly and Ur are definable. We have the
following straightforward result.

Proposition 5.2. Let T be a rule theory consisting of atomic formulas of EZZ Then, T is
consistent if and only if (Ly,Ur) is a rough set. Moreover, if T is consistent then (Lp,Ur) is
the =<pn-least 3-valued model of T and it coincides with the rough set (T, T).

Proof: First, assume that 7' is consistent. Then there is a set X satisfying T'. It is easy to see
that X satisfies T if and only if Ly C X C Up. Thus Ly C Up, and (Lp,Ur) is a rough set.
Moreover, clearly, (Lr,Ur) = (T, T).

Conversely, if Ly C Up, then for any ¢ such that in(#) € T and for any s such that ex(s) € T,
|t|r N |s|r = 0. But then every set X such that Ly C X C Uy is a model of T'. Tt follows that T

1S consistent. O

We will now extend this result to all rule theories. To this end, we introduce, for each rule
theory T', an operator Op on the lattice D; x D; of pairs of definable sets of an information



system I (notice that D; x Dy in addition to rough sets contains additional, “inconsistent” pairs,
too). Let T be a rule theory and let R be a a pair of definable sets. Define

K(R)={a:B=a€T and R[=;3 B}
Clearly, K(R) is a rule theory consisting of atomic formulas only. Define

Or(R) = (Lk(r): Uk(r))-

It is easy to see that under any of the finiteness conditions, for every pair of definable sets R,
O7(R) is also a pair of definable sets, although not always a consistent one.
The fundamental property of the operator Oy is its monotonicity with respect to the ordering

Proposition 5.3. Let T be a rule theory. Then, the operator Op is =<g,-monotone.

Proof: Let Ry <k, R be two rough sets. We claim that K (R;) C K(R3). Indeed, let « € K(Ry).
Then, there is a rule in T, say B = «, such that R; |=;3 B. Then, by Theorem 5.2, Ry =73 B.
Consequently, a € K(R3).

Next, observe that if T, Ty are two sets of atomic formulas such that Ty C Ty, then Ly, C Ly,
and Ur, C Ur,. Applying this remark to K(R;) and K(Rg), we obtain the result. O

Since D; x Dy is a complete lattice, Knaster-Tarski Theorem [21] implies the following
corollary.

Corollary 5.2. If T is a rule theory, then the operator Op possesses a <p,-least fizpoint.

The operator Oy has the following intuition. It updates an approximation R by replacing it
with the approximation (L gy, Uk (r))- If we iterate O starting with (,U), in each step (until
we reach the fixpoint) we obtain a better approximation to a set X specified by T'. We will denote
the <y,-least fixpoint of Op by (Ip,ur). Our next result shows that (I7,ur) approximates the
rough set (T,T).

Theorem 5.3. Let I be an information system satisfying one of the finiteness conditions and
let T be a consistent rule theory. Then (Ip,ur) <pn (T, T).

Proof: Recall that (I, ur), the least fixpoint of the operator Op, is obtained by iterating the
operator Op starting at the least element of Ry, (0,U). Since I satisfies one of the finiteness
conditions, (I7,ur) = OF.((0,U)) for some natural number n. By induction on m, we show that
for every model X of T, OF'((0,U)) <kn (X, X). This is certainly true for m = 0. Assume now
that R = O7'((0,U)) has the property R <y, (X, X). We will show that Or(R) <, (X, X).
Consider the formula in(#) belonging to the set K(R). Then, there is a rule B = in(t) such
that R |=73 B. Consequently, (X, X) |=;3 B. By Proposition 5.1, X =; B. Since B = in(f)
belongs to T' and since X is a model of T, X |=; in(¢). Thus, |t|; C X. We have just proved



that whenever in(#) belongs to K(R), [t|; € X. It follows that Ly ry € X and, consequently,
that

Ly C m{X X =Ty =1T.
Similarly we show that
T=|J{X: X/ T} CUgn).

Therefore O7(R) <4, (T,T) and, consequently, (I, ur) <, (T, T). O

Thus, the operator Or allows us to construct a lower estimate to the best approximation of
an unknown set specified by a rule theory. In general, this lower estimate (I7,ur) is different
from the best approximation (T, T). In some cases, however, they coincide.

We say that a formula ¢ is positive if it is built out of atomic formulas by means of conjunc-
tions and alternatives. Thus negation, implication and equivalence symbols are not allowed in

positive formulas.

Theorem 5.4. Let I be an information system satisfying one of the finiteness conditions and let
T be a consistent theory whose all rules have positive bodies. Assume that (I, ur) is a concrete
rough set. Then (Ip,ur) = (T, T).

Proof: By Theorem 5.3, (I, up) =<pn (T, T). Thus, it suffices to show that (T, T) <4, (I, urp).
First, observe that for every positive formula ¢, X =/ ¢ if and only if (X, X) =3 ¢ (an easy
proof by induction on the length of ¢ is omitted).

Let X be a set dense in (Iy, up), that is, X = I, and X = up (such a set exists as (I7, up)
is concrete). Let ¢ = « be a rule in T. Assume that X |=; ¢. Then, since ¢ is positive, our
observation implies that (X, X) =3 ¢. Since (Ip,ur) = (X, X), (Ir,ur) E13 ¢. Recall that
the rough set (l7,ur) is the fixpoint of the operator Op. Thus, (7, ur) =73 a. By Theorem
5.1, it follows that X =; o and, consequently, X is a model of T. Hence, (T,T) =<, (X, X).
Thus, by Theorem 3.3, we obtain (T, T) <y, (I, ur). O

As noticed above, a rule theory does not need to be consistent. In fact, even a theory
consisting of atoms need not to be consistent. It should be clear that checking if a theory T
consisting of atoms is consistent can be done by a number of calls to satisfiability engine that is
proportional to the square of the size of T

If a theory T consists of rules with positive body, then, by computing the fixpoint of the
operator O we arrive at a pair of definable sets. If that pair is not consistent, T itself is not
consistent. If that pair is consistent, and if the resulting rough sets is concrete, then we computed
the rough set (T, T). It is quite clear that this computation requires only a polynomial number
of calls to the satisfiability engine.

There are classes of theories that are guaranteed to be consistent. One example of such
theories is the class of safe rule theories.

A theory T consisting of rules is safe over T if for every formula in(¢) occurring as the head
of a rule in T and every formula ex(s) occurring as a head of a rule in T, |t - s|; = 0.



Corollary 5.3. If I is an information system then any positive safe rule theory T over I is
consistent. Thus, if (I, ur) is concrete, then it is equal to (T, T).

Notice, however, that checking safeness is expensive. It requires quadratic (in the cardinality
of T') number of calls to the satisfiability engine. Thus, given a rule theory, rather than to check
its safeness it is, in general, better to compute the fixed point first, and then check its consistency
at the very end.

6. Problems and future directions

The approach to rough sets proposed in this paper opens several interesting research directions.
First, let us note that Pawlak’s rough sets or rough sets as defined in this paper may have very
complex descriptions. That is, the terms of the language £ 4 defining them may have exponential
length with respect to the number of atomic terms they involve. Thus, we should not only be
interested in finding approximations to unknown sets but also in finding short approximations.

To formalize the concept of a “short” description we will now introduce the notion of k-
definability. Let T = (U, A) be an information system. A definable set X is k-definable if there
is a term ¢ € L4 of length at most k£ and such that |t|; = X. A rough set (L,U) is k-definable
if both L and U are k-definable.

Asking simply for a short approximation does not lead to interesting research problems.
After all the trivial approximation ((), /) approximates all sets and has a very short description.
Interesting problems arise when the requirement for a short description is combined with a
requirement for a high precision of the approximation. Pawlak [15] studied several precision
measures. For instance, the tightness of an approximation (L, U) can be measured by the ratio

size(U \ L)
size(U)

We can now formulate the following basic problem on the trade-off between length of an
approximation and its tightness. Given integers k, I and m, and given a theory 7" in the language
of inclusion-exclusion, is there a rough set R such that R approximates all sets satisfying T', R
is k-definable and the tightness of R is at most I/m. Both theoretical and algorithmic results
on this problem are of significant practical importance.

Another interesting research direction with many promising applications in the area of data
mining is related to an observation that the language of inclusion-exclusion is only the first
step towards the language for specifying unknown sets. In the language of inclusion-exclusion
unknown sets are described in terms of definable sets which they contain or which they are
disjoint with. However, as demonstrated by Proposition 4.2, the language of inclusion-exclusion
does not allow us to talk about the sizes of definable sets. In particular, in the language of
inclusion-exclusion we cannot formulate requirements that an unknown set intersects with a
given definable set on at least (at most) k elements. Tt is important to generalize the language

of inclusion-exclusion to allow one to formulate also numeric constraints on the unknown sets.



Applications in data mining, in particular OLAP applications, may require such an extension

of the language [4]. Once an appropriate generalization is proposed, a theory similar to that

presented in the present paper should be developed.
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