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Abstract. The paper presents a constructive 3-valued semantics for autoepistemic
logic (AEL). We introduce a derivation operator and define the semantics as its least
fixpoint. The semantics is 3-valued in the sense that, for some formulas, the least
fixpoint does not specify whether they are believed or not. We show that complete
fixpoints of the derivation operator correspond to Moore’s stable expansions. In
the case of modal representations of logic programs our least fixpoint semantics
expresses both well-founded semantics and 3-valued Fitting-Kunen semantics (de-
pending on the embedding used). We show that, computationally, our semantics
is simpler than the semantics proposed by Moore (assuming that the polynomial
hierarchy does not collapse).

1 Introduction

We describe a 3-valued semantics for modal theories that approximates skep-
tical mode of reasoning in the autoepistemic logic introduced in [12,13]. We
present results demonstrating that our approach is, indeed, appropriate for
modeling autoepistemic reasoning. We discuss computational properties of
our semantics and connections to logic programming.

Autoepistemic logic is among the most extensively studied nonmonotonic
formal systems. It is closely related to default logic introduced by Reiter in
[17]. It can handle default reasonings under a simple and modular translation
in the case of prerequisite-free defaults [10]. In the case of arbitrary default
theories, a somewhat more complex non-modular translation provides a one-
to-one correspondence between default extensions and stable (autoepistemic)
expansions [5]. Further, under the so called Gelfond translation, autoepis-
temic logic captures the semantics of stable models for logic programs [3].
Under the Konolige encoding [6] of logic programs as modal theories, sta-
ble expansions generalize the concept of the supported model semantics [10].
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Autoepistemic logic is also known to be equivalent to several other modal non-
monotonic reasoning systems including the only-knowing logic of Levesque [8]
and the reflexive autoepistemic logic of Schwarz [18].

The semantics for autoepistemic logic [13] assigns to a modal theory T a
collection of its stable expansions. This collection may be empty, may consist
of exactly one expansion, or may consist of several different expansions. In-
tuitively, consistent stable expansions are designed to model belief states of
agents with perfect introspection powers: for every formula F , either the for-
mula KF (expressing a belief in F ) or the formula ¬KF (expressing that F
is not believed) belongs to an expansion. We will say that expansions contain
no meta-ignorance.

In many applications, the phenomenon of multiple expansions is desirable.
There are situations where we are not interested in answers to queries con-
cerning a single atom or formula, but in a collection of atoms or formulas that
satisfy some constraints. Planning and diagnosis in artificial intelligence, and
a range of combinatorial optimization problems, such as computing hamil-
ton cycles or k-colorings in graphs, are of this type. These problems may be
solved by means of autoepistemic logic precisely due to the fact that multiple
expansions are possible. The idea is to represent a problem as an autoepis-
temic theory so that solutions to the problem are in one-to-one correspon-
dence with stable expansions. While conceptually elegant, this approach has
its problems. Determining whether expansions exist is a ΣP

2 -complete prob-
lem [4,14], and all known algorithms for computing expansions are highly
inefficient.

In a more standard setting of knowledge representation, the goal is to
model the knowledge about a domain as a theory in some formal system
and, then, to use some inference mechanism to resolve queries against the
theory or, in other words, establish whether particular formulas are entailed
by this theory. Autoepistemic logic (as well as other nonmonotonic systems)
can be used in this mode, too. Namely, under the so called skeptical model,
a formula is entailed by a modal theory, if it belongs to all stable expansions
of this theory. The problem is, again, with the computational complexity
of determining whether a formula belongs to all expansions; this decision
problem is ΠP

2 -complete [4].

We propose an alternative semantics for autoepistemic reasoning that, in
particular, allows us to approximate the skeptical approach described above
(as well as the dual, brave mode of reasoning). Our semantics has the prop-
erty that if it assigns to a formula the truth value t, then this formula belongs
to all stable expansions and, dually, if it assigns to a formula the truth value
f, then this formula does not belong to any expansion. Our semantics is 3-
valued and some formulas are assigned the truth value u (unknown). While
only approximating the skeptical mode of reasoning, it has one important
advantage. Its computational complexity is lower (assuming that the poly-
nomial hierarchy does not collapse on some low level). Namely, the problem
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to determine the truth value of a formula under our semantics is in the class
∆P

2 .

As mentioned above, the semantics we propose can be applied to approx-
imate the skeptical mode of autoepistemic reasoning. However, it has also
another important application. It can be used as a pruning mechanism in al-
gorithms that compute expansions. While searching for expansions, one can
compute our 3-valued semantics for a modal theory under consideration (as
mentioned, it is a simpler task computationally than the task of computing
an expansion). Formulas true under this semantics are guaranteed to belong
to all expansions and those that are false belong to none. This information
can be used to simplify the current theory and limit the search space. As a
consequence, significant speedups may be achieved.

There are parallels between our semantics and the well-founded semantics
in logic programming. The well-founded semantics approximates the stable
model semantics (atoms true under the well-founded semantics are in all sta-
ble models and atoms that are false under the well-founded semantics belong
to none). Moreover, computing well-founded semantics is polynomial while
deciding whether an atom belongs to all stable models is a co-NP-complete
problem. As a result, the well-founded semantics is used as a search space
pruning mechanism by some algorithms to compute stable model semantics
[15]. We will show in the paper that there is, indeed, a close formal connec-
tion between our 3-valued semantics of modal theories and the well-founded
semantics of logic programs.

The 3-valued semantics for autoepistemic logic introduced in this paper
is based on the notion of a belief pair, that is, a pair (P, S), where P and
S are sets of 2-valued interpretations of the underlying first-order language,
and S ⊆ P . The motivation to consider belief pairs comes from Moore’s
possible-world characterization of stable expansions [12]. Moore character-
ized expansions in terms of possible-world structures, that is, sets of 2-valued
interpretations. A belief pair (P, S) can be viewed as an approximation to a
possible-world structure W such that S ⊆ W ⊆ P : interpretations not in P

are known not to be in W , and those in S are known to be in W . It turns
out that while expansions (or the corresponding possible-world structures)
do not contain meta-ignorance, belief pairs, in general, do.

There is a natural ordering of belief pairs. We say that (P1, S1) “better
approximates” than (P, S) the agent’s beliefs entailed by the agent’s initial
assumptions if S ⊆ S1 ⊆ P1 ⊆ P . We will denote the corresponding order-
ing relation in the set B of all belief pairs by ≤p. Our semantics of modal
theories is defined in terms of an operator on the set of belief pairs. This
operator, DT , is determined by a modal theory T (the set of initial assump-
tions of the agent). Intuitively, it attempts to simulate a constructive process
a rational agent might use to produce an “elementary” improvement on this
agent’s current set of beliefs and disbeliefs: given a belief pair B = (P, S),
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DT (B) is a belief pair that provides another, under some assumptions better,
approximation to the agent’s beliefs.

An important property is that DT is monotone with respect to ≤p. Hence,
it has the least fixpoint. This least fixpoint can be constructed by starting
with the least informative belief pair (approximating every possible-world
structure) and then iterating the operator DT , in each step improving on
the previous belief pair until no further improvement is possible. We pro-
pose this fixpoint as a constructive approximation to the semantics of stable
expansions.

A fundamental property that makes the above approach meaningful is
that complete belief pairs (those with P equal to S) that are fixpoints of DT

are (under an obvious one-to-one correspondence) precisely Moore’s autoepis-
temic models characterizing expansions. Thus, by the general properties of
fixpoints of monotone operators over partially ordered sets, the least fixpoint
described above indeed approximates the skeptical and brave reasoning based
on expansions. Moreover, as mentioned above, the problem of computing the
least fixpoint of the operator DT requires only polynomially many calls to the
satisfiability testing engine, that is, it is in ∆P

2 . Another property substanti-
ating our approach is that under some natural encodings of logic programs
as modal theories, our semantics yields both well-founded semantics [20] and
the 3-valued Fitting-Kunen semantics [2,7].

Our paper is structured as follows. The next section reviews the basics
of autoepistemic logic including both syntactic and semantic definitions of
expansions. We then investigate the properties of the partial ordering of be-
lief pairs and study the operator DT . Subsequently, we show how the purely
semantic approach can be described in proof-theoretic terms and use this
proof-theoretic approach to study algorithmic issues of the least fixpoint of
the operator DT . Next, we discuss connections between fixpoints of DT and
several semantics of logic programs with negation. Section 6 contains conclu-
sions and a discussion of future work. The appendix that concludes the paper
gives a proof of Theorem 6.

2 Autoepistemic logic — preliminaries

The language of autoepistemic logic is the standard language of propositional
modal logic over a set of atoms At and with a single modal operator K. We
will refer to this language as LK . The modal-free fragment of LK will be
denoted by L.

The notion of a 2-valued interpretation of the language L is defined as
usual: it is a mapping from At to {t, f}. Throughout the paper AAt (or A, if
At is clear from the context) will always denote the set of all interpretations
of the set At of atoms of L.

Autoepistemic logic was first introduced by Moore in [12] and later studied
in [13]. In [13], the semantics of an autoepistemic theory T is defined in terms
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of stable expansions. For every two sets T and E of modal formulas, E is said
to be a stable expansion of T if it satisfies the equation:

E = {ϕ:T ∪ {¬Kψ:ψ 6∈ E} ∪ {Kψ:ψ ∈ E} |=FOL ϕ}

(the symbol |=FOL stands for classical entailment, where all formulas Kϕ are
interpreted as propositional literals).

A possible-world treatment of autoepistemic logic was described by Moore
[12]. A possible-world structure W (over At) is a set of 2-valued interpreta-
tions of At . Alternatively, it can be seen as a Kripke structure with a total
accessibility relation. Given a pair (W, I), where W is a possible-world struc-
ture and I is an interpretation (not necessarily from W ), one defines a truth
assignment function HW,I inductively as follows:

i. For an atom A, we define HW,I(A) = I(A)

ii. The boolean connectives are handled in the usual way

iii. For every formula F , we define HW,I(KF ) = t if for every interpretation
J ∈W,HW,J (F ) = t, and HW,I(KF ) = f, otherwise.

We write (W, I) |=ael F to denote that HW,I(F ) = t. Further, for a modal
theory T , we write (W, I) |=ael T if HW,I(F ) = t for every F ∈ T . Finally,
for a possible world structure W we define the theory of W , Th(W ), by:
Th(W ) = {F : (W, I) |=ael F, for all I ∈W}.

It is well known that for every formula F , either KF ∈ Th(W ) or ¬KF ∈
Th(W ) (since HW,I(KF ) is the same for all interpretations I ∈ A). Thus,
possible-world structures have no meta-ignorance and, as such, are suitable
for modeling belief sets of agents with perfect introspection capabilities. It
is precisely this property that made possible-world structures fundamental
objects in the study of modal nonmonotonic logics [12,10].

Definition 1. An autoepistemic model of a modal theory T is a possible-
world structure W which satisfies the following fixpoint equation1:

W = {I: (W, I) |=ael T}.

The following theorem, relating stable expansions of [13] and autoepis-
temic models, was proved in [8] and was discussed in detail in [19].

Theorem 1. For any two modal theories T and E, E is a stable expansion
of T if and only if E = Th(W ) for some autoepistemic model W of T .

1 Observe that empty models are allowed. This assumption allows us to treat con-
sistent and inconsistent expansions in a uniform manner.



6 M. Denecker, V.W. Marek and M. Truszczynski

3 A fixpoint 3-valued semantics for autoepistemic logic

Our semantics for autoepistemic logic is defined in terms of possible-world
structures and fixpoint conditions. The key difference with the semantics pro-
posed by Moore is that we consider approximations of possible-world struc-
tures by pairs of possible-world structures. Recall from the previous section,
that A denotes the set of all interpretations of a fixed propositional language
L.

Definition 2. A belief pair is a pair (P, S) of sets of interpretations P, S ⊆ At
such that S ⊆ P . When B = (P, S), S(B) denotes S and P (B) denotes P .
The belief pair (A, ∅) is denoted ⊥. The set {(P, S):P, S ⊆ A and P ⊇ S}
of all belief pairs is denoted by B. The belief pair (∅, ∅) is called inconsistent
and is denoted by ⊤.

A belief pair B can be seen as an approximation of a possible-world struc-
ture W such that S(B) ⊆ W ⊆ P (B). The interpretations in S(B) can be
viewed as states of the world which are known to be possible (belong to W ).
The set of these interpretations forms a lower approximation to W . The set
P (B) of interpretations can be viewed as an upper approximation to W :
interpretations not in P (B) are known not to be in W .

We will now extend the concept of an interpretation to the case of belief
pairs and consider the question of meta-ignorance and meta-knowledge of
belief pairs. We will see that, being only approximations to possible-world
structures, belief pairs may contain meta-ignorance. We will use three logical
values, f, u and t. In the definition, we will use the truth ordering: f ≤tr u ≤tr

t and define f−1 = t, t−1 = f,u−1 = u.

Definition 3. Let B = (P, S) be a belief pair and let I be an interpretation.
The truth function HB,I is defined inductively (min and max are evaluated
with respect to the ordering ≤tr):

(a) HB,I(A) = I(A), if A is an atom
(b) HB,I(¬F ) = HB,I(F )−1

(c) HB,I(F1 ∨ F2) = max{HB,I(F1),HB,I(F2)}
(d) HB,I(F1 ∧ F2) = min{HB,I(F1),HB,I(F2)}
(e) HB,I(F2 ⊃ F1) = max{HB,I(F1),HB,I(F2)−1}

The formula KF is evaluated as follows:

HB,I(KF ) =







t if for every J ∈ P , HB,J(F ) = t
f if there is J ∈ S such that HB,J(F ) = f
u otherwise

The truth value of a modal atom KF , HB,I(KF ), does not depend on
the choice of I. Consequently, for a modal atom KF we will write HB(KF )
to denote this, common to all interpretations from A, truth value of KF .
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Let us define the meta-knowledge of a belief pair B as the set of formulas
F ∈ LK such that HB(KF ) = t or HB(KF ) = f. The meta-ignorance is
formed by all other formulas, that is, those formulas F ∈ LK for which
HB(KF ) = u.

Clearly, a belief pair B = (W,W ) naturally corresponds to a possible-
world structure W . Such a belief pair is called complete. We will denote it
by (W ). The following straightforward result indicates that HB,I is a gen-
eralization of HW,I to the case of belief pairs. It also states that a complete
belief pair contains no meta-ignorance.

Proposition 1. If B is a complete belief pair (W ), then HB,I is 2-valued.
Moreover, for every formula F ∈ LK , HB,I(F ) = HW,I(F ).

We will now define two satisfaction relations: weak, denoted by |=w, and
strong, denoted by |=. Namely, for a belief pair B, an interpretation I and a
modal formula F we define:

i. (B, I) |=w F if HB,I(F ) 6= f (that is, if HB,I(F ) ≥tr u), and
ii. (B, I) |= F if HB,I(F ) = t

Let T be a modal theory and let B be a belief pair. We define:

DT (B) = ({I : (B, I) |=w T}, {I : (B, I) |= T}). (1)

Clearly, if (B, I) |= F then (B, I) |=w F . Hence, DT (B) is a belief pair or, in
other words, DT is an operator on (B,≤p). In addition, P (DT (B)) consists of
the interpretations which weakly satisfy T according to B, while S(DT (B))
consists of those interpretations which strongly satisfy T according to B. The
subscript T in DT is often omitted when T is clear from the context.

Example 1. Consider T = {Kp ⊃ q}. Then D(⊥) = (A, {pq, pq}) (here,
by pq we mean an interpretation that assigns t to both p and q while pq

denotes an interpretation assigning f to p and t to q). Indeed, H⊥(Kp) = u.
Consequently, for every I, H⊥,I(Kp ⊃ q) 6= f, that is, (⊥, I) |=w Kp ⊃ q. For
the same reason, H⊥,I(Kp ⊃ q)) = t if and only if I(q) = t.

To compute D2(⊥), observe that HD(⊥)(Kp) = f. Consequently, for every
I, HD(⊥),I(Kp ⊃ q) = t. It follows that D2(⊥) = (A,A). It is also easy to
see now that (A,A) is the fixpoint of D, that is, D(A,A) = (A,A).

The next result relates complete fixpoints of D to Moore’s semantics of
autoepistemic logic.

Theorem 2. Let T ⊆ LK . Then:

(a) For every W ⊆ A, (W ) is a fixpoint of DT if and only if W satisfies the
following equation: W = {I: (W, I) |=ael T}

(b) A possible-world structure W is an autoepistemic model of T if and only
if (W ) is a fixpoint of DT
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(c) A modal theory E is a stable expansion of T if and only if E = Th(S)
for some complete fixpoint (S) of DT

Proof: (a) Observe that for every W ⊆ A, for every I ∈ A and for every F ∈
T , H(W ),I(F ) = HW,I(F ). Hence, ((W ), I) |= F if and only if (W, I) |=ael F .
In addition, by Proposition 1, (W, I) |= F if and only if ((W ), I) |= F . Thus,
(W ) is a fixpoint of DT if and only if W = {I: (W, I) |=ael T}. The assertion
(b) follows directly from (a). The assertion (c) follows from (b) by Theorem
1. 2

Theorem 2 demonstrates that complete fixpoints of the operator DT de-
scribe stable expansions of T . However, in general, the operator DT may also
have fixpoints that are not complete. Such fixpoints provide 3-valued inter-
pretations to modal formulas and can serve as approximations to complete
fixpoints of DT .

The approach to autoepistemic reasoning that we present in this paper
exploits the concept of a least fixpoint of DT . Namely, we show the existence
of this least fixpoint and demonstrate that it can be constructed by iterating
the operator DT starting with the belief pair ⊥. Intuitively, this iterative
construction models the agent who, given an initial theory T , starts with the
belief pair ⊥ (with the smallest meta-knowledge content) and, then, itera-
tively constructs a sequence of belief pairs with increasing meta-knowledge
(decreasing meta-ignorance) until no further improvement is possible.

Next, we demonstrate that the semantics implied by the least fixpoint
of DT approximates the semantics of Moore and that it coincides with the
semantics of Moore on stratified modal theories. We show that the task to
compute the least fixpoint of the operator DT is simpler than computing
autoepistemic expansions (unless the polynomial hierarchy collapses). Finally,
we study connections of our semantics to several semantics used for logic
programs with negation.

Our approach relies on an observation that there is a natural partial
ordering of the set B of belief pairs. Recall that for two belief pairs B1 and
B2, we defined

B1 ≤p B2 if P (B1) ⊇ P (B2) and S(B1) ⊆ S(B2). (2)

This ordering is consistent with the ordering defined by the “amount” of
meta-knowledge contained in a belief pair: the ”higher” a belief pair in
the ordering ≤p, the more meta-knowledge it contains (and the less meta-
ignorance). Clearly, the relation ≤p is reflexive, antisymmetric and transitive.
Hence, (B,≤p) is a poset. The following two results gather some basic prop-
erties of the poset (B,≤p), truth assignment function HB,I and the operator
D. The first one shows that the ordering ≤p is consistent with the concept
of the knowledge ordering (also referred to as information ordering in the
literature) of the truth values: u ≤kn f,u ≤kn t, f 6≤kn t and t 6≤kn f. It also
relates the ordering ≤p to the weak and strong entailment relations |=w and
|=. The second result states that D is monotone with respect to ≤p.
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Proposition 2. Let B1 and B2 be belief pairs such that B1 ≤p B2. For every
interpretation I ∈ A and every formula F ∈ LK :

(a) HB1,I(F ) ≤kn HB2,I(F ).
(b) If (B2, I) |=w F then (B1, I) |=w F

(c) If (B1, I) |= F , then (B2, I) |= F .

Proof: (a) We proceed by induction on the length of F . Thus, let us consider
a modal formula F and let us assume that the assertion of the proposition
holds for every modal formula G of length smaller than the length of F . There
are three cases to consider.

First, assume that F is an atom. Then for every I ∈ A, HB1,I(F ) =
I(F ) = HB2,I(F ). In particular, HB1,I(F ) ≤kn HB2,I(F ) (this argument
establishes the basis for the induction).

Next, assume that F is of the form G∧G′, G∨G′, G ⊃ G′ or ¬G. In this
case, the assertion follows immediately from the induction hypothesis and
from the following observation: if a, b, a′ and b′ are truth values such that
a ≤kn a

′ and b ≤kn b
′ then:

i. (a ∧ b) ≤kn (a′ ∧ b′)
ii. (a ∨ b) ≤kn (a′ ∨ b′)

iii. (a ⊃ b) ≤kn (a′ ⊃ b′)
iv. (¬a) ≤kn ¬(a′).

Finally, let us assume F = KG for some modal formula G. Take any
I ∈ A. Assume that HB1,I(KG) = t. It follows that for every J ∈ P (B1),
HB1,J(G) = t. Since B1 ≤kn B2, P (B2) ⊆ P (B1). Hence, by the induction
hypothesis, for every J ∈ P (B2), HB2,J (G) = t. Consequently, HB2,I(KG) =
t and HB1,I(F ) ≤kn HB2,I(F ).

The argument in the case when HB1,I(KG) = f is similar. Since u ≤kn t
and u ≤kn f, the assertion follows in the case when HB1,I(KG) = u, too.
(b) Assume that (B1, I) 6|=w T . Then, there is a formula F ∈ T such that
HB1,I(F ) = f. By the assertion (a), HB2,I(F ) = f. Consequently, (B2, I) 6|=w

T .
(c)Assume that (B1, I) |= T . Then HB1,I(F ) = t for every F ∈ T . By the
assertion (a), HB2,I(F ) = t for every F ∈ T . Hence, (B2, I) |= T . 2

Proposition 3. Let B1 and B2 be belief pairs such that B1 ≤p B2. For every
theory T ⊆ LK , DT (B1) ≤p DT (B2), that is, the operator DT is monotone
on (B,≤p).

Proof: Assume that B1 ≤p B2. By Proposition 2(b), {I: (B2, I) |=w T} ⊆
{I: (B1, I) |=w T}. Hence, P (D(B2)) ⊆ P (D(B1)). Similarly (by Proposition
2(c)), S(D(B1)) ⊆ S(D(B2)). Thus, D(B1) ≤p D(B2). 2

Proposition 3 is especially important. The monotonicity of the operator
D will allow us to assert the existence of a least fixpoint of D. However, let
us note that the poset (B,≤p) is not a lattice (and, hence, not a complete
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lattice). Indeed, for every W ⊆ A, (W ) is a maximal element in (B,≤p). If
W1 6= W2, then (W1) and (W2) have no least upper bound (l.u.b.) in (B,≤p).
Thus, we will not be able to use the theorem Tarski-Knaster in its classic
form. Instead, we will use its generalization (see [11]) developed for the case
of posets that are chain complete. Let us recall that a poset is chain complete
if its every chain (that is, a totally ordered subposet) has a l.u.b. [1,11]. Note
also that every chain complete partially ordered set has a least element. It
follows from the observation that the empty set is a chain.

Theorem 3 ([11]). Let (P,≤) be a chain-complete poset. Let D be a mono-
tone operator on (P,≤). Then, D has a least fixpoint. This fixpoint is the limit
of the sequence of iterations of D starting with the least element of (P,≤).

To use Theorem 3, we will now show that the poset (B,≤p) is chain
complete.

Proposition 4. The poset (B,≤p) is chain complete.

Proof: For a nonempty set C of belief pairs define PC =
⋂

{P (B) : B ∈ C}
and SC =

⋃

{S(B) : B ∈ C}. Consider now a chain C ⊆ B of belief pairs.
Assume that I ∈ SC . There exists a belief pair (P, S) ∈ C such that I ∈ S.
Since (P, S) is a belief pair, I ∈ P . Let (P ′, S′) ∈ C. Then we have (P ′, S′) ≤p

(P, S) or (P, S) ≤p (P ′, S′). In the first case, P ⊆ P ′. Hence, I ∈ P ′. In the
second case we have S ⊆ S′ ⊆ P ′ and, again, I ∈ P ′. It follows that I ∈ PC

and, consequently, that SC ⊆ PC .
We have just proved that (PC , SC) is a belief pair. It is easy to see that

for every (P, S) ∈ C, (P, S) ≤p (PC , SC). Moreover, any other upper bound
B of C satisfies (PC , SC) ≤p B. Hence, (PC , SC) is the l.u.b. of C.

Finally, it is evident that the belief pair ⊥ = (A, ∅) is a least element of
the poset (B,≤p). Thus, the empty chain also has its least upper bound (the
least element of (P,≤)). 2

As an immediate consequence of Theorem 3 and Proposition 4 we obtain
the following crucial corollary.

Corollary 1. For every theory T ⊆ LK , the operator DT has a least fixpoint.

The least fixpoint of the operator DT will be denoted by DT↑. We propose
this fixpoint as the semantics of modal theory T . This semantics reflects
the reasoning process of an agent who gradually constructs belief pairs with
increasing knowledge (information) content.

The following three results provide justification for our least fixpoint se-
mantics. The first of these results shows that the least fixpoint semantics pro-
vides a lower approximation to the skeptical semantics based on expansions
and an upper approximation to the brave reasoning based on expansions.

Theorem 4. Let T be a modal theory. If HDT↑(KF ) = t then F belongs to all
expansions of T . If HDT↑(KF ) = f then F does not belong to any expansion
of T .
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Proof: Assume that HDT↑(KF ) = t. Let E be a stable expansion of T . Then
E = Th(W ) for some autoepistemic model W of T (Theorem 1). Clearly,
(W ) is then a fixpoint of DT (Theorem 2). Since DT↑≤p (W ), by Proposition
2 it follows that H(W )(KF ) = t. Hence, for every I ∈W , H(W ),I(F ) = t or,
equivalently (Proposition 1), HW,I(F ) = t. Consequently, F ∈ Th(W ) = E.
A similar argument can be used to prove the second part of the assertion. 2

The second result shows that if the least fixpoint is complete (that is, no
further improvement in meta-knowledge is possible) than the least fixpoint
semantics coincides with the semantics of Moore.

Theorem 5. If DT↑ is complete then DT↑ is the unique autoepistemic model
of T .

Proof: For every complete fixpoint (W ) of DT , DT↑≤p (W ). Moreover, com-
plete elements of (B,≤p) are maximal. Hence, if DT ↑ is complete, it is a
unique complete fixpoint of DT . Thus, by Theorem 2(b), DT ↑ is the unique
autoepistemic model of T . 2

In the last result of this section we will show that the least fixpoint seman-
tics is complete for the class of stratified theories, introduced by Gelfond [3]
and further generalized in [9]. This property, in combination with Theorem
5, implies that for stratified theories the least fixpoint semantics coincides
with the skeptical (and brave) autoepistemic semantics of Moore. This is an
important property since the semantics of Moore is commonly accepted for
the class of stratified theories and the agreement with this semantics is re-
garded as a test of “correctness” of a semantics for a modal nonmonotonic
logic. Let us note that a similar test of agreement with the perfect model
semantics on stratified programs is used in logic programming to justify se-
mantics for logic programs with negation. In particular, the well-founded and
stable model semantics both coincide with the perfect model semantics on
stratified logic programs. This property is not quite coincidental as connec-
tions between autoepistemic logic and logic programming are well known [10]
and are also discussed below in Section 5.

Theorem 6. If T is a stratified autoepistemic theory then:

(a) DT↑ is complete
(b) T has a unique stable expansion
(c) DT↑ is consistent if and only if the lowest stratum T0 is consistent.

The proof of this theorem (as well as a precise definition of a stratified
modal theory) can be found in the appendix.

To conclude this section let us observe that the semantics defined by the
least fixpoint of the operator D has several attractive features. It is defined
for every modal theory T . It coincides with the semantics of autoepistemic
logic on stratified theories. In the general case, it provides a lower approx-
imation to the intersection of all stable expansions (skeptical autoepistemic
reasoning) and upper approximation to the union of all stable expansions
(brave autoepistemic reasoning).
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4 An effective implementation of D

The approach proposed and discussed in the previous section does not di-
rectly yield itself to fast implementations. The definition of the operator D
refers to all interpretations of the language L. Thus, computing D(B) by fol-
lowing the definition is exponential even for modal theories of a very simple
syntactic form. Moreover, representing belief pairs is costly. Each of the sets
P (B) and S(B) may contain exponentially many elements. In this section,
we describe a characterization of the operator D that is much more suitable
for investigations of algorithmic issues associated with our semantics.

To this end, in addition to the propositional language L (generated, recall,
by the set of atoms At), we will also consider the extension of L by three
new constants t, f and u. We will call this language 3-FOL. Formulas and
theories in this language will be called 3-FOL formulas and 3-FOL theories,
respectively. Our strategy is now as follows. First, we will show that a wide
class of belief pairs can be represented by 3-FOL theories. Next, using this
representation, we will describe a method to compute fixpoints of the operator
D that is algorithmically more feasible than the direct approach implied by
the definition of D.

We start by discussing a class of 3-valued truth assignments on the lan-
guage 3-FOL that are generated by 2-valued interpretations from A under
the assumption that the new constants t, f and u are always interpreted by
the logical values they represent. Formally, given an interpretation I ∈ A, we
define a valuation Ie on the language 3-FOL inductively as follows (minima
and maxima are computed with respect to the truth ordering of t, f and u):

i. Ie(A) = I(A), if A ∈ At
ii. Ie(a) = a, for a ∈ {t, f,u}

iii. Ie(¬F ) = (Ie(F ))−1

iv. Ie(F1 ∨ F2) = max{Ie(F1), Ie(F2)}
v. Ie(F1 ∧ F2) = min{Ie(F1), Ie(F2)}

vi. Ie(F2 ⊃ F1) = max{Ie(F1), (Ie(F2))−1}.

Let F be a 3-FOL formula. By Fwk we denote the formula obtained by
substituting t for all positive occurrences of u and f for all negative occur-
rences of u. Similarly, by F str we denote the formula obtained by substituting
t for all negative occurrences of u and f for all positive occurrences of u. Given
a 3-FOL theory Y , we define Y str and Y wk by the standard setwise exten-
sion. Before we proceed let us note the following useful identities (the proof
is straightforward and is omitted):

(¬F )
str

= ¬(Fwk) and (¬F )
wk

= ¬(F str). (3)

Clearly, F str and Fwk do not contain u. Consequently, they can be re-
garded as formulas in the propositional language generated by the atoms in
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At and the two constants t and f. We will call this language 2-FOL. Formu-
las Fwk and F str can be viewed as lower and upper approximations to the
formula F .

It is clear that for every 2-FOL formula F , and for every interpretation
I ∈ A, Ie(F ) ∈ {t, f}. We say that an interpretation I ∈ A is a model of
a 2-FOL theory T if Ie(F ) = t. We will write I |= F in such case. An
interpretation I ∈ A is a model of a 2-FOL theory T (I |= T ) if I is a model
of every formula from T . The set of interpretations from A that are models
of a 2-FOL formula F will be denoted by Mod(T ). The entailment relation
in the language 2-FOL is now defined in the standard way: for two 2-FOL
theories T1 and T2, T1 |= T2 if Mod(T2) ⊆ Mod(T1). We have the following
technical lemma.

Lemma 1. For every interpretation I ∈ A and for every 3-FOL formula F :

(a) Ie(F ) = t if and only if I |= F str

(b) Ie(F ) = f if and only if I 6|= Fwk.

Proof: We will prove both (a) and (b) simultaneously by induction. Clearly,
both (a) and (b) are true for every atom At and for the constants t, f and u.

Consider a 3-FOL formula G and assume both (a) and (b) hold for all
3-FOL formulas with length smaller than the length of G. Assume first that
G = F1 ∨F2. Clearly, Ie(F1 ∨F2) = t if and only if Ie(F1) = t or Ie(F2) = t.
Similarly, I |= (F1 ∨ F2)

str
if and only if I |= F1

str or I |= F2
str. By the

induction hypothesis, Ie(Fi) = t if and only if I |= Fi
str, i = 1, 2. Hence, the

assertion (a) holds for G = F1 ∨ F2.
Analogous arguments can be used to show that the assertion (b) holds for

G = F1∨F2 and that both assertions (a) and (b) hold for G = F1∧F2. Thus,
to complete the proof, consider the case when G = ¬F . Then, Ie(¬F ) = t
if and only if Ie(F ) = f. By the induction hypothesis, Ie(F ) = f if and only
if I 6|= Fwk. Moreover, by (3), I 6|= Fwk if and only if I |= (¬F )

str
. By the

induction hypothesis, Ie(F ) = f if and only if I 6|= F str. Hence, (a) holds for
G = ¬F . The proof of (b) for G = ¬F is similar. 2

Lemma 1 has an important consequence. It implies that each 3-FOL the-
ory generates a belief pair.

Corollary 2. Let Y be a 3-FOL theory. Then, Mod(Y str) ⊆ Mod(Y wk).
That is, equivalently, (Mod(Y wk),Mod(Y str)) is a belief pair.

Proof: Let I ∈ Mod(Y str) and let F ∈ Y . Then, I |= F str. By Lemma 1(a),
Ie(F ) = t. Hence, Ie(F ) 6= f and, by Lemma 1(b), I |= Fwk. Consequently,
I ∈Mod(Y wk) and Mod(Y str) ⊆Mod(Y wk) follows. 2

Let Y be a 3-FOL theory. The belief pair (Mod(Y wk),Mod(Y str) will be
denoted by Bel(Y ). We say that a belief pair B is represented by a 3-FOL
theory Y if B = Bel(Y ). Clearly, the belief pair ⊥ = (A, ∅) is represented by
the 3-FOL theory {u}. We will now show that every belief pair in the range
of the operator DT is representable by a 3-FOL theory.
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Let B be a belief pair and let F be a modal formula. By FB we will denote
a 3-FOL formula that is obtained from F by replacing each top level modal
atom KG in F by the constant corresponding to the logical value HB(KG).
For a modal theory T , we define TB = {FB :F ∈ T}. We have the following
result.

Theorem 7. For every modal theory T ⊆ LK and every belief pair B we
have DT (B) = Bel(TB).

Proof: First, observe that directly from the definitions of the truth assignment
Ie and a 3-FOL formula FB it follows that

Ie(FB) = HB,I(F ). (4)

Now, DT (B) is the following belief pair:

({I:HB,I(F ) ≥tr u, for all F ∈ T}, {I:HB,I(F ) = t, for all F ∈ T}).

Hence, by (4),

DT (B) = ({I: Ie(FB) 6= f, for all F ∈ T}, {I: Ie(FB) = t, for all F ∈ T}).

Finally, by Lemma 1,

DT (B) = (Mod(Twk
B ),Mod(T str

B )).

That is, DT (B) = Bel(TB). 2

We will now show that, similarly to belief pairs, 3-FOL theories can be
used to assign truth values to modal atoms (and, hence, to all modal formu-
las). We will then exhibit (Theorem 8) the relationship between this truth
assignment and the truth assignment HB,I introduced in Section 3. In order
for the inductive argument in the proof of Theorem 8 to work, we need to
extend the modal language LK by the constants t, f and u. We call the result-
ing language 3-AEL. We call formulas and theories in this language 3-AEL
formulas and 3-AEL theories, respectively. Observe that the definition of the
truth assignment HB,I from Section 3 naturally extends to 3-AEL formulas.

Definition 4. Let Y be a 3-FOL theory, and let F be a 3-AEL formula. We
define HY (KF ) as follows. If F is a modal-free formula (that is a 3-FOL
formula), then define:

HY (KF ) =







t if Y wk |= F str

f if Y str 6|= Fwk

u otherwise.

If F is not modal free, then replace every modal atom KG in F , not under
the scope of any other occurrence of the modal operator, by the constant
corresponding to the value of HY (KG). Call the resulting formula F ′. Define
HY (KF ) = HY (KF ′) (notice that F ′ is a modal-free formula and the first
part of the definition applies).
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Let T be a modal theory and let Y be a 3-FOL theory. By the Y -instance
of T , TY , we mean the 3-FOL theory obtained by substituting in each for-
mula from T all modal atoms KF (not appearing under the scope of any
other occurrence of the modal operator K) by the constant corresponding to
HY (KF ).

The following theorem shows that the truth values of modal atoms eval-
uated according to a 3-FOL theory Y and according to the corresponding
belief pair Bel(Y ) coincide.

Theorem 8. Let Y be a 3-FOL theory. Then, for every 3-AEL formula F ,

HBel(Y )(KF ) = HY (KF ).

Proof: The proof is by induction on the length of the formula F . In what
follows we denote Bel(Y ) by B. Thus, we also have P (B) =Mod(Y wk) and
S(B) =Mod(Y str).

First consider the case when F is a 3-FOL formula (the argument in this
case will establish the basis of the induction). By the definition, HB(KF ) = t
if and only if

for every I ∈ P (B), HB,I(F ) = t. (5)

Since F is a 3-FOL formula, HB,I(F ) = Ie(F ). Hence, by Lemma 1 and by
the equality P (B) =Mod(Y wk), the statement (5) is equivalent to:

for every I ∈Mod(Y wk), I ∈Mod(F str). (6)

The statement (6), in turn, is equivalent to Y wk |= F str. Thus, HB(KF ) = t
if and only if HY (KF ) = t. In a similar way one can prove that HB(KF ) = f
if and only if HY (KF ) = f. Consequently, HB(KF ) = HY (KF ).

Second, consider the case when F is a modal 3-AEL formula. Let F ′ be
a formula obtained from F by replacing each modal atom KG (not in the
scope of any other occurrence of K in F ) by the constant corresponding to
the truth value HB(KG). By the induction hypothesis HB(KG) = HY (KG).
Hence, by the definition of HY (KF ), HY (KF ) = HY (KF ′).

Since F ′ is modal-free, HB(KF ′) = HY (KF ′). In addition, it is easy to
see that HB(KF ) = HB(KF ′). Thus, HB(KF ) = HY (KF ). 2

Let T be a modal theory. We will now define an operator SDT on 3-FOL
theories. We will then show that this new operator is closely related to the
operator DT . Let Y be a 3-FOL theory. Define SDT (Y ) = TY .

The key property of the operator SDT is that, for a finite modal theory
T and for a finite 3-FOL theory Y , SDT (Y ) can be computed by means
of polynomially many calls to the propositional provability procedure. The
number of such calls is bounded by the number of occurrences of the modal
operator K in the theory T . In each call we verify whether some 2-FOL
theory X1 entails another 2-FOL theory X2, where the sizes of X1 and X2

are bounded by the sizes of the theories T and Y .
Theorems 8 and 7 imply the main result of this section.
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Theorem 9. Let T be a modal theory and let Y be a 3-FOL theory. Then,

(a) TY = TBel(Y ) and SDT (Y ) = TBel(Y )

(b) Bel(SDT (Y )) = DT (Bel(Y )).
(c) If a belief pair B is a fixpoint of DT , then TB is a fixpoint of SDT .
(d) If Y is a fixpoint of SDT then Bel(Y ) is a fixpoint of DT .

Proof: (a) This statement follows directly from Theorem 8.
(b) By Theorem 7, DT (Bel(Y )) = Bel(TBel(Y )). By (a), DT (Bel(Y )) =
Bel(SDT (Y )) follows.
(c) If a belief pair B is a fixpoint of DT , then B = DT (B) = Bel(TB) (the
last equality follows by Theorem 7). Hence, TB = TBel(TB) = SDT (TB) (the
last equality follows by (a)).
(d) This statement follows directly from (b). 2

Let us denote Bα = Dα
T (⊥) and Yα = SDα

T (u). It follows directly from
Theorem 9(b) (by an easy induction) that for every ordinal number α, Bα =
Bel(Yα). Hence, if Yα = Yα+1 (that is, if Yα is a fixpoint of the operator
SDT ) Bα = Bα+1 (that is, Bα is a fixpoint of the operator DT ).

Next, by (a), for every ordinal α, TYα
= TBα

. Hence, if Bα = Bα+1 (that
is, if Bα is a fixpoint of the operator DT ) then

Yα+2 = SDT (Yα+1) = TYα+1
= TBα+1

= TBα
= TYα

= SDT (Yα) = Yα+1.

That is, Yα+1 is a fixpoint o the operator SDT .
It follows that

DT↑= Bel(SDT↑).

In the case when T is finite, the number of iterations needed to compute
SDT ↑ is limited by the number of top level (unnested) modal literals in T .
Originally, they may all be evaluated to u. However, at each step, at least
one u changes to either t or f and this value is preserved in the subsequent
evaluations.

Once SDT↑ is computed, one can evaluate the truth value HSDT↑(KG) for
any modal atom of the language LK . This task again requires polynomially
many calls to a propositional provability procedure. A key point is that the
logical value so computed is exactly the logical value of the modal atom
KG with respect to the belief pair DT ↑. In other words, determining the
logical value of a modal formula with respect to the semantics defined by
the least fixpoint of the operator DT takes a polynomial number of calls to
a propositional provability procedure. Consequently, the problem to decide
whether a logical value of a modal atom under this semantics is t is in the
class ∆2

P (the same is true for two other decision problems of deciding whether
the logical value of a modal atom is u and f, respectively). Since deciding
whether a modal atom is in all (some of the) expansions of a modal theory
is Π2

P -complete (Σ2
P -complete), our 3-valued semantics is computationally

simpler (unless the polynomial hierarchy collapses at some low level). These
considerations yield the following formal result.
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Theorem 10. The problems to decide whether HDT↑(KF ) = t, HDT↑(KF ) =
f and HDT↑(KF ) = u are in the class ∆2

P .

5 Relationship to logic programming

Autoepistemic logic is closely related to several semantics for logic programs
with negation. It is well-known that both stable and supported models of
logic programs can be described as expansions of appropriate translations of
programs into modal theories (see, for instance, [10]). In this section, we dis-
cuss connections of the semantics defined by the least fixpoint of the operator
D to some 3-valued semantics of logic programs.

We will be interested in propositional logic programs over a set of atoms
At . However, to prove the main results of the section and to state some aux-
iliary facts, we will also consider a wider class of programs. These programs,
called 3-FOL programs, will play a similar role as 3-FOL theories in Section
4. Formally, a 3-FOL program clause is an expression of the form

a← b1, . . . , bk,not(c1), . . . ,not(cm), l1, . . . , ln,

where a, each bi, 1 ≤ i ≤ k, and each ci, 1 ≤ i ≤ m are atoms from At , and
each li, 1 ≤ i ≤ n, is one of t, f, u or their negation. The literals li will be
referred to as truth-value literals. A 3-FOL clause in which m = 0 (no literals
of the form not(c) in the body) is called a definite 3-FOL clause. A collection
of 3-FOL clauses (definite 3-FOL clauses, respectively) is a 3-FOL program
(definite 3-FOL program).

We will often interpret a definite 3-FOL logic program P as a 3-FOL
theory (by regarding program clauses as implications). This allows us to
use for definite 3-FOL programs concepts introduced in Section 4 for 3-
FOL theories. In particular, with every definite 3-FOL program we will as-
sociate 2-FOL theories P str and Pwk, as well as the belief pair Bel(P ) =
(Mod(Pwk),Mod(P str)).

Consider a 3-FOL definite logic program P . We say that a 3-valued in-
terpretation I strongly satisfies P if for each rule

a← b1, . . . , bk, l1, . . . , ln

from P , Ie(a) ≥tr I
e(bi), for some i, 1 ≤ i ≤ k or Ie(a) ≥tr I

e(li), for some
i, 1 ≤ i ≤ n (Ie is obtained from I by extending I naturally to the constants
t, f and u)2.

It is easy to see that every definite 3-FOL program has a least 3-valued
model with respect to the truth ordering (see [16]). We will denote this model
by LM3(P ).

Since P is a definite 3-FOL program, theories Pwk and P str are both
definite 3-FOL programs. Thus, each has a least model (with respect to the

2 This means that I satisfies the rule p← B in the strong Kleene truth table.
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truth ordering). Moreover, since u does not occur in Pwk and P str, these least
models are two valued. We will denote them by LM(Pwk) and LM(P str),
respectively. Let I, J ∈ A. Define I ≤tr J if for all atoms A, I(A) ≤tr

J(A). We have the following simple technical lemma connecting the three
interpretations LM3(P ), LM(Pwk) and LM(P str). The proof is easy and is
left to the reader.

Lemma 2. Let P be a definite 3-FOL program. Then:

(a) LM(Pwk) ≤tr LM(P str)
(b) LM3(P ) = t if and only if LM(Pwk) = t, and LM3(P ) = f if and only

if LM(P str) = f.

Let B be a belief pair. Define the projection, Proj(B), as the 3-valued
interpretation I such that I(p) = HB(Kp). We have the following theorem
relating, for definite 3-FOL program P its belief pair Bel(P ) with its least
model LM3(P ).

Theorem 11. For any 3-FOL definite program P , Proj(Bel(P )) = LM3(P ).

Proof: By the definition of Proj(Bel(P )) and by Theorem 8 we have

Proj(Bel(P ))(p) = HBel(P )(Kp) = HP (Kp) (7)

(slightly abusing the notation, we use the same symbol P to denote both a
3-FOL program and the corresponding 3-FOL theory).

Hence, by (7) and by Definition 4, Proj(Bel(P ))(p) = t if and only if
Pwk |= p. The entailment Pwk |= p is, in turn, equivalent to LM(Pwk)(p) =
t. By Lemma 2(b), it follows then that Proj(Bel(P ))(p) = t if and only if
LM3(P )(p) = t.

Similarly, by (7) and by Definition 4, Proj(Bel(P ))(p) = f if and only if
P str 6|= p or, equivalently, if and only if LM(P str)(p) = f. Hence, by Lemma
2(b), Proj(Bel(P ))(p) = f if and only if LM3(P )(p) = f. 2

We will now study the relationship between logic programming and au-
toepistemic logic. Given a logic programming clause (over the alphabet At)

r = a← b1, . . . , bk,not(c1), . . . ,not(cm)

define:
ael1(r) = Kb1 ∧ . . . ∧Kbk ∧ ¬Kc1 ∧ . . . ∧ ¬Kcm ⊃ a

and
ael2(r) = b1 ∧ . . . ∧ bk ∧ ¬Kc1 ∧ . . . ∧ ¬Kcm ⊃ a

Embeddings ael1(·) and ael2(·) naturally extend to logic programs P .
In the remainder of this paper we show that fixpoints of the operator

Dael1(P ) (Dael2(P ), respectively) precisely correspond to 3-valued supported
(stable, respectively) models of P (the projection function Proj(·) establishes
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the correspondence). Moreover, complete fixpoints of Dael1(P ) (Dael2(P )) de-
scribe 2-valued supported (stable, respectively) models of P . Finally, the
least fixpoint of Dael1(P ) captures the Fitting-Kunen 3-valued semantics of
a program P , and the least fixpoint of Dael2(P ) captures the well-founded
semantics of P .

We will focus first on the embedding ael1(·). It establishes the relation-
ship between stable expansions and supported models and between the least
fixpoint of the operator Dael1(P ) and the Fitting-Kunen 3-valued semantics
of a program P .

Let P be a logic program. Let us recall a definition of the 3-valued stepwise
inference operator TP [2]:

TP (I) = I ′ where I ′(p) = max({Ie(body): p← body ∈ P})

(here we treat body as the conjunction of its literals). It is well known that
fixpoints of the operator TP are models of the program P . These models are
called 3-valued supported models. It is also known [2] that every logic program
P has a least (with respect to the knowledge ordering) 3-valued supported
model. This model determines a semantics of P known as Fitting-Kunen
semantics.

For a given 3-valued interpretation I, and a logic program P , define P sp
I

as the definite 3-FOL program obtained from P by substituting, in the bodies
of rules in P I(p), for each atom p occurring positively and ¬I(p) for each
literal not(p). We have the following lemma (its proof is straightforward and
is omitted).

Lemma 3. Let P be a logic program over the set of atoms At.

(a) Let I be a 3-valued interpretation of At. TP (I) = LM3(P sp
I )

(b) If B is a belief pair then P
sp

Proj(B) = (ael1(P ))B.

Equipped with Lemma 3 we are ready to prove the first of the two main
results of this section.

Theorem 12. Let P be a logic program over the set of atoms At.

(a) For every belief pair B, TP (Proj(B)) = Proj(Dael1(P )(B))
(b) If a belief pair B is a fixpoint of Dael1(P ) then Proj(B) is a 3-valued

supported model of P
(c) If I is a 3-valued supported model of P , then B = Bel(P sp

I ) is a fixpoint
of Dael1(P ) and Proj(B) = I

(d) Proj(Dael1(P )↑) is the ≤kn-least 3-valued supported model of P (the model
defining the Fitting-Kunen semantics)

(e) If a belief pair B is a complete fixpoint of Dael1(P ), then Proj(B) is a
2-valued supported model of P . Moreover, each 2-valued supported model
of P is of this form.
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Proof: (a) Clearly,

TP (Proj(B)) = LM3(P sp

Proj(B)) = LM3(ael1(P )B) =

= Proj(Bel(ael1(P )B)) = Proj(Dael1(P )(B))

(the first two equalities follow by Lemma 3, the third one follows by Theorem
11 and the last one by Theorem 7).
(b) If B is a fixpoint of Dael1(P ) then by (a):

TP (Proj(B)) = Proj(Dael1(P )(B)) = Proj(B).

(c) Since I is a fixpoint of TP , I = TP (I) = LM3(P sp
I ) (Lemma 3(a)).

Let B = Bel(P sp
I ). By Theorem 11, Proj(B) = LM3(P sp

I ) = I. Hence, by
Lemma 3(b), (ael1(P ))B = P

sp
I . Consequently, by Theorem 7, Dael1(P )(B) =

Bel(ael1(P )B) = Bel(P sp
I ) = B.

(d) Let B = Dael1(P )↑. By (b), Proj(B) is a supported model of P . Consider
another supported model I of P . It follows that B′ = Bel(P sp

I ) is a fixpoint
of Dael1(P ) and that Proj(Bel(P sp

I )) = I.
Clearly, B ≤p B

′. Proposition 2 entails that for each atom p,HB(Kp) ≤kn

HB′(Kp). By the definition of Proj(·), Proj(B) ≤kn Proj(B′) = I, that is,
Proj(B) is the ≤kn-least 3-valued supported model of P .
(e) This assertion follows from the observation that if B is complete then
Proj(B) is 2-valued (Proposition 1). 2

We will now discuss the second embedding, ael2(·), of logic programs into
autoepistemic logic.

Recall the definition of the 3-valued version GLPP of the Gelfond and
Lifschitz operator (see, for instance, [16]). Given a logic program P and a 3-
valued interpretation I, PI is the program where negative body literals not(p)
are replaced by ¬I(p)3. Then, GLPP (I) is defined as LM3(PI). Fixpoints of
the operator GLPP are known to be 3-valued models of P . These 3-valued
models are called stable. The well-founded model of P is the ≤kn-least fixpoint
of GLPP [16].

We have now the following technical lemma and the second main result
of this section on the relationship between fixpoints of the operator Dael2(P )

and 3-valued stable models of P .

Lemma 4. If I = Proj(B), then PI = (ael2(P ))B.

Theorem 13. Let P be a logic program over the set of atoms At.

(a) GLPP (Proj(B)) = Proj(Dael2(P )(B))
(b) If a belief pair B is a fixpoint of Dael2(P ) then Proj(B) is a 3-valued stable

model of P

3 Normally, PI is further simplified, by deleting rules with ¬t in the body and
deleting literals ¬f in the body of rules.
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(c) If I is a 3-valued stable model of P , then B = Bel(PI) is a fixpoint of
Dael2(P ) and Proj(B) = I

(d) Proj(Dael2(P )↑) is the well-founded model of P .
(e) If a belief pair B is a complete fixpoint of Dael2(P ), then Proj(B) is a

2-valued stable model of P . Moreover, all 2-valued stable models of P are
of this form.

6 Conclusions and future work

In this paper we investigated the conctructive approximation scheme for
Moore’s autoepistemic logic. We introduced the notion of a belief pair —
a Kripke-style 3-valued structure for the modal language. The set of belief
pairs B is endowed with a natural ordering ≤p. This ordering is chain com-
plete, which guarantees that every monotone operator on (B,≤p) has a least
fixpoint. With every modal theory T we associated a monotone derivation
operator DT on (B,≤p). We proposed the least fixpoint of the operator DT as
the intended constructive 3-valued semantics of modal theory T . We proved
that the complete fixpoints of the operator DT coincide with Moore’s au-
toepistemic models of T . Thus, the semantics specified by the least fixpoint
of DT approximates Moore’s semantics. Under appropriate embeddings of
a logic program P as a modal theory T (T = ael1(P ) or T = ael2(P )),
the least fixpoint of the operator DT generalizes Kunen-Fitting semantics
and Van Gelder-Ross-Schlipf well-founded semantics. These results provide
further evidence of the correctness of our approach.

It is natural to ask how general is the technique proposed in our paper. In
the forthcoming work we show that the scheme proposed in this paper can be
generalized and that one can develop a theory of approximating operators.
Specifically, we elucidate the abstract content of the well-founded semantics
in terms of a suitably chosen approximation operator in a chain-complete
poset.
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Appendix: Stratified autoepistemic theories

We will present here a proof of Theorem 6. We will start by recalling the
concept of stratification. We will use the original definition by Gelfond [3].
However, our argument can easily be extended to a slightly wider class of
theories considered in [9].
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A modal formula is called a modal clause if it is of the form

l1 ∧ . . . ∧ lk ∧KF1 ∧ . . . ∧KFm¬KG1 ∧ . . . ∧ ¬KGr ⊃ p1 ∨ . . . ∨ ps

where l1, . . . , lk are literals of L, p1, . . . , ps are atoms of L, and F1, . . . , Gr

are formulas of L.
A theory consisting of modal clauses is called stratified if there are pairwise

disjoint theories T0, . . . , Tn such that

i.
⋃n

i=0 Ti = T
ii. T0 is modal-free

iii. For every m, 0 < m ≤ n, all clauses in Tm have nonempty conclusions
(that is, s > 0)

iv. Whenever p appears in a conclusion of a clause in Tj , j > 0, then p does
not appear in Ti, i < j and p does not appear within the scope of the
modal operator K in Ti, i ≤ j.

We call the list 〈T0, . . . , Tn〉 a stratification of T . In the remainder of
this section, we write T = T0 ∪ . . . ∪ Tn to indicate that 〈T0, . . . , Tn〉 is a
stratification of T .

A stratification T = T0∪ . . .∪Tn generates an increasing family of subsets
of the set of atoms At. Namely, At0 is the set of those atoms in At that do
not occur in the conclusions of modal clauses from Ti, where i > 0, and

Ati = Ati−1 ∪ {p: p occurs in the conclusion of a clause in Ti},

for i = 1, . . . , n.
For an interpretation I and a set Z ⊆ At , by I|Z we denote the restriction

of I to Z. This concept is naturally extended to sets of interpretations and
to belief pairs. For a set R of interpretations, we define R|Z = {I|Z : I ∈ R}
and, for a belief pair B, we define B|Z = (P (B)|Z, S(B)|Z).

We say that a formula F is based on set of atoms Z if all atoms occurring
in F belong to Z. The following simple lemma (we leave it without proof)
gathers several facts on restrictions.

Lemma 5. Let Z ⊆ At and let F be a formula based on Z. Then for every
belief pair B and interpretation I:

(a) (B, I) |= F if and only if (B|Z, I|Z) |= F
(b) (B, I) |=w F if and only if (B|Z, I|Z) |=w F .

Consider a stratified theory T = T0 ∪ . . . ∪ Tn. We will now construct a
sequence of belief pairs B0, . . . , Bn+1. Namely, we set B0 = ⊥ and for every
i, 0 ≤ i ≤ n, Bi+1 = (Pi+1, Si+1) where:

Pi+1 = {I ∈ Pi: (Bi, I) |= Ti}

and

Si+1 = {I ∈ Pi: (Bi, I) |= Ti and for every p ∈ At \Ati, I(p) = t}.
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Lemma 6. For every i, 1 ≤ i ≤ n + 1, Bi|At i−1 is complete. Furthermore,
for every interpretation I ∈ A, (Bi, I) |= Ti if and only if (Bi, I) |=w Ti.

Proof: Clearly, Si ⊆ Pi. In particular, it follows that Si|At i−1 ⊆ Pi|At i−1.
Consider now a valuation I ′ ∈ Pi|At i−1. Then, there is a valuation I ∈ Pi

such that I|At i−1 = I ′. Denote by J a valuation obtained from I by setting:

J(p) =

{

I(p) if p ∈ At i−1

t if p ∈ At \At i−1.

Since I ∈ Pi, (Bi−1, I) |= Ti−1. By Lemma 5, (Bi−1, J) |= Ti−1. Thus, by the
definition of J , J ∈ Si and, consequently, I ′ = I|At i−1 = J |At i−1 ∈ Si|At i−1.
Hence, for every i, 1 ≤ i ≤ n + 1, Pi|At i−1 = Si|At i−1. In other words,
Bi|At i−1 is complete.

By the definition of stratification, every modal atom KF occurring in a
modal clause from Ti is based on the set of atoms At i−1. Thus, the second
part of the assertion follows from the completeness of the belief pair Bi|At i−1

and from Lemma 5. 2

The following lemma plays the key role in the proof of Theorem 6.

Lemma 7. Let T = T0 ∪ . . . ∪ Tn be a stratified theory. Then for every i,
0 < i ≤ n+ 1, Bi ≤p D

i(⊥).

Proof: We will proceed by induction on i. Let i = 1. Clearly, P (B1) = {I :
(⊥, I) |= T0} and P (DT (⊥)) = {I : (⊥, I) |=w T}. Since T0 is modal-free,

(⊥, I) |= T0 if and only if (⊥, I) |=w T0

Thus P (DT (⊥)) ⊆ P (B1) follows.
Consider now I ∈ S(B1). Then (⊥, I) |= T0 and for every p ∈ At \ At0,

I(p) = t. Since every clause in T \ T0 has at least one positive atom in the
conclusion, (⊥, I) |= T . Thus, I ∈ S(DT (⊥)). Consequently, B0 ≤p D

0(⊥).
That is, the basis for the induction is established.

For the inductive step, we need to prove that P (Bi+1) ⊇ P (Di+1
T (⊥))

and S(Bi+1) ⊆ S(Di+1
T (⊥)). Consider an interpretation I 6∈ Pi+1. Then,

either I 6∈ Pi or (Bi, I) 6|= Ti. In the first case, since Bi ≤p D
i
T (⊥) ≤p

Di+1
T (⊥), I 6∈ P (Di+1

T (⊥)). In the second case, by Lemma 6, (Bi, I) 6|=w Ti.
Consequently, by Proposition 2, (Di

T (⊥), I) 6|=w Ti and, hence also in this
case, I 6∈ P (Di+1

T (⊥)). Thus, P (Bi+1) ⊇ P (Di+1
T (⊥)) follows.

Next, consider I ∈ Si+1. By the definition, I ∈ Pi, (Bi, I) |= Ti and
for every p ∈ At \ Ati, I(p) = t. We will show that (Di

T (⊥), I) |= T (or,
equivalently, that I ∈ S(Di+1

T (⊥))).
Consider stratum Tj with j < i. Then Pi ⊆ Pj+1. Since I ∈ Si+1, I ∈

Pi and, hence, I ∈ Pj+1. By the definition of Pj+1, (Bj , I) |= Tj . By the

induction hypothesis, Bj ≤p D
j
T (⊥). Thus, Bj ≤p D

i
T (⊥). It now follows

from Proposition 2 that (Di
T (⊥), I) |= Tj .



Fixpoint 3-valued semantics for autoepistemic logic 25

Next, consider stratum Ti. Since I ∈ Si+1, (Bi, I) |= Ti. By the induction
hypothesis, Bi ≤p D

i
T (⊥). Hence, by Proposition 2, (Di

T (⊥), I) |= Ti.
Finally, consider stratum Tj with j > i. Since the conclusion of every

modal clause in Tj contains a positive occurrence of an atom in At \At i and
since I(p) = t for every atom p ∈ At \At i, (Di

T (⊥), I) |= Tj .
To summarize, it follows that (Di

T (⊥), I) |= T . Consequently, the inter-
pretation I belongs to S(Di+1

T (⊥)). 2

We now prove Theorem 6 from Section 3.

Theorem 6 If T is a stratified autoepistemic theory then:

(a) DT↑ is complete
(b) T has a unique stable expansion
(c) DT↑ is consistent if and only if the lowest stratum T0 is consistent.

Proof: (a) Clearly, Lemma 6 implies that Bn+1 is a complete belief pair. By
Lemma 7, Bn+1 ≤p D

n+1
T (⊥). Hence, it follows that Bn+1 = Dn+1

T (⊥). Thus,
Dn+1

T (⊥) is a fixpoint. Hence, it is a least fixpoint and, since it coincides with
Bn+1, it is complete.
(b) The assertion follows directly from (a) by Theorem 1.
(c) Clearly, if T0 is inconsistent, B1 = (∅, ∅) and it is a least fixpoint of DT .
On the other hand, if T0 is consistent, it is easy to see that S1 6= ∅. Hence,
DT is consistent. 2


