
Computing with default logic�Pawe l Cholewi�nskiHynomics Corporation10632 NE 37th Circle, Bldg. 23Kirkland, WA 98033-7921 Victor W. MarekyComputer Science DepartmentUniversity of KentuckyLexington, KY 40506-0046Artur MikitiukFort Valley State UniversityDepartment of Computer Technology1005 State University Drive,Fort Valley, GA 31030 Miros law Truszczy�nskiComputer Science DepartmentUniversity of KentuckyLexington, KY 40506-0046Keywords: knowledge representation, default logic, nonmonotonic reasoning, automated reasoning,constraint satisfaction, experimental studies, benchmarkingAbstractDefault logic was proposed by Reiter as a knowledge representation tool. In this paper, wepresent our work on the Default Reasoning System, DeReS, the �rst comprehensive and optimizedimplementation of default logic. While knowledge representation remains the main application areafor default logic, as a source of large-scale problems needed for experimentation and as a sourceof intuitions needed for a systematic methodology of encoding problems as default theories we usehere the domain of combinatorial problems.To experimentally study the performance of DeReS we developed a benchmarking system, theTheoryBase. The TheoryBase is designed to support experimental investigations of nonmonotonicreasoning systems based on the language of default logic or logic programming. It allows the user tocreate parameterized collections of default theories having similar properties and growing sizes and,consequently, to study the asymptotic performance of nonmonotonic systems under investigation.Each theory generated by the TheoryBase has a unique identi�er, which allows for concise descrip-tions of test cases used in experiments, and, thus, facilitates comparative studies. We describe theTheoryBase in this paper and report on our experimental studies of DeReS performance based ontest cases generated by the TheoryBase.
1 Introduction and motivationIn this paper we describe an automated reasoning system, DeReS, based on default logic. We discussthe problem of testing and experimenting with nonmonotonic reasoning. We describe a system, calledthe TheoryBase, that generates families of default theories for use in experimental studies. We describeresults of experiments with DeReS that used as test cases default theories generated by the TheoryBase.�This paper is a full version of the material presented in two extended abstracts: [CMMT95] and [CMT96].yCorresponding author. 1



The area of nonmonotonic logics originated in the late 1970s [Rei78, Rei80, MD80, McC80] in ane�ort to build e�ective knowledge representation formalisms. Since then, solid theoretical foundationsof nonmonotonic logics have been established. The e�orts of the past two decades culminated in severalresearch monographs [Eth88, Bes89, Bre91, MT93] describing major nonmonotonic systems: defaultlogic, logic programming with negation as failure, autoepistemic logic and circumscription.In this paper we focus on default logic | a knowledge representation formalism introduced byReiter [Rei80] to capture reasoning based on incomplete information. The original motivation of Reiterwas to use defaults to derive new information under the assumption of \normality" or \typicality" ofa situation. Defaults are inference rules with two types of premises: prerequisites and justi�cations.Prerequisites are treated similarly as premises of standard inference rules | they have to have a proofin order to allow for the application of a default. Justi�cations specify the notion of a context-dependentnormality under which the default can be applied. To formally describe a semantics for default theories,Reiter introduced the notion of an extension. Extensions are theories that model the agent's possiblebelief sets.Default logic of Reiter has been widely studied for its potential as a knowledge representationmechanism. Reiter and his collaborators studied default logic as a way to model and investigate theClosed World Assumption [Rei78], inheritance networks with exceptions [ER83], and situations withconicting default assumptions [RC81]. Formalizations of the frame problem and reasoning about actionin default logic were extensively studied in [Rei80, HM86, Gin86, GL92]. Applications of default logicto diagnosis are discussed in [Rei87, Poo89]. Default logic provides also a semantics for normal logicprograms with negation. In [MT89] we described an encoding of logic programs as default theories, underwhich there is a straightforward one-to-one correspondence between stable models of a program andextensions of its default interpretation (this application of default logic was independently discoveredin [BF91]).It is important to notice that, although default logic is a declarative formalism, it is quite di�erentfrom Horn clause style logic programming. Speci�cally, extensions of default theories are subsets of theset of formulas, not the elements of that set. For this reason, extensions of default theories correspondto branches of a search tree, rather than to individual nodes of an SLD-tree, which is the case for Hornprograms. This \second order" avor of default logic makes it especially useful in representing problemsin which solutions are subsets (rather than elements) of some domain. We illustrate the advantage ofthis property of default logic later in the paper.It was expected that default logic (and other nonmonotonic systems, too) would have better compu-tational properties than classical logics. Computational complexity results obtained in recent years werediscouraging. Decision problems associated with nonmonotonic reasoning, even when restricted to thepropositional case, are computationally complex. For example, in the case of logic programming withthe stable model semantics they are NP-complete or co-NP-complete [MT91]. In the case of defaultlogic, they are �P2 -complete or �P2 -complete [Got92, Sti92]. We will discuss these results in Section 2.However, the complexity results do not disqualify nonmonotonic logics as a practical computationalknowledge representation mechanism. The results of [CDS94, GKPS95] show that higher computationalcomplexity of nonmonotonic logics may be o�set by more concise encodings of application problems thanthose possible with propositional logic. It seems that the only way to establish whether default logic canserve as a computationally practical knowledge representation system is through implementations andsystematic experimentations. Recent dramatic improvements in performance of satis�ability algorithms[SLM92, SKC96, DABC96, CA96] demonstrate the value of experimental studies.The progress in understanding default logic resulted in several algorithms for computing extensionsand led to �rst implementation projects [Nie92, MT93, ALS94, BL93, JK90, BED91]. In the lastfew years, implementing nonmonotonic reasoning systems became one of the most actively pursueddirections in the area of nonmonotonic logics. Several working systems were presented recently at theFourth Conference on Logic Programming and Nonmonotonic Reasoning [DFN97].Our goal in this research was to study experimentally properties and performance of default logicas an automated reasoning system. We describe here the Default Reasoning System, DeReS, developed2



and studied over several years at the University of Kentucky. DeReS supports basic automated rea-soning tasks for default logic and for logic programming with the stable model semantics [GL88]. Ourcurrent version of DeReS uses relaxed strati�cation [Cho95b, Cho95a] as a primary search-space pruningmechanism. A relaxed strati�cation of a default theory allows us to use a divide-and-conquer approachwhen computing extensions. An original default theory is partitioned into several smaller subtheories,called strata. The extensions of the original theory are then reconstructed from the extensions of itsstrata. The notion of a relaxed strati�cation considered here is a generalization of the concept of astrati�cation of a logic program, as introduced in [ABW88]. In particular, a theory (logic program)strati�ed in our sense may possess no extension (stable model) or, if it does, not necessarily a uniqueone. In the paper we show that applying relaxed strati�cation leads to substantial speedups, especiallywhen the strata are small. Relaxed strati�cation is discussed in Section 3.2.In the paper we also study the e�ects of di�erent propositional theorem provers on the e�ciency ofDeReS. We observe that full theorem provers, which check global consistency when deciding whether atheory proves a formula, result in performing prohibitive amount of redundant computation. A weakernotion of a local prover, sound but not complete, can also be used to correctly implement defaultreasoning and results in signi�cant improvements in time performance. For consistent theories localprover is complete, and we use this feature of local prover to limit the size of theories that need to beconsulted for provability and satis�ability. Use of a local prover requires modi�cations in algorithmsprocessing default theories. The details are discussed in Section 3.3.Our results show that there are classes of theories that DeReS can handle very e�ciently. However,if relaxed strati�cation does not yield a partition of an input theory into small strata, the e�ciency ofDeReS may be poor. In this context, it is interesting to relate our work to that of Niemel�a and Simons[NS95]. Their system, s-models, is currently the best implementation of the stable model semantics forlogic programs. It is based on the ideas �rst proposed in [SNV95] that have some common featureswith the Davis-Putnam approach to satis�ability testing. Namely, s-models makes a decision about themembership of an atom in a stable model, propagates the e�ects of this decision through the program,thus decreasing its size and, then selects the next atom to deal with. As soon as s-models establishesthat there is no stable model consistent with the decisions made so far, it backtracks. Thus, DeReSand s-models attack di�erent aspects of the same problem. While our research focused on techniquesto exploit relaxed strati�cation to reduce the problem to smaller ones (divide-and-conquer), Niemel�aand Simons developed techniques to deal with individual strata (s-models does not exploit strati�cationat all). It seems that the next-generation implementations of nonmonotonic systems, in order to bee�ective in a large range of di�erent applications, must combine techniques developed in both projects.Systematic implementation and experimentation e�ort is necessary to provide us with better insightsinto the computational properties of nonmonotonic logics. Despite importance of experimental studiesto the area of nonmonotonic logics, there has been little work reported in the literature. While severalalgorithms were published and some implementations described [MW88, BNNS93, BNNS96, BEP94,NS95, DFN97], the results are far from conclusive. This state of a�airs can be attributed to thelack of systematic experimentation with implemented systems. One possible reason is the absence ofcommonly accepted benchmarking systems that could generate rich classes of meaningful test data |logic programs and default theories.Resorting to randomly generated programs and theories, a solution often used in other areas suchas graph algorithms or satis�ability testing, is not a viable approach. First, it is di�cult to argue thatrandomly generated data have any correlation with cases that are encountered in practical situations.Second, only a very careful selection of parameters makes randomly generated instances di�cult to solveand, hence, useful for benchmarking purposes [CA96]. Third, no model of a random logic program orrandom default theory has been proposed yet.In this paper we describe an approach to the problem of generating logic programs and defaulttheories to test nonmonotonic reasoning systems. Namely, we develop encodings of graph problems aslogic programs and default theories. Our approach builds on the work of Knuth [Knu93] in which hepresented a graph generating system called The Stanford GraphBase. We apply our encodings of graph3



problems to graphs generated by The Stanford GraphBase, thus producing a rich variety of programsand theories for testing. We call the resulting system the TheoryBase.The Stanford GraphBase allows the user to generate parameterized families of graphs of similarstructure and properties, and of sizes controlled by a numeric parameter. This feature is inherited bythe TheoryBase. Thus, the TheoryBase can generate families of default theories and logic programs ofsimilar structure and properties, and of growing sizes, which supports studies of scalability of reasoningalgorithms.Each graph generated by The Stanford GraphBase has a unique identi�er. This feature greatlyfacilitates the use of The Stanford GraphBase as a benchmarking system. We extended the concept ofthe GraphBase identi�er to the case of default theories and logic programs generated by the TheoryBase.In the paper we demonstrate the usefulness of the TheoryBase in experimental studies of automatedreasoning systems by using the TheoryBase generated default theories in our studies of the performanceof DeReS.The paper is organized as follows. In the next section we provide the reader with the formalde�nition of default logic and its simpli�ed version, logic programming with the stable semantics. Wediscuss the complexity results for default logic. In Section 3, we describe DeReS, its main componentsand reasoning algorithms. Section 4 contains descriptions of default encodings of graph problems thatare used by the TheoryBase. The TheoryBase itself is described in Section 5. Results of experimentingwith DeReS are presented in Section 6. The last section contains conclusions.2 Default logic { technical introductionThe language of default logic is an extension of the language of �rst order logic by new structurescalled defaults. In this paper, we concentrate on the case when the underlying �rst-order language ispropositional. A more general case, of the predicate language without quanti�ers and function symbolsfollows immediately from our presentation.Let L be a �xed propositional language over a set of atoms At. A default is an expression d of theform �: ��where � and � are formulas from L, and � is a �nite set of formulas from L. The formula � is calledthe prerequisite, formulas in � | the justi�cations, and � | the consequent of d. The prerequisite, theset of justi�cations and the consequent of a default d are denoted by p(d), j(d) and c(d), respectively.If p(d) is a tautology, d is called prerequisite-free (p(d) is then usually omitted from the notation of d).This terminology is naturally extended to a set of defaults D. When � = f1; : : : ; mg, we will write das �: 1; : : : ; m� :By a default theory we mean a pair � = (D;W ), where D is a set of defaults and W is a set offormulas from L. The set W is called the objective part of (D;W ). A default theory � = (D;W ) iscalled �nite if both D and W are �nite.Let T be a set of formulas from L. A default rule �:�� , is T -applicable if every formula  2 �is consistent with T . For a set of defaults D, by DT we denote the set of defaults from D that areT -applicable.For a set of defaults D, de�ne Mon(D) = �p(d)c(d) : d 2 D� :Thus, Mon(D) consists of standard inference rules obtained from defaults in D by dropping the jus-ti�cation part. By CnD;T (W ) (Reiter used the notation �(T )) we denote the closure of W under4



propositional consequence and under all the rules in Mon(DT ). A theory T is called an extension1 of(D;W ) if CnD;T (W ) = T:Let T be a theory. A default d is generating for T if d is T -applicable and p(d) 2 T . The set ofall defaults in D generating for T is denoted by GD(D;T ). The following proposition gathers somewell-known properties of default logic [MT93].Proposition 2.1 Let (D;W ) be a default theory.1. If T is an extension of (D;W ) then T = Cn(W [ c(GD(D;T ))).2. If all defaults in D are prerequisite-free then T is an extension of (D;W ) if and only if T =Cn(W [ c(GD(D;T ))).Part (1) of this proposition is the basis for all algorithms that compute extensions.A logic programming clause (or, simply, a clause) is an expression of the formp q1; : : : ; qm;not(r1); : : : ;not(rn)where p; q1; : : : ; qm; r1; : : : ; rn are atoms. A logic program is a �nite set of such clauses. When n = 0,the clause is called a Horn clause. A program P consisting of Horn clauses has a least model, that is, aleast set M � At such that for every clause C 2 P , C = p q1; : : : ; qm, whenever q1; : : : ; qm 2M thenalso p 2M .Given a set of atomsM � At and a logic program P , the reduct PM of P with respect toM consists ofHorn clauses p q1; : : : ; qm such that for some r1; : : : ; rn =2M , p q1; : : : ; qm;not(r1); : : : ;not(rn) 2P . A stable model of a logic program P is a set M of atoms such that M coincides with the least modelof PM . Stable models were introduced by Gelfond and Lifschitz [GL88].Logic programs can be represented by default theories. Speci�cally, a clauseC = p q1; : : : ; qm;not(r1); : : : ;not(rn)can be represented as the defaultdl(C) = q1 ^ : : : ^ qm : :r1; : : : ;:rnp :For this representation we have the following result [MT89, BF91].Proposition 2.2 Let P be a logic program. Then M is a stable model of P if and only if Cn(M) isan extension of (fdl(C):C 2 Pg; ;).Proposition 2.2 tells us that if we are able to compute extensions of default theories then, in partic-ular, we are able to compute stable models of logic programs.There is an important di�erence between computing stable models and computing default extensions.Namely, when computing stable models, procedures testing full propositional provability are not needed.DeReS takes advantage of this fact.Reasoning tasks associated with default logic are listed below. In the descriptions we assume thata �nite default theory (D;W ) and a formula ' form the input.Existence | decide whether (D;W ) has an extension.In-Some | decide whether (D;W ) has an extension containing '.In-All | decide whether ' belongs to all extensions of (D;W ).1Our de�nition is di�erent from but equivalent to the original de�nition by Reiter [Rei80].5



The following result due to Gottlob [Got92] and Stillman [Sti92] determines the complexity of theseproblems.Proposition 2.3 The problems Existence and In-Some are �P2 -complete. The problem In-All is�P2 -complete.The same reasoning tasks can be formulated for the domain of logic programs and the stable modelsemantics. In this setting the complexity of the reasoning problems goes down. This is due to thefact that deciding whether an atom follows from a set of atoms is easier (polynomial) than the taskof deciding whether a formula follows from a set of formulas (co-NP-complete). Speci�cally, for logicprograms we have the following result [MT91].Proposition 2.4 In the case of logic programs and atoms, the problems Existence, and In-Some areNP -complete. The problem In-All is co-NP -complete.A default theory (D;W ) is disjunction-free if all formulas in W , all prerequisites, justi�cations andconsequents of defaults inD are conjunctions of literals. One can show that the same complexity boundsas those given in Proposition 2.4 hold for the class of disjunction-free default theories [KS89]. Severaldefault theories studied below are disjunction-free.3 Automated reasoning with default logicIn this section we describe the Default Reasoning System DeReS developed at the University of Ken-tucky. We provide a general overview of DeReS, describe its main components and the key reasoningalgorithms.3.1 OverviewDeReS is a software package implementing nonmonotonic reasoning and running under all major versionsof Unix, including Linux. The focus of DeReS is on automated reasoning with default logic and withlogic programming with the stable model semantics2.DeReS computes extensions for �nite propositional default theories3. Given a default theory, DeReScan determine existence of extensions and can compute one of the extensions or all of the extensions.There are no syntactic restrictions on input default theories and formulas.The user communicates with DeReS via its shell. The DeReS shell provides the user with accessto commands speci�c to DeReS, as well as to system commands. In particular, it reads user queries,initiates appropriate reasoning procedures, and outputs results of the reasoning process. It also outputsstatistics such as the amount of the CPU time used to solve a query, the number of calls to thepropositional provability procedure and the number of candidates for extensions that were tested. Threemain modules of DeReS are:Default Reasoning Module | a library of routines for reasoning with a given default theory,Prover Module | a collection of propositional theorem provers that can be called by the DefaultReasoning Module,User Interface | a collection of shell commands for processing input theories and programs, anddisplaying the progress of the computation and the results.2A detailed information about DeReS and how to use it, as well as the system itself can be obtained fromftp://al.cs.engr.uky.edu/cs/software/logic/DeReS.Version1.3.tar.gz3To be precise, for each extension T , DeReS computes its base, that is, a �nite set of formulas B such that T = Cn(B).6



Is Extension(D;W;U)Input: Finite sets of defaults D and U such that U � D, and a �nite set of formulas W ;Output: true | if U is the set of generating defaults for an extension of (D;W ) andfalse | otherwise;R := fd 2 D:W [ c(U) 6` :�; for � 2 j(d)g;if not (U � R) then return(false) elseB :=W ;X := ;;repeatAR := fd 2 R nX : B ` p(d)g;B := B [ c(AR);X := X [AR;if not (X � U) then return(false)until AR = ;;if X = U then return(true) else return(false);Figure 1: Algorithm Is Extension3.2 Default Reasoning ModuleThe key reasoning algorithm of DeReS is based on the observation that every extension of a defaulttheory (D;W ) is of the form Cn(W [ c(U)) for some set of defaults U � D. This representation maynot be unique. That is, an extension may be generated by W and consequents of di�erent subsets ofD. However, every extension T has a unique largest subset of defaults that generates it. This is the setof its generating defaults GD(D;T ) (see Proposition 2.1). This observation implies a method, calledgenerate-and-check, to construct one (or all) extensions. The idea is to construct all subsets of D and,for each of them, test whether it is the set of generating defaults of an extension.To accomplish this latter task, DeReS uses a procedure Is Extension(D;W;U). Given a �nitedefault theory (D;W ) and a set U � D, it returns value true if U is the set of generating defaults of anextension for (D;W ), and returns value false, otherwise. One such procedure is described in [MT93].It is presented here in Figure 1.To generate all subsets ofD, DeReS generates and searches a full binary tree whose nodes are labeledby subsets of D. This tree is constructed as follows. Let D = fd1; d2; : : : ; dng. The root of the tree islabeled by the empty subset of D. If a node a, at depth k in the tree, is labeled by set U � D, then theleft child of a is labeled by U [ fdk+1g and the right child of a is labeled by U , again. It is clear thatevery subset of D appears as a label on at least one node. In the case when n = 3, the correspondingbinary tree is shown in Figure 2.DeReS considers the nodes of the tree according to the depth-�rst search order. To avoid consideringthe same subset several times (if it appears as the label on more than one node of the tree), a set ofdefaults is checked by the Is Extension procedure only when it is encountered for the �rst time as thelabel on a node in the tree. In Figure 2, the nodes where Is Extension is actually invoked are shownin solid lines.The sets of generating defaults of extensions form an antichain. This observation yields a methodto prune the search space. When the set of defaults represented by a node in the search space is foundto be generating for an extension, DeReS prunes all descendants of this node in the search tree. Theresulting algorithm to compute all extensions, referred to as All Extensions, is presented in Figure 3.The variable backtrack is set to true whenever the currently considered node in the search space is aleaf or represents the set of generating defaults of an extension, causing the algorithm to backtrack.7
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1,3Figure 2: Generating all subsets of X = f1; 2; 3g.The algorithm All Extensions is capable of computing extensions for arbitrary �nite propositionaldefault theories. However, due to the high computational complexity of default reasoning, computationtime can be very long. In many cases this problem can be avoided by splitting the input default theoryinto several strata (clusters) of defaults and dealing with one stratum at a time. This technique, wewill refer to it as relaxed strati�cation, was developed in [Cho95b, Cho95a]. It is the main search spacepruning technique used by DeReS.Relaxed strati�cation applies to default theories that do not have justi�cation-free defaults andin which formulas in W do not have common propositional variables with the consequents of thedefaults. In this method, we �rst �nd a �nest possible relaxed strati�cation of D, that is, a partitionD = fD1; : : : ; Dmg such that propositional variables appearing in defaults from Di do not appear inthe consequents of defaults from Dj , for i < j, and such that no set Di can be further partitionedpreserving the constraint on variable occurrence. It can be shown that such a relaxed strati�cationexists. We search for extensions for a single stratum (Di;Wi) (W1 =W ) using the same approach as inthe algorithm All Extensions. However, when an extension, say Cn(Wi [ c(U)), is found we reportit only if Di is the last stratum of the default theory (that is, when i = m). Otherwise, we add theformulas from c(U) to Wi to form Wi+1 (Wi+1 := Wi [ c(U)), and start the search for extensions of(Di+1;Wi+1). If the strati�cation is �ne-grained, then in each step we deal with small sets of defaultsand computational savings can be expected. The detailed description of this method can be found in[Cho95b, Cho95a].We refer to the algorithm based on the idea described above as All Extensions Strati�ed. Thepseudocode is given in Figure 4.3.3 Prover ModuleProver Module of DeReS is used as an oracle by all reasoning procedures. Currently, DeReS is equippedwith a prover that implements the propositional tableaux method. However, any other technique based,for instance, on the resolution inference rule or on satis�ability testing procedures could be used in itsplace.Using a sound and complete prover allows DeReS to handle arbitrary default theories. However, itcarries a heavy computational cost due to the ine�ciency of such provers. Analyzing the performanceof sound and complete provers, one can see that substantial amount of time spent to decide whether atheory T proves a formula ' is actually spent to decide consistency of T . Next, when searching for aproof of ' from T , even those parts of T that are irrelevant to ' may be considered by the prover.Based on these observations, we designed and implemented a method referred to as a local prover.8



All Extensions(D;W )Input: A �nite default theory (D;W ) and D = fd1; d2; : : : ; dng;Output: The list of all extensions of (D;W );U := ;;Build Extensions(D;W;U; 0);procedure Build Extensions(D;W;U; k);backtrack := (k = jDj);if k = 0 or dk 2 U thenif Is Extension(D;W;U) thenwrite(W [ c(U));backtrack := true;if not backtrack thenBuild Extensions(D;W;U [ fdk+1g; k + 1);Build Extensions(D;W;U; k+ 1);Figure 3: Search for all extensions of (D;W ).This provability testing procedure does not perform consistency checks and, consequently, is soundbut not complete. Moreover, the local prover takes into account only the part of T that is relevantto proving '. We then modi�ed reasoning algorithms in DeReS so that a full prover can be replacedwith a local prover without a�ecting the correctness of DeReS. As expected, we observed substantialcomputational gains. We will now describe in detail the concept of a local prover.Let L be any propositional language. For a formula ' 2 L, by Var(') we denote the set of atomsoccurring in '. Similarly, for a theory T , we de�ne Var(T ) as the set of all atoms occurring in theformulas from T .Consider a theory T � L and a formula ' 2 L. The '-pertinent fragment of T , T', is de�nedrecursively as follows: T 0' = f 2 T :Var( ) \Var(') 6= ;g;Tn+1' = f 2 T :Var( ) \ Var(Tn' ) 6= ;g;for n � 0, and T' = [n�0Tn' :Next, we will introduce the concept of a local provability. The main idea is to capture the expression\the information in T , pertinent to ', entails '". Thus, ' should not be locally provable just becauseT contains some inconsistent data.De�nition 3.1 A theory T locally proves a formula ' (denoted T `loc ') if T' ` '.Local provability has the following useful properties.Proposition 3.1 Let T � L be a theory and let ' 2 L be a formula.1. If T `loc ' then T ` '.2. If T `loc ' and T is consistent then T [ f'g is consistent.3. If T is consistent then T ` ' if and only if T `loc '.9



All Extensions Strati�ed(D; n;W )Input: A consistent �nite propositional theory W and a relaxed strati�cation D = fD1; : : : ; Dng of(Snl=1Dl;W );Output: The list of all extensions of (Snl=1Dl;W );U := ;;Strati�ed Build Extensions(D; n;W;U; 1; 0);procedure Strati�ed Build Extensions(D; n;W;U; l; k);(* we assume that Dl = fd1; : : : ; dmg *)backtrack := (k = jDlj);if k = 0 or dk 2 U thenif Is Extension(Dl;W;U) thenif (l = n) then (� last stratum extension �)write(W [ c(U));backtrack := true;else W 0 :=W [ c(U); U 0 := ;;Strati�ed Build Extensions(D; n;W 0; U 0; l+ 1; 0);if not backtrack thenStrati�ed Build Extensions(D; n;W;U [ fdk+1g; l; k + 1);Strati�ed Build Extensions(D; n;W;U; l; k+ 1);Figure 4: Search for all extensions of a strati�ed theory (Snl=1Dl;W ).4. T ` ' if and only if either T is inconsistent or T `loc '.All standard propositional routines can be easily modi�ed so that they implement the concept of alocal provability. For instance, in order to decide whether T `loc ', our tableaux method is modi�ed sothat1. The root of the tableau is labeled with :', and2. A branch is never expanded by formulas that have no variables in common with those alreadyappearing on the branch.In this way, the prover remains restricted to the theory T'. This component is often much smaller insize than T .Replacing a full prover by a local prover may lead, in general, to incorrect results.Example 3.1 Let (D;W ) be a default theory with W = fp;:pg and D = fd0g, where d0 = p:qq . Thistheory has a unique extension, L, that is generated by the empty set of generating defaults. SinceW 6`loc :q, using a local prover instead of a sound and complete prover will classify d0 as applicablewith respect to the context W . Consequently, the same unique extension L will be found but the setof generating defaults will be determined incorrectly (d0 will be returned as generating).Example 3.2 Let (D;W ) be a default theory with W = fpg and D = fd0; d1; d2g, whered0 = p ::p ; d1 = : xx ; d2 = : :x:x :10



Suppose that we search for extensions by examining subsets of D. For each U � D we have to checkwhether Cn(W[c(U)) is an extension of (D;W ). This theory has only one extension Cn(W[c(fd0g)) =L with U = fd0g returned by DeReS as the set of generating defaults. Substituting ` by `loc in thealgorithm Is Extension will result in the algorithm All Extensions returning two sets of defaultsU1 = fd0; d1g and U2 = fd0; d2g, as fp;:pg 6`loc x and fp;:pg 6`loc :x. Both sets generate the onlyextension of (D;W ), L, but none is, in fact, its set of generating defaults.Example 3.3 Let (D;W ) be a default theory with W = fpg and D = fd0; d1g, whered0 = : q:p ; d1 = : p:q :The theory (D;W ) has a single extension Cn(fp;:qg). However, substituting ` by `loc in the algorithmIs Extension will return two theories as extensions: Cn(fp;:qg) and Cn(fp;:pg) = L.The algorithm All Extensions outputs sets of generating defaults of extensions of the input de-fault theory. Our examples show that when the local prover is used in Is Extension, the algorithmAll Extensions may return additional solutions (sets of defaults). Each of these additional solutionsgenerates the theory L, the entire language. This is the only problem caused by the use of the localprover. Consistent extensions of a default theory will be computed correctly and only once.We will now describe modi�cations in the algorithmAll Extensions to guarantee correctness whenthe local prover is used in Is Extension instead of the full propositional prover. These modi�cationsexploit the observation that in the case of a consistent theory T , there is no di�erence between provabilityand local provability from T (Proposition 3.1).First, we will decide whether W is inconsistent. To this end, we will start with the empty set offormulas. Then, we will add the formulas from W one by one, each time checking whether consistencyis preserved. This can be accomplished by means of a local prover. If W is inconsistent, then (D;W )has a unique extension, which is inconsistent. In this case, the set of generating defaults is the set ofall justi�cation-free defaults in D.If W is consistent, we next check whether an inconsistent extension can be generated out of Wand the justi�cation-free defaults (defaults with justi�cations do not matter in the case of inconsistentextensions). This is done be gradually building the closure of W under the justi�cation-free defaults.Again, each time before a rule is applied, it is checked whether consistency will be preserved (by a singlecall to the local prover). If a contradiction is detected, (D;W ) has an inconsistent extension.Otherwise, all extensions of (D;W ), if they exist, are consistent (and so is W ). Before we completethe description of the algorithm, let us notice that the procedure Is Extension with the local provercorrectly determines whether U � D is the set of generating defaults of an extension if W [ c(U) isconsistent. Indeed, if in an iteration of the repeat loop the consequents of the defaults in X togetherwith W lead to a contradiction, then the set X is not included in U (as W [ c(U) is consistent).Hence, the procedure will return false and terminate. This is correct, as at this point in the algorithm,only consistent theories may be extensions. Otherwise, all theories involved in provability checks areconsistent and the local prover works exactly as the full prover.Notice that in the algorithms All Extensions and All Extensions Strati�ed the space of allsubsets U of D is searched by starting with U = ; and then, in each step, a single default is eitherdeleted from or added to U . Assume that the current set of defaults U (the current candidate forthe set of defaults generating an extension) is such that W [ c(U) is consistent (this assumption holdsat the beginning of the search as, let us recall, W is consistent). If the next set of defaults, say U 0,to be considered is obtained by deleting a default then, clearly, W [ c(U 0) is consistent, too. Hence,the procedure Is Extension with the local prover can be used to determine whether U 0 is the set ofgenerating defaults of an extension.If U 0 is obtained by adding a default, say d, then we �rst check whether W [ c(U) `loc :c(d). Ifthe answer is positive, the set W [ c(U 0) is inconsistent and does not generate an extension (recall thatat this point we know that all extensions are consistent). Thus, the recursive call (second line from11



the bottom in Figure 3) is omitted (supersets of U 0 do not generate an extension, either). Otherwise,W [ c(U 0) is consistent. Hence, as before, Is Extension with the local prover can be used to decidewhether U 0 is the set of generating defaults of an extension.A description of the modi�ed algorithm All Extensions, called All Extensions Loc, is shown inFigure 5.All Extensions Loc(D;W )Input: A �nite default theory (D;W ), where W = fw1; : : : ; wmg and D = fd1; : : : ; dng;Output: The list of all extensions of (D;W );Set JF to be the set of justi�cation-free defaults in D;for i := 1 to m doif fw1; : : : ; wi�1g `loc :wi thenwrite(W [ c(JF ));return;(* If the execution goes past this point, W is consistent *)B := W ;AD := fd 2 JF : B `loc p(d)g;JF := JF nAD;while AD 6= ; dod := any rule in AD;if B `loc :c(d) thenwrite(W [ c(JF ));return;B := B [ fc(d)g;AD := (AD n fdg) [ fr 2 JF : B `loc p(r)g;JF := JF n fr 2 JF : B `loc p(r)g;(* If the execution goes past this point, extensions of (D;W ), if exist, are consistent *)U := ;;Build Extensions Loc(D;W;U; 0);procedure Build Extensions Loc(D;W;U; k);backtrack := (k = jDj);if k = 0 or dk 2 U thenif Is Extension(D;W;U) thenwrite(W [ c(U));backtrack := true;if not backtrack thenif W [ c(U) 6`loc :c(dk+1) then Build Extensions Loc(D;W;U [ fdk+1g; k + 1);Build Extensions Loc(D;W;U; k + 1);Figure 5: Search for all extensions of (D;W ) using a local prover.Analogous modi�cations allow us to use the algorithm Strati�ed Build Extensions with a localprover instead of a full propositional prover.Using a local prover signi�cantly improves the performance of DeReS (see Section 6 for a discussionof our experimental results) and requires no restrictions on the syntax of input theories. Another way toimprove the performance of DeReS is to impose syntactic constraints on input theories and exploit theserestrictions in the design of even more e�cient provers. In particular, DeReS uses special processingmethods to deal with disjunction-free theories. 12



Recall that a default theory (D;W ) is disjunction-free if all formulas in W , all prerequisites, justi-�cations and consequents of defaults in D are conjunctions of literals. This condition yields a simplebut still very useful class of default theories. In particular, every logic program can be encoded by adisjunction-free default theory.Recall that every extension of a default theory (D;W ) is of the form Cn(W [ c(U)), for someU � D. In the case when (D;W ) is disjunction-free, each set of the form W [ c(U) is a collection ofconjunctions of literals and, consequently, can be represented as a set of literals, say L. In the algorithmIs Extension the �rst task is to compute the set R. Consider a justi�cation � of a default in D. Theformula � is a conjunction of literals. The negation of � is logically equivalent to a disjunction of literals,say �0. Deciding whether �0 is entailed by the set of literals L can be accomplished as follows:1. If L is inconsistent (contains a pair of complementary literals), then L entails �0;2. If �0 is a tautology (that is, contains a pair of complementary literals), then L entails �0;3. Otherwise, L entails �0 if and only if L and �0 have at least one literal in common.The only other time when a propositional prover is called by procedure Is Extension is while computingthe set of defaults AR. If B is maintained as a set of literals, then deciding whether a prerequisite � isentailed by B can be accomplished as follows:1. If B is inconsistent (contains a pair of complementary literals), then B entails �;2. If B is consistent and � is inconsistent (that is, contains a pair of complementary literals), thenB does not entail �;3. Otherwise, B entails � if and only if every literal occurring in � belongs to B.All the provability tests mentioned above can be accomplished by deciding membership of a literal ina set of literals. This method is implemented in DeReS and referred to as the table lookup method. Itdecides each provability of a literal from a set of literals in a constant time.In Section 6 we present several examples of performance of provers on concrete default theories,generated using the TheoryBase.3.4 Using DeReSTo work with DeReS the user invokes the DeReS shell. The shell allows the user to load �les with inputdefault theories, display them, and compute, display and record extensions.Each default theory to be processed by DeReS is identi�ed by a �le �lename1.dt. This �le speci�esthe names of two other �les, �lename2.thc and �lename3.dc, by including linesw = filename2d = filename3The �le �lename2.thc consists of formulas (partW of the default theory). The �le �lename3.dc consistsof defaults (part D of the default theory).The performance of DeReS is substantially improved if the input default theory, say representedby the �le �lename.dt, is strati�ed and if the strata are possibly small. To take advantage of thisfeature, the user has to construct an additional �le, �lename.str (the same name as the �le identifyingthe default theory, but di�erent su�x). This �le is automatically created by the TheoryBase for alldefault theories that it produces and which admit non-trivial relaxed strati�cation. The strati�cation�le de�nes a partition of input defaults into strata. If the strati�cation �le is not found, DeReS assumestrivial strati�cation into a single cluster.The syntax of formulas and defaults is rather straightforward. Symbols &&, ||, !, => and <=> serveas conjunction, disjunction, negation, implication and equivalence, respectively. Defaults are speci�ed13



% File re80.dt% Example 2.4 from R. Reiter "A logic for default reasoning"w = re80-2.4-formulasd = re80-2.4-defaults% File re80-2.4-formulas.thcb;c => d || a;a && c => !e;% File re80-2.4-defaults.dc: a -> a;b : c -> c;d || a : e -> e;c && e : !a, d||a -> f ;Figure 6: DeReS encoding of a default theory (example).by providing the prerequisite, the list of justi�cations and the consequent. The prerequisite is separatedfrom the justi�cations by a colon \:". The list of justi�cations is then followed by -> and by theconsequent.Example 3.4 Let (D;W ) be a default theory de�ned as:D = � : aa ; b : cc ; d _ a : ee ; c ^ e : :a; d _ af � ;W = fb; c) d _ a; a ^ c) :eg:This theory was described in Example 2.4 in [Rei80]. In Figure 6 we show the three input �les whichrepresent the theory (D;W ) in the DeReS format.The user runs DeReS by invoking its shell. The shell provides the user with several commands:1. load �lename | loads a default theory (D;W ) described in the �le �lename.dt;2. status | shows the name of the current default theory (the theory loaded by the most recentuse of the load command) and system settings;3. setprover [-f | -l | -a] | selects a prover mode; options -f, -l, -a select full, local andtable lookup provers, respectively; default setting is -l;4. quit | quits DeReS;5. list [num1 [num2]]| displays default rules of the current input theory from the default numbernum1 to the default number num2; the default values for num1 and num2 are the �rst and the lastdefault of the current input; 14



6. pds [num1 [num2]] | displays strata of the current input theory from the stratum numbernum1 to the stratum number num2; the default values for num1 and num2 are the �rst and the laststratum of the current input;7. size| shows the size of the current input theory;8. ext [-c] [-f] [-h] [-s] [-x] [-timeN] [-lastS] [-llenK] | computes extensions withterminal output; it has several options that specify whether to halt after �rst extension is found,compute all extensions, count extensions, store extensions in a �le, etc.;9. x11ext | starts DeReS X11 interface; provides a graphical user interface to DeReS.A typical session consists of invoking the DeReS shell, loading default theories and starting ext orx11ext.4 Programming with default logicProgramming with default logic means reducing a given problem to reasoning tasks of default logicsuch as existence of extensions, �nding an extension or �nding all extensions. Consider a problemwhose solutions are subsets of some domain. Reducing the problem to default logic means constructinga default theory whose extensions allow the user to determine all solutions to the original problem.Similarly, in the case of decision problems, solving them by means of default logic means constructinga default theory that has an extension if and only if the original problem has a solution. Constructingthese default encodings and reconstructing solutions from extensions should be algorithmically easy |polynomial (linear, whenever possible) in the size of the original problem.In this section, we discuss techniques to systematically encode problems as default theories. Sinceextensions of default theories form subsets of the language, default theories can be used to representthose problems whose solutions are subsets of some domain. These solutions are usually de�ned assubsets of the domain satisfying certain constraints. With these insights, we propose an approach toprogramming with default logic that has two main components:1. Techniques to construct default theories representing collections of basic objects such as sets andfunctions.2. Techniques for modifying these default theories to eliminate extensions representing those objectsthat do not satisfy constraints implied by the original problem speci�cation.Although the target of default logic is knowledge representation, the large test cases are needed forboth experimentation and for studies of the methodology of representing problems as default theories. Inour research, we chose the domain of combinatorics as the source of large and meaningful examples. Inthis domain it is easy to generate parameterized families of test cases needed for performance evaluation.Further, combinatorial problems are often speci�ed in terms of constraints. Consequently, the domainof combinatorics can provide useful insights into modelling constraints as defaults or sets of defaults.In what follows, we will be introducing techniques to impose constraints (item 2) on default theoriesrepresenting collections of sets and functions (item 1). However, these techniques can be used in anyapplication domain where constraints can be speci�ed by means of default theories.While in our discussion we focus on the propositional case, DATALOG-style encodings of some ofthe problems discussed below have been considered in [Nie98, ELM+98, MT99].4.1 SubsetsIn this section we will present default theories whose extensions encode all subsets of a given set. Fora propositional variable p let us de�ne defaultss+(p) = : pp and s�(p) = : :p:p :15



Consider the default theory (fs+(p); s�(p)g; ;):It is clear that this default theory has exactly two extensions, Cn(fpg) and Cn(f:pg). Consequently,it can be used to decide whether p is in or out.Consider now a set X . De�ne a set of defaults S1(X) as follows:S1(X) = fs+(p): p 2 Xg [ fs�(p): p 2 Xg:Since, for p 6= p0, there are no interactions between defaults in fs+(p); s�(p)g and fs+(p0); s�(p0)g, wehave the following observation.Observation 4.1 Let X be a set and let Y � X. A theory T is an extension of the default theory(S1(X); Y ) if and only if T = Cn(fp: p 2 Ug[ f:p: p 2 X nUg), for some set U � X such that Y � U .It follows that there is a one-to-one correspondence between extensions of (S1(X); Y ) and all subsetsof X that contain Y . In other words, the default theory (S1(X); Y ) can be used to represent all subsetsof X containing Y .Observe that elements p 2 X are treated in the de�nition of S1(X) as propositional variables.We will often use elements of combinatorial structures (for instance, vertices and edges of graphs) aspropositional variables to indicate their membership in sets.Another straightforward form of encoding all subsets of X is to introduce for every element p of Xtwo propositional variables: in(p) and out(p). Consider the following two defaults:t+(p) = : :out(p)in(p) and t�(p) = : :in(p)out(p) :Consider the default theory (ft+(p); t�(p)g; ;):This default theory has two extensions: Cn(fin(p)g) and Cn(fout(p)g). Hence, as before, this theorycan be used to decide whether p is in or out.De�ne a set of defaults S2(X) by:S2(X) = ft+(p): p 2 Xg [ ft�(p): p 2 Xg:The same argument as before yields the following observation, establishing a one-to-one correspondencebetween subsets of a set X , containing a prespeci�ed subset Y � X , and extensions of the defaulttheory (S2(X); fin(p): p 2 Y g).Observation 4.2 Let X be a set and let Y � X. A theory T is an extension of the default theory(S2(X); fin(p): p 2 Y g) if and only if T = Cn(fin(p): p 2 Ug [ fout(p): p 2 X n Ug), for some setU � X such that Y � U .Let us observe that the theories (S1(X); Y ) and (S2(X); fin(p): p 2 Y g) are disjunction-free. More-over, the theory (S2(X); fin(p): p 2 Y g) has a straightforward translation into a logic program. Namely,the default t+(p) can be represented by the clausein(p) not(out(p));the default t�(p) can be represented by the clauseout(p) not(in(p));whereas the atom in(p) can be represented by the clausein(p) (see Section 2). 16



4.2 Maximal conict-free setsOften solutions to problems are speci�ed as maximal conict-free subsets. Let X be a set and let C bea function from X to P(X). If1. for every x; y 2 X , x 2 C(y) if and only if y 2 C(x), and2. for every x 2 X , x =2 C(x),then C is called a conict function.A subset Y of X is conict-free if for every x 2 Y , C(x) \ Y = ;. For every x 2 X , de�ne a defaultselect(x) by select(x) = : f:y: y 2 C(x)gx :The intuition behind the default select(x) is as follows: if none of the elements in conict with x isincluded in the solution, then include x.De�ne now a set of defaults SELECT (X;C) bySELECT (X;C) = fselect(x):x 2 Xg:Observation 4.3 Let X be a set and let C be a conict function from X to P(X). Let Y � X beconict-free. Then a theory T is an extension of (SELECT (X;C); Y ) if and only if T = Cn(U), forsome maximal (with respect to inclusion) conict-free subset U of X such that Y � U .Clearly, Observation 4.3 establishes a one-to-one correspondence between maximal conict-free sub-sets of X and extensions for (SELECT (X;C); ;).Observe also that the theory (SELECT (X;C); Y ) is disjunction-free. This theory can also berepresented as a logic program by means of the translation described in Section 2.4.3 Maximal independent subsetsA common type of a combinatorial structure appearing in practical applications is an independent set.Consider a �nite collection H of �nite subsets of a set X . A subset Y � X is called independent forH if there is no H 2 H such that H � Y . We will construct now a default theory that represents allmaximal independent subsets for a family of sets H � P(X).For a �nite set H � X , de�ne a clause '(H) by'(H) =_f:h:h 2 Hg:(Observe that, as before, we treat elements of X as propositional variables.) Let x 2 X and letH1; : : : ; Hk be all the sets in H containing x (recall that H is �nite). De�neind(x) = :'(H1 n fxg); : : : ; '(Hk n fxg)x :Consider a set X and a �nite collection H of �nite subsets of X . De�ne a set of defaults as follows:MS(H; X) = find(x):x 2 Xg:Observation 4.4 Let H be a �nite collection of �nite subsets of a set X. Let Y � X be an independentset in H. Then, a theory T is an extension for the default theory (MS(H; X); Y ) if and only if T =Cn(U) for some maximal independent subset U of X such that Y � U .Observation 4.4 establishes a one-to-one correspondence between maximal independent sets for Hand extensions of (MS(H; X); ;).Default theories (MS(H; X); Y ) are not, in general, disjunction-free (unless jH j = 2 for all setsH 2 H). However, the existence of an extension problem for such theories is still only NP-complete.The concept of a maximal independent set is a very general one. In particular, it is possible torepresent maximal conict-free sets as maximal independent sets in a suitably de�ned family H.17



4.4 FunctionsIn this section we will use the results of Section 4.2 to construct a default theory whose extensionscorrespond to all functions from a �nite set X to a �nite set Y . First, for every x 2 X and y 2 Y ,let us introduce a propositional variable fx;y. This variable will represent the fact that y is assigned tox. The set of all these new variables will be denoted by F (X;Y ). For each new atom fx;y, de�ne itsconict set, C(fx;y), by C(fx;y) = ffx;z: z 2 Y; z 6= yg: (1)Clearly, a subset F of ffx;y:x 2 X; y 2 Y g is a maximal conict-free set if and only if there is a functiong:X ! Y such that F = ffx;g(x):x 2 Xg. Let us de�ne the set of defaults MAP (X;Y ) as follows:MAP (X;Y ) = SELECT (F (X;Y ); C);where C is given by equation (1). Observation 4.3 implies the following corollary.Corollary 4.1 Let X and Y be �nite sets, let Z � X and let h:Z ! Y . A theory T is an extensionfor the default theory (MAP (X;Y ); ffz;h(z): z 2 Zg) if and only if T = Cn(ffx;g(x):x 2 Xg), for somefunction g:X ! Y such that gjZ = h.Observe that the default theory (MAP (X;Y ); ffz;h(z): z 2 Zg) is disjunction-free.4.5 ConstraintsIn this section, we will present a method to impose constraints that can be expressed by propositionalformulas. That is, we will show how to modify a default theory so that the extensions of the resultingdefault theory are precisely those extensions of the original theory that satisfy the constraints.Let ' be a propositional formula and let aux' be a new atom. De�ne the following defaults:d' = ::';:aux'aux'and d0' = '::aux'aux' :Theorem 4.2 Let (D;W ) be a default theory in a propositional language L, let ' 2 L and let aux' bea new propositional variable (not in L). Let d' and d0' be defaults de�ned as above. Then:1. The theory (D;W ) has an inconsistent extension if and only if the theory (D [ fd'g;W ) has aninconsistent extension. Similarly, the theory (D;W ) has an inconsistent extension if and only ifthe theory (D [ fd0'g;W ) has an inconsistent extension.2. Every consistent extension of (D[fd'g;W ) is a subset of L. Moreover, a consistent theory E � Lis an extension of the default theory (D [ fd'g;W ) if and only if E is an extension of (D;W )and ' 2 E.3. Every consistent extension of (D [ fd0'g;W ) is a subset of L. Moreover, a consistent theory E isan extension of the default theory (D [ fd0'g;W ) if and only if E is an extension of (D;W ) and' =2 E.Proof: The proof of (1) is straightforward. We leave it to the reader.(2) De�ne D0 = D [ fd'g, and assume that E is a consistent extension of the default theory (D0;W ).We have E = CnD0;E(W ):18



Assume that d' is E-applicable. Then, since d' is prerequisite-free, aux' 2 E. On the other hand,E-applicability of d' implies that E 6` :(:aux'). Since E is closed under propositional consequence,we obtain a contradiction. Thus, d' is not E-applicable. It follows that E � L and thatCnD0;E(W ) = CnD;E(W ):Consequently, E = CnD;E(W ):Hence, E is an extension of (D;W ). Since E is consistent, d' is not E-applicable, and aux' occursonly in d', it follows that E ` :(:'). Thus, ' 2 E.Conversely, assume that E is a consistent extension of (D;W ) and that ' 2 E. The latter factimplies that d' is not E-applicable. So, as before,CnD;E(W ) = CnD0;E(W )and, consequently, E = CnD0;E(W ):The proof of (3) is similar and we omit it. 2Theorem 4.2 shows that defaults d' and d0' can be used to enforce constraints expressed by propo-sitional formulas. Enforcing means selecting those extensions that entail the constraints. Defaults thatact as such selection �lters (for instance, d' and d0') will be referred to as selection defaults. Observealso that when constructing the selection defaults, a formula ' can be replaced by a logically equivalentone (cf. [MT93], Theorem 5.3) without changing the selection properties of the default. We will oftentake advantage of this observation.In general, we can use the same atom aux in all selection defaults. However, to decrease the numberof dependencies between defaults and obtain �ner strati�cation, it is better to use di�erent auxiliaryatoms in di�erent selection defaults. Thus, in this section and throughout the paper we use a newauxiliary atom aux' for each selection default.There are other classes of defaults that act as selection defaults. For instance, ::'' eliminates allextensions not containing ' (similarly to d'). However, the default ::'' may interact with other defaultsand introduce cyclic dependencies that lead to larger strata.4.6 Kernels in directed graphsIn the remainder of this section, we will present several default theories that encode problems in graphtheory. They are constructed by �rst using our results about representing all subsets (or functions) andthen by imposing constraints.We will start by constructing default theories that represent the problem of existence of kernels indirected graphs. Given a directed graph G = (V;A) (V stands for the set of vertices and A for the setof directed edges of G), a set K � V is called a kernel if:(K1) The set K is an independent set, that is, for every edge (u; v) 2 A, u 2 V nK or v 2 V nK.(K2) For every vertex w 2 V nK, there exists a vertex v 2 K such that (w; v) 2 A.The �rst, rather ad-hoc representation of the kernel problem as a default theory appeared in [MT91].Let G = (V;A) be a directed graph. For every edge e = (x; y) 2 A, de�ner(e) = ::yx :Denote by KER1(G) the default theory (fr(e): e 2 Ag; ;). It was shown in [MT91] that K � V isa kernel of a directed graph G = (V;A) if and only if Cn(M), where M = V nK, is an extension of19



KER1(G). In other words, extensions of this default theory are precisely the complements of kernels.Note that the theory KER1(G) is disjunction-free.We will now construct another encoding of the kernel problem, systematically utilizing the resultsfrom the preceding sections. Consider the default theory (S1(V ); ;). Its extensions represent thecollection of all subsets of V . More precisely, they are all of the form fx:x 2 Kg[ f:x:x 2 V nKg, forsome K � V . We will denote a set of this form, determined by K � V , by K.To represent kernels, we need to enforce kernel conditions (K1) and (K2) on such sets. To enforce(K1), for every directed edge e = (x; y) de�ne'(e) = :(x ^ y):Clearly, K satis�es condition (K1) if and only if K entails '(e), for every e 2 A.To enforce condition (K2), for every vertex v de�ne a formula (v) = :v � v1 _ : : : _ vk ;where v1; : : : ; vk are all the vertices connected to v by an edge starting in v. Observe that a set ofvertices K satis�es condition (K2) if and only if K entails  (v), for every v 2 V .Formulas '(e) and  (v) give rise to selection defaultsd'(e) = :x ^ y;:aux'(e)aux'(e) ;for e 2 A, e = (x; y), and d (v) = ::v ^ :v1 ^ : : : ^ :vk ;:aux (v)aux (v) ;for v 2 V (where v1; : : : ; vk are all the vertices connected to v by an edge starting in v). Notice thatwhen de�ning d (v), we replaced : (v) by an equivalent formula (using Theorem 5.3 from [MT93]).Let G = (V;A) be a directed graph. Let us denote by KER2(G) the default theory obtained fromS1(V ) by adding all defaults d'(e), e 2 A, and d (v), v 2 V , to the set of defaults S1(V ). Observe thatthe theory KER2(G) is disjunction-free.Observation 4.5 Let G = (V;A) be a directed graph. A set K � V is a kernel of G if and only ifCn(K) is an extension of KER2(G). Moreover, every extension of KER2(G) is of the form Cn(K),for some kernel K of G.Yet another approach is to encode complements of kernels, as it is easy to decode a set from itscomplement (this approach was used in [MT91]).4.7 Maximal independent sets in graphs, matchings and perfect matchingsLet G = (V;E) be an undirected graph. A set of vertices I � V is independent if for every edge e 2 E,at least one of its endvertices is not in I . Let us recall that an edge in an undirected graph can beidenti�ed with the set of its endvertices. Hence, it is clear that I is an independent set in G if and onlyif it is independent for E in the sense of Section 4.3. Let us denote MIS(G) = (MS(E; V ); ;).Observation 4.6 Let G = (V;E) be an undirected graph. A set Y � V is a maximal independentsubset of G if and only if Cn(Y ) is an extension of MIS(G). Moreover, every extension of MIS(G) isof the form Cn(Y ), for some maximal independent set Y in G.It is also easy to see that if U � V is independent, then the default theory (MS(E; V ); U) describesall maximal independent sets in an undirected graph G that contain U . Since all sets in E have onlytwo elements, the theory (MS(E; V ); U) is disjunction-free.20



An alternative encoding is implied by an observation that undirected graphs can be regarded asdirected graphs (each undirected edge fx; yg is treated as a pair of two directed edges (x; y) and (y; x)).It is easy to see that a set of vertices K is a kernel of an undirected graph G (regarded as a directedgraph in the sense described above) if and only if K is a maximal independent set. Thus, extensions ofthe theory KER2(G), where A = f(x; y); (y; x): fx; yg 2 Eg are precisely maximal independent sets ofthe (undirected) graph G = (V;E).Next, we will construct default theories representing all maximal matchings and perfect matchingsin an undirected graph. Let G = (V;E) be an undirected graph. A set of edges M is called a matchingif no two di�erent edges from M share an endvertex. A matching M is called maximal if there is nomatching in G that would properly contain M . A matching M is called perfect if it covers all verticesof the graph.Let G = (V;E) be an undirected graph. Observe that M � E is a matching if and only if Mis independent for E(G) = ffe; fg: e; f 2 E; e 6= f; e and f share an endvertexg. Consequently, thedefault theory (MS(E(G); E); ;) represents (through its extensions) all maximal matchings in G.We will now add to (MS(E(G); E); ;) selection defaults to weed out those maximal matchings thatare not perfect. To this end, for every vertex v 2 V de�ne the formulacov(v) = e1 _ : : : _ ek;where e1; : : : ; ek are all the edges with endvertex v. Clearly, a matching M is perfect if and only if Mentails cov(v), for every vertex v 2 V . Each formula cov(v) gives rise to the selection default dcov(v).Adding all these defaults to the set of defaults in (MS(E(G); E); ;) yields a default theory, calledPM(G), whose extensions are those extensions of (MS(E(G); E); ;) that entail all formulas cov(v),that is, those extensions of (MS(E(G); E); ;) that represent perfect matchings.Observation 4.7 Let G = (V;E) be an undirected graph. A set of edges M � E is a perfect matchingof G if and only if Cn(M) is an extension of PM(G). Moreover, every extension of PM(G) is of theform Cn(M), for some perfect matching M of G.Since all sets in E(G) contain two elements and, since while constructing the selection default dcov(v)we can use :e1^ : : :^:ek instead of :(e1_ : : :_ek), the default theories (MS(E(G); E); ;) and PM(G)are disjunction-free.IfM 0 is a matching in a graph G, then extensions of the default theory (MS(E(G); E);M 0) representall maximal matchings in G that contain M 0. Theory PM(G) can be modi�ed in the same way. Thisyields a default theory representing all perfect matchings in the graph G containing M 0.4.8 Graph coloringLet G = (V;E) be an undirected graph. Let us denote by Ik the set f1; : : : ; kg. A function f : V ! Ikis a k-coloring of G if for every edge fu; vg 2 E, f(u) 6= f(v). A graph G is k-colorable if there is ak-coloring of G. Since a coloring is a function from V to Ik which satis�es certain conditions, we canencode all k-colorings of a graph as a default theory using the results given in Sections 4.5 and 4.4. ByCorollary 4.1, extensions of the default theory (MAP (V; Ik); ;) encode all functions from V to Ik.We will now de�ne propositional formulas that describe a violation of the condition that the end-vertices of the same edge are assigned di�erent colors. For every edge e = fx; yg 2 E and every i 2 Ik ,de�ne cl(e; i) = fx;i ^ fy;i(recall that fv;p is a new atom used in the construction of the default theory MAP (X;Y ) to representthe fact that v 2 X is assigned p 2 Y ). Hence, cl(e; i) states that the endvertices of e are assigned colori. It is easy to see that a function c : V ! Ik is a coloring if for every e 2 E and every i 2 Ik ,ffx;c(x):x 2 V g does not entail cl(e; i). Weeding out extensions that entail formulas cl(e; i) can be21



accomplished by adding to MAP (V; Ik) the selection defaults d0cl(e;i), e 2 E, i 2 Ik. Let us denote theresulting default theory by COL1(G; k).Observation 4.8 Let G = (V;E) be an undirected graph. A function c : V ! Ik is a k-coloring ofG if and only if Cn(ffx;c(x):x 2 V g) is an extension of COL1(G; k). Moreover, every extension ofCOL1(G; k) is of the form Cn(ffx;c(x):x 2 V g), for some coloring c of G.Note that the theory COL1(G; k) is disjunction-free.Another approach to encoding of the coloring problem was given in [NS95]. This encoding, COL2(G; k),can be constructed, using our approach, as follows. For every x 2 V and i 2 Ik , de�ne the conict setC(fx;i) by: C(fx;i) = ffx;j : j 2 Ik ; j 6= ig [ ffy;i: y 2 V is a neighbor of xg: (2)It is clear that maximal conict-free subsets of ffx;i:x 2 V; i 2 Ikg are maximal partial k-coloringsof the graph G (a partial coloring is an assignment of colors to some of the vertices of the graph sothat no edge has the same color assigned to its endvertices). Thus, maximal partial k-colorings of Gare encoded (in a one-to-one fashion) by extensions of the default theory (SELECT (F;C); ;), whereF = ffx;i:x 2 V; i 2 Ikg and C is de�ned by (2).Next, for each vertex v, de�ne a formula s(v):s(v) = fv;1 _ : : : _ fv;k:Clearly, a subset of F entails s(v) if and only if it contains at least one element of the form fv;i. Thus,by Theorem 4.2, adding to (SELECT (F;C); ;) the selection defaults ds(v) leaves as extensions onlythose that encode complete k-colorings of G (colorings assigning a color to every vertex of the graph).Let us de�ne COL2(G; k) = (SELECT (F;C) [ fds(v): v 2 V g; ;):Observation 4.9 Let G = (V;E) be an undirected graph. A function c : V ! Ik is a k-coloring ofG if and only if Cn(ffx;c(x):x 2 V g) is an extension of COL2(G; k). Moreover, every extension ofCOL2(G; k) is of the form Cn(ffx;c(x):x 2 V g), for some coloring c of G.By using :fv;1 ^ : : : ^ :fv;k instead of :(fv;1 _ : : : _ fv;k) when constructing ds(v), we can ensurethat the theory COL2(G; k) is disjunction-free.As in the previous cases, by modifying the objective part of the theories COL1(G; k) and COL2(G; k)one can encode the collection of those colorings that assign prespeci�ed colors to prespeci�ed vertices.4.9 Cycles and hamiltonian cyclesLet G = (V;A) be a directed graph and jV j � 3. For an edge e = (x; y) 2 A let us de�ne the conictset C(e) = f(x; z) 2 A: z 6= yg [ f(z; y) 2 A: z 6= xg:Let us observe that H � A is a maximal conict-free subset of A if and only if H is a maximal subsetof edges in G with the following two properties:(C1) no vertex is the tail of two di�erent edges in H ,(C2) no vertex is the head of two di�erent edges in H .Consequently, the default theory (SELECT (A;C); ;) has as its extensions precisely the sets of the formCn(H), where H � A is a maximal set satisfying conditions (C1) and (C2).For every edge e = (x; y) 2 A, let us de�ne a default move(e) bymove(e) = x ^ e:y :22



The default move(e) is justi�cation-free. It is used like a standard inference rule. If e = (x; y) and xare in an extension of a default theory that contains default move(e), then y is in this extension as well.Let us de�ne the default theory �(G) by:�(G) = (SELECT (A;C) [ fmove(e): e 2 Ag; fvsg);where vs 2 V is a �xed vertex. One can show that extensions of �(G) are precisely the theories of theform Cn(X [H), where H � A is a maximal subset of edges of G satisfying conditions (C1) and (C2)and X is the set of vertices reachable from vs by means of the edges in H .To leave only those extensions that correspond to hamiltonian cycles, it is enough to enforce twoconstraints:1. An extension must entail formulas v, for every v 2 V (in other words, all vertices must be reachablefrom vs by means of edges in the extension),2. an extension must contain an edge with the head vs.To enforce the �rst constraint, the selection defaults dv, v 2 V are added to �(G). To enforce thesecond constraint, the selection default: f:f : f 2 A; f = (x; vs)g;:auxauxmust be added. Let us denote the resulting theory by HAM1(G).Observation 4.10 Let G = (V;A) be a directed graph. A set H of edges spans a hamilton cycle in Gif and only if Cn(V [H) is an extension of HAM1(G). Moreover, every extension of HAM1(G) is ofthe form Cn(V [H), for some set H � A spanning a hamiltonian cycle in G.Clearly, the theory HAM1(G) is disjunction-free.We will now describe an alternative encoding. Let, as before, G = (V;A) be a directed graph. Foran edge e = (x; y) de�ne the defaultmove0(e) = x: f:f : f = (x; z) 2 A; z 6= ygy ^ e :The intuitive meaning of move0(e) is: if x has been reached and it is possible to select an outgoing edgee = (x; y) (none of the other outgoing edges from x is known to have been selected), then select e andvisit y. De�ne �0(G) by: �0(G) = (fmove0(e): e 2 Ag; fvsg);where vs 2 V is a �xed vertex. One can show that extensions of �0(G) are precisely the theories of theform Cn(X [H), where H is a sequence of edges starting in vs with each next edge starting where theprevious one ended and X is the set of vertices of the edges in H . The sequence H ends when for the�rst time the endvertex of an edge coincides with one of the vertices visited earlier.Note that the sequence H need not to end in vs and it is not guaranteed that all vertices are visited(that is, X may be a proper subset of V ). To construct a default theory such that its extensionsrepresent hamiltonian cycles, let us observe that to guarantee that all vertices are visited, we mustrequire that the extensions entail the formulas v (v is treated here as a propositional variable), forall v 2 V . Similarly, to guarantee that the sequence H ends up back in vs we must ensure that theextensions entail the formula � = Wfe 2 A: e ends in vsg. Both objectives can be accomplished byadding the selection defaults dv , v 2 V , and d� to �0(G). Let us denote the resulting theory byHAM2(G).Observation 4.11 Let G = (V;A) be a directed graph. A set H of edges spans a hamilton cycle in Gif and only if Cn(V [H) is an extension of HAM2(G). Moreover, every extension of HAM2(G) is ofthe form Cn(V [H), for some set H � A spanning a hamiltonian cycle in G.Note that HAM2(G) is disjunction-free. 23



5 TheoryBaseWe believe that the lack of signi�cant experimental studies of the performance of nonmonotonic rea-soning systems can be, in large part, attributed to the absence, in the past, of large sets of test cases ofvarying di�culty and structure. This problem is not unique to automated theorem proving. It appearsin all areas of experimental research [Hoc96].To test and experiment with software systems we need easily generated, realistic and meaningful testinstances. A possible approach is to produce a collection of real-life problems. Such benchmarks arenow used in several areas of experimental research in computer science. The bene�ts of this approachare evident. The problems are real and, thus, meaningful. In addition, they can easily be disseminated.But, there are also drawbacks. The data often does not provide enough exibility to allow full-edgedtesting. In particular, a comprehensive study of performance scalability cannot be easily conducted, asdatabases of benchmarks rarely contain families of test cases of similar structure and growing sizes thatwould allow good extrapolation of the running time.The other approach frequently used in experimental research is to generate data randomly. Thismethod o�ers an unlimited number of test cases and often the user has control over at least someparameters of data generated. For example, when generating random graphs, we can request a speci�cnumber of vertices and edges. However, the data generated randomly has often properties that rarelyoccur in real-life examples. It is well known that (under appropriate technical assumptions) almostevery connected random graph is hamiltonian [Bol85]. Similarly, it is now believed that random 3-SAT problems do not provide an adequate model for problems likely to occur in real-life applications[GM94, CB94].None of these two approaches has been fully developed for experimenting with logic programmingand nonmonotonic reasoning. In logic programming, the set of benchmark programs is very small.Two programs most commonly used in testing are the \naive reverse" program [SS86], and the \win"program [NS96, RRS+97]. The situation is even worse with generating logic programs and defaulttheories randomly. In fact, up to now, no random model of a logic program or a default theory hasbeen proposed.In this section, we will describe a system that generates logic programs and default theories. Ourapproach is based on the work by Knuth on methods to generate graphs [Knu93], and on the resultsfrom the previous section providing encodings of graph problems in terms of default theories and logicprograms.Knuth argues that random graphs do not constitute an adequate tool for testing graph algorithms.Instead, Knuth develops a graph generation system, The Stanford GraphBase. This system is publiclyavailable (see [Knu93] for details) and, thus, can be used as a \common denominator" for work requiringexperimenting with graphs. The Stanford GraphBase is a collection of datasets and graph generatingprocedures. It allows the user to generate families of directed, undirected, weighted, unweighted,bipartite, planar, regular and random graphs. An important feature of The Stanford GraphBase isthat every graph generated gets a unique label (or identi�er). It is essential for storing and easyreconstruction of test cases generated.The core of The Stanford GraphBase is formed by several procedures to generate basic graphs (othergraphs can be obtained by applying graph operations implemented in The Stanford GraphBase). Theseprocedures root the graphs they generate in objects such as maps and dictionaries in an e�ort to ensuresome correlation of the graphs generated to real-life problems. For instance, an interesting family ofgraphs in The Stanford GraphBase is generated from a table of highway distances between 128 NorthAmerican cities.In our work, we extended The Stanford GraphBase to a system, called the TheoryBase4, thatgenerates logic programs and default theories. It was developed to facilitate experimenting with DeReS.Our idea is to apply the encodings presented in Section 4 to graphs which are the outputs of The Stanford4A detailed description of the TheoryBase commands and features, as well as the executable code can be obtainedfrom ftp://al.cs.engr.uky.edu/cs/software/logic/TheoryBase.tar.gz24



GraphBase. Thus, the TheoryBase shell provides the user with two main classes of commands: togenerate graphs, and to generate default theories encoding graph problems.The graph generating commands rely on The Stanford GraphBase program. They allow the user togenerate families of graphs of similar structure but increasing sizes.The graph generating commands must be followed by invoking encoding generating commands. Theencoding commands allow the user to specify a graph (or a range of graphs) generated before, a graphproblem and a version of an encoding to use (they are minor modi�cations of the encodings presentedin Section 4). Currently, the TheoryBase supports the following commands (together with availableoptions, they allow the user to generate nine di�erent encodings):1. kernel | this command produces the theory KER2(G) (to be precise, its slight modi�cation)encoding the existence of a kernel for G; by selecting appropriate options two other encodings canalso be generated2. color | this command, invoked with the parameter k, generates the theory COL1(G; k) toencode the existence of a k-coloring problem for G3. hamilton | produces the theory HAM1(G) to encode the existence of a hamilton cycle problemfor G4. maxind | generates the default theory MIS(G), whose extensions identify all maximal indepen-dent sets in G5. maxmatch | generates the default theory (MS(E(G); E); ;) (see Section 4.3), whose extensionsidentify all maximal matchings in G.Each of these commands generates: the header �le (su�x :dt), the �le of propositional formulas (su�x:thc), the �le of defaults (su�x :dc), the strati�cation �le (su�x :str).The TheoryBase provides a unique identi�er for each theory it allows the user to construct. Theconcept is an extension of a unique identi�er of a graph in The Stanford GraphBase. Combining thename of the encoding generating command (possibly appended by strings representing a selection ofoptions) with The Stanford GraphBase identi�er of a graph for which the encoding is applied yields theidenti�er of the resulting default theory. For instance, if kernel command is applied to a graph withThe Stanford GraphBase identi�er board(5; 5; 0; 0; 5; 3; 1) (see Figure 7) the resulting default theory isdenoted by kernel:board 5; 5; 0; 0; 5; 3; 1 5. Similarly, applying the command color to the same graph,to produce a default theory encoding the existence of 3-colorings, yields the default theory with theidenti�er color3:board 5; 5; 0; 0; 5; 3; 1 .The TheoryBase encoding generating commands also generate two additional �les: the graph de-scription �le and the display actions �le. These two additional �les play no role in the reasoning butthey support graphical presentation of the results by the TheoryBase and DeReS X11 graphical userinterfaces. For instance, the graphical user interface for DeReS, x11ext, allows the user to display theunderlying graph, identi�es the graph problem to be solved, provides the user with several commandbuttons and displays the results of the computation. Figure 7 presents the state of the interface afterthe �rst extension was computed for the theory encoding the existence of a kernel problem for the graphwith The Stanford GraphBase identi�er board(5; 5; 0; 0; 5; 3; 1).Although the present focus in the TheoryBase is on test theories for experimentation with non-monotonic reasoning, our method has wider implications. By encoding graph problems by means ofpropositional theories or 3-SAT data instances, one can obtain a benchmarking system for testingpropositional theorem proving techniques. There is an obvious need for such a system (see [GM94]for additional discussion of the subject), especially in view of recent work on new satis�ability testingmethods: GSAT [SLM92], TABLEAU [CA96], WSAT [SKC96], CSAT [DABC96] and other.5For technical reasons, the parentheses in The Stanford GraphBase identi�er are replaced by symbols.25



Figure 7: A kernel in graph board(5; 5; 0; 0; 5; 3; 1).6 Using TheoryBase, experimenting with DeReSIn this section we present the results of our experiments with DeReS and demonstrate usefulness of theTheoryBase in experimental studies of nonmonotonic reasoning systems. When studying DeReS, wewere interested in the following three main questions:1. How does the performance of DeReS scale up with the growth of the size of input default theories?2. How the selection of a prover (recall that DeReS o�ers three choices) inuences the performanceof DeReS?3. What is the e�ect of strati�cation on the performance of DeReS?In order to obtain meaningful and reliable results, testing must be extensive and the test cases mustcover a wide spectrum of default theories with diverse properties.The TheoryBase was designed to support this type of studies. Let us recall that the TheoryBaseallows the user to produce parameterized families of default theories. The size of default theories insuch a parameterized family grows as a function of the parameters and all the default theories in thefamily share similar properties. Several such families were constructed for our experiments.We will �rst discuss those families of default theories that are constructed by means of the Theo-ryBase kernel and kernel -b commands. These commands produce an encoding of the existence ofa kernel problem (through encodings KER2 and KER1, respectively). We applied these commandsto several families of directed graphs, called n �m-tori, whose vertices form an n �m-grid wrapped26



Figure 8: A 3� 5-grid wrapped around a toruson a torus, edges connect vertices at distance one in the grid, with the direction determined by thelexicographic ordering of the endpoints (see Figure 8 for the 3� 5-torus):1. 3� (3m� 1)-tori, m � 1; the Stanford GraphBase labels board(3; 3m� 1; 0; 0; 1; 3; 1),2. 4� 2m-tori, m � 1; the Stanford GraphBase labels board(4; 2m; 0; 0; 1; 3; 1).We also applied these commands to the graphs with the vertex set representing squares on an 8 � nchessboard, in which two vertices connected if one can be reached from the other by a knight's move(with wrap around allowed along both dimensions). These graphs have The Stanford GraphBase labelsboard(8;m; 0; 0; 5; 3; 1).As a result, we obtained several families of default theories with labels kernel.board p; q; 0; 0; s; 3; 1and kernel.b.board p; q; 0; 0; s; 3; 1 , for appropriate values of p, q and s. All these theories are disjunction-free. Consequently, all three provers can be used by DeReS when processing them. The theories inthe families with the pre�x kernel have a relaxed strati�cation into small strata. The theories in thefamilies with the pre�x kernel.b have no non-trivial relaxed strati�cation. The theories obtained fromgraphs board(4; 2m; 0; 0; 1; 3; 1) have exactly two extensions (it is easy to see that the correspondinggraphs have exactly two kernels) and the theories obtained from graphs board(3; 3m � 1; 0; 0; 1; 3; 1)have no extensions. Finally, the number of extensions for the theories kernel.board 8;m; 0; 0; 5; 3; 1 is aslowly growing function of m.We obtained especially encouraging results on DeReS performance for theories encoding the existenceof k-colorings of graphs. We applied the TheoryBase color command, that implements the translationCOL1, to the following families of graphs:1. ladder graphs (see Figure 9(a) for an example of a ladder graph), with the Stanford GraphBaselabels board(n; 2; 0; 0; 1; 0; 0),2. simplex graphs with the side of size n (see Figure 9(b)), with the Stanford GraphBase labelssimplex(n; n;�2; 0; 0; 0; 0).For graphs in these families, we generated theories encoding the existence of a 3-coloring. As aresult, we obtained the following families of default theories:1. color3.board n; 2; 0; 0; 1; 0; 0 , n � 2,2. color3.simplex n; n;�2; 0; 0; 0; 0 , n � 2.All these default theories are disjunction-free and have a good relaxed strati�cation. The theoriescolor3.board n; 2; 0; 0; 1; 0; 0 have a large number of extensions (ladder graphs have exponentially many3-colorings). The theories color3.simplex n; n;�2; 0; 0; 0; 0 have exactly six extensions (each graphsimplex(n; n;�2; 0; 0; 0; 0) has exactly six 3-colorings).The e�ects of a �ne relaxed strati�cation are perhaps best illustrated by the theories encodingthe existence of a hamiltonian cycle problem. So far, no encoding with good strati�cation is known.27



(a) (b)

Figure 9: (a) Ladder graph; (b) Simplex graphIt is easy to see that ladder graphs board(n; 2; 0; 0; 1; 0; 0) have a hamiltonian cycle. We applied thecommand hamilton to the ladder graphs to produce the family hamilton.board n; 2; 0; 0; 1; 0; 0 . Defaulttheories in this family are disjunction-free and do not have a non-trivial relaxed strati�cation. Moreover,each has exactly two extensions (there are two directed hamiltonian cycles in the directed symmetricrepresentation of a ladder graph).This collection of test families demonstrates that the TheoryBase allows the user to generate a widerange of examples that can be used to test nonmonotonic reasoning systems. Some of the families wegenerated and used consist of theories which have a relaxed strati�cation into small clusters and othershad only a trivial, one-cluster, relaxed strati�cation. Some families had no extensions, some other hadvery few extensions, and yet other had large numbers of extensions. Additional diversi�cation wasensured by the fact that the families generated encode several graph problems and by the diversity ofunderlying families of graphs.In the remainder of this section we present experimental results on the performance of DeReS onthe default theories described above. In all the tables we give, we use the following notation:1. timef denotes the CPU time for queries processed with the full propositional tableaux prover;2. timel denotes the CPU time for queries processed with the local propositional tableaux prover;3. timea denotes the CPU time for queries processed with the table lookup prover;4. NCPP stands for the number of calls to a prover;5. EXT stands for the total number of extensions for the input theory.All times are measured in seconds.The results were obtained on a 166MHz Pentium PC under Linux 2.0.18 operating system. Thetime was measured using the time routine and is presented as the sum of the CPU time used whileexecuting instructions in the user space of the calling process and the CPU time used by the system onbehalf of the calling process. To capture the reasoning time we measure the CPU time from the pointwhen an input default theory is already stored together with its strati�cation in DeReS data structuresto the point when the answer is returned.6.1 Provers, e�ciency of DeReS processing and scalabilityDeReS o�ers a choice of three propositional provers. Recall that these are: a full tableaux prover, alocal tableaux prover (sound, but not complete), and a table lookup prover (applicable to disjunction-free theories only). All our experiments, perhaps not surprisingly, demonstrate that the local proversigni�cantly and uniformly outperforms the full prover and that the lookup prover, whenever applicable,performs better than tableaux provers. In particular, this is illustrated in Table 1, which summarizesDeReS performance for the family of theories kernel.board 8;m; 0; 0; 5; 3; 1 in the case when only onesolution was needed, and in Table 2 that reports time needed to compute all extensions for these defaulttheories. 28



kernel.board 8;m; 0; 0; 5; 3; 1 , one solutionm jDj NCPP timef timel timea4 224 14804 14.32 1.04 0.065 280 34377 52.91 3.04 0.146 336 121249 291.27 12.28 0.497 392 105548 302.70 11.97 0.428 448 308910 1389.91 39.65 1.249 504 557398 2924.17 78.11 2.2110 560 1982796 14327.56 316.29 7.86Table 1: Searching for a kernel in board(8;m; 0; 0; 5; 3; 1).In both cases time grows exponentially with the size of the underlying default theory. Nevertheless,both experiments show that DeReS can deal, in the matter of seconds, with default theories containinghundreds of defaults and encoding non-trivial problems.kernel.board 8;m; 0; 0; 5; 3; 1 , all solutionsm jDj NCPP timef timel timea EXT4 224 65704 72.89 4.65 0.26 65 280 114709 208.79 10.23 0.48 156 336 421082 1039.76 42.77 1.65 57 392 1255383 4214.01 146.72 5.02 1478 448 4130579 > 2 hrs: 541.35 16.29 1349 504 10760494 > 2 hrs: 1603.21 42.53 12010 560 31630658 > 2 hrs: 5204.96 124.24 267Table 2: Computing all kernels in board(8;m; 0; 0; 5; 3; 1).The results from the tables can be used to extrapolate the behavior of the performance of DeReSfor theories kernel.board 8;m; 0; 0; 5; 3; 1 and obtain quantitative insights on the savings possible dueto the choice of a prover. For instance, the time timea(m) (in �s) to compute all extensions using thetable lookup prover satis�es the inequalitiesC1 3m � timea(m) � C2 3m;for some small constants C1 and C2. Hence, the time grows exponentially and has order �(3jDj=56)(where, recall, D stands for the set of defaults of the theory). That is, the time grows at a much smallerrate than the theoretical bound O(jDj2 � 2jDj) [MT93].When tableaux provers are used times are larger because more time is needed for each call to thepropositional provability procedure. For instance, the local prover needs to scan the input theory to�nd all formulas which have common propositional variables with the query formula and then decideprovability. From our results, it can be estimated that the time timel(m) (in �s) for computing allextensions by means of the local prover satis�esC 01 m3m � timel(m) � C 02 m3m;that is, it is of the order �(jDj�3jDj=56). Finally, similar considerations for the full prover show that, inthis case, the time needed to �nd all extensions is of the order �(jDj2 � 3jDj=56). Thus, for the defaulttheories kernel.board 8;m; 0; 0; 5; 3; 1 , using the local prover saves a factor of jDj over the full prover,and using the table lookup prover saves an additional factor of jDj.29



The results were similar for several other families of default theories. In some cases, the sav-ings due to the choice of the prover were even more dramatic and led to excellent scalability. Ta-ble 3 summarizes running times of DeReS for all three provers for the family of default theoriescolor3.board n; 2; 0; 0; 1; 0; 0 . color3.board n; 2; 0; 0; 1; 0; 0 , one solutionn jDj NCPP timef timel timea300 4494 11988 1343.57 10.75 0.08400 5994 15988 3385.35 19.20 0.09500 7494 19988 > 2 hrs: 30.27 0.11600 8994 23988 > 2 hrs: 45.68 0.13700 10494 27988 > 2 hrs: 62.74 0.14800 11994 31988 > 2 hrs: 82.77 0.16900 13494 35988 > 2 hrs: 108.05 0.181000 14994 39988 > 2 hrs: 137.02 0.20Table 3: Finding a 3-coloring for board(n; 2; 0; 0; 1; 0; 0).In this case, due to a large number of solutions, we only computed the �rst extension (computingall would clearly take exponential time). As before, full and local provers are not practical while thetable lookup prover performs very well. Even for very large default theories from this family, withtens of thousands of defaults, the table lookup version of DeReS computes an extension in less thana second. This excellent performance is due to two factors: relaxed strati�cation and a large numberof extensions these theories have, which makes it easy to stumble upon them. Table 4 presents theperformance results of DeReS for theories color3.simplex n; n;�2; 0; 0; 0; 0 (they encode 3-colorings ofthe simplex graphs). Each such theory has exactly six extensions corresponding to six 3-colorings ofthe graph simplex(n; n;�2; 0; 0; 0; 0).color3.simplex n; n;�2; 0; 0; 0; 0 , one solutionn jDj NCPP timef timel timea6 270 806 0.26 0.05 0.017 360 1020 0.53 0.08 0.018 459 1845 1.10 0.19 0.019 570 1649 1.35 0.18 0.0110 693 1950 2.18 0.27 0.0111 828 3294 4.61 0.52 0.0212 975 2789 5.44 0.50 0.0213 1134 3177 8.16 0.67 0.0214 1305 5160 16.21 1.29 0.0315 1488 4226 17.74 1.19 0.03Table 4: Finding a 3-coloring for simplex(n; n;�2; 0; 0; 0; 0).Finally, DeReS exhibits similar scalability and prover performance results for theories with no exten-sions. Table 5 summarizes our experiments with the family of theories kernel.board 3; 3m�1; 0; 0; 1; 3; 1 .Since these theories have no extensions, DeReS can terminate execution only after it scans through aportion of the search space that is large enough to allow it to conclude that indeed no extensions exist.Consequently, in this case, the performance of DeReS is worse than in the previous two cases.All these results demonstrate the magnitude of savings possible with the appropriate choice of thepropositional prover in DeReS. Signi�cant savings were observed for theories encoding both existence30



kernel.board 3; 3m� 1; 0; 0; 1; 3; 1m jDj NCPP timef timel timea EXT2 75 2,170 0.58 0.09 0.01 03 120 12,626 8.77 0.68 0.06 04 165 66,740 79.14 4.39 0.27 05 210 339,032 667.74 26.81 1.36 06 255 1,673,382 4890.73 154.85 6.79 07 300 8,093,622 32620.66 819.07 31.82 0Table 5: Searching for a kernel in board(3; 3m� 1; 0; 0; 1; 3; 1), strati�ed encoding.of kernels and 3-colorings, and for theories with very many, moderately many, few and no extensions.They also show that the performance of DeReS, even in the current implementation, scales up verywell for several non-trivial families of default theories. Our results point to the importance of encodingproblems as disjunction-free theories as this allows the user to select the table lookup prover in DeReS.6.2 E�ects of relaxed strati�cationCurrently, the main pruning mechanism of DeReS is relaxed strati�cation. We will now discuss howit inuences the performance of DeReS. In particular, we report experiments with theories that areequivalent (in the sense that they possess precisely the same extensions) but di�er in the quality ofrelaxed strati�cation.The times took by DeReS to �nd a single extension for the theories kernel.b.board 4; 2m; 0; 0; 1; 3; 1are shown in Table 6. Each of these theories has exactly two extensions. None of them has a good relaxedstrati�cation. In general, in the encoding KER1(G), the strata correspond to the strong componentsof the underlying graph G. The size of each stratum is equal to the number of edges in G starting inthe corresponding strong component of G. In particular, for strongly connected graphs, there is a singlestratum of size jDj = jE(G)j. The graphs board(4; 2m; 0; 0; 1; 3; 1) are strongly connected and have twoedges originating in each of 8m vertices. Hence, the encoding KER1(G) has a single stratum of size16m. kernel.b.board 4; 2m; 0; 0; 1; 3; 1 , one solutionm jDj NCPP timef timel timea1 16 30,284 1.04 0.40 0.082 32 36,371,891 � 589.13 78.763 48 36,743,185,961 � � 76,191.31Table 6: Searching for a kernel in board(4; 2m; 0; 0; 1; 3; 1), non-strati�ed encoding.Signi�cantly better performance of DeReS is obtained if the theories kernel.board 4; 2m; 0; 0; 1; 3; 1are used. They encode the same problem, the existence of kernels, and for the same family ofgraphs, board(4; 2m; 0; 0; 1; 3; 1), as theories kernel.b.board 4; 2m; 0; 0; 1; 3; 1 . However, as opposed tokernel.b.board 4; 2m; 0; 0; 1; 3; 1 , they have a relaxed strati�cation into small strata. The results aresummarized in Table 7.Tables 6 and 7 show that the same problem can be represented in DeReS in an e�cient way and in aine�cient manner. The di�erence is dramatic (7 orders of magnitude) and it points to the importanceof good programming in DeReS. Whenever possible, one should encode problems by means of theoriesthat have a good relaxed strati�cation.Similarly signi�cant speedups were observed for theories which have no extensions. Table 8 shows thetiming results for the task of computing extensions for the theories kernel.b.board 4; 2m+1; 0; 0; 1; 3; 131



kernel.board 4; 2m; 0; 0; 1; 3; 1 , all solutionsm jDj NCPP timef timel timea1 36 484 0.05 0.02 0.012 80 989 0.45 0.08 0.013 120 6,674 3.51 0.34 0.04Table 7: Searching for a kernel in board(4; 2m; 0; 0; 1; 3; 1), strati�ed encoding.(they do not have extensions). kernel.b.board 4; 2m+ 1; 0; 0; 1; 3; 1m jDj NCPP timef timel timea1 24 914,523 41.95 13.70 2.012 40 1,153,615,536 � � 2,438.99Table 8: Searching for a kernel in board(4; 2m+ 1; 0; 0; 1; 3; 1), non-strati�ed encoding.Again, once a strati�ed encoding was used, DeReS performance improved dramatically, as reportedin Table 9. kernel.board 4; 2m+ 1; 0; 0; 1; 3; 1m jDj NCPP timef timel timea1 60 671 0.13 0.03 0.012 100 3,157 1.35 0.15 0.02Table 9: Searching for a kernel in board(4; 2m+ 1; 0; 0; 1; 3; 1), strati�ed encoding.Finally, the same poor performance of DeReS on theories without good relaxed strati�cation isobserved for the default theories hamilton.board n; 2; 0; 0; 1; 0; 0 that encode the existence of hamiltoniancycles in ladder graphs board(n; 2; 0; 0; 1; 0; 0) (Tables 10 and 11). It is worth noting that, to the bestof our knowledge, these theories do not possess equivalent theories with small strata.The results in this section demonstrate, on one hand, the importance of good search space pruningtechniques and, on the other, the need for the programmer to understand them and to take full advantageof them. In particular, when solving problems by means of default logic, an e�ort should be made toalways encode the problems by means of theories which admit relaxed strati�cation into strata of smallsizes.7 Conclusions and future workWe described a comprehensive environment for computation with default logic of Reiter. The imple-mentation, the Default Reasoning System (DeReS) is capable of handling large default theories, oftenwith thousands of defaults. Our paper reports the results of the past 5 years when DeReS has beenimplemented and experimented with.DeReS performs signi�cantly better if the programmer writes a program (a default theory) thatis disjunction-free and possesses a �ne relaxed strati�cation. This implies that good programmingpractices in DeReS require that the programmer submits (if possible) a theory with these desirableproperties. From this perspective, DeReS is not much di�erent from other declarative languages suchas Prolog or LDL[Zan88]. That is, the programmer writes a declarative program, but the ease with32



hamilton.board n; 2; 0; 0; 1; 0; 0 , one solutionn jDj NCPP timef timel timea2 13 260 0.02 0.01 0.013 21 5248 0.55 0.11 0.014 29 121371 16.92 2.56 0.305 37 2598270 488.29 65.32 5.676 45 52139039 > 2 hrs: 1365.10 111.67Table 10: Finding a hamiltonian cycle in board(n; 2; 0; 0; 1; 0; 0).hamilton.board n; 2; 0; 0; 1; 0; 0 , all solutionsn jV j jEj jDj K NCPP CAND timef timel timea2 4 4 13 8 1027 129 0.06 0.02 0.013 6 7 21 14 33239 1719 3.74 0.66 0.084 8 10 29 20 809973 26278 129.29 17.17 1.935 10 13 37 26 17478917 417441 4030.99 413.73 39.886 12 16 45 32 352170869 6672528 > 2 hrs: > 2 hrs: 789.35Table 11: Finding all hamiltonian cycles in board(n; 2; 0; 0; 1; 0; 0). (There are two solutions for each ofthese theories.)which DeReS is able to solve the problem depends on the syntactic form of the theory (i.e. of DeReSprogram).In order to demonstrate that DeReS can handle large and diverse examples, we implemented abenchmarking environment for nonmonotonic reasoning, the TheoryBase. Building on the work ofKnuth (The Stanford GraphBase) and the systematic technique for implementing constraints as de-faults (outlined in Section 4.5) we were able to construct large examples of default theories. Theseexamples can be used as benchmark problems for DeReS. Moreover, by using families of similar graphsas underlying structures, we were able to construct parameterized families of default theories, thuscreating families of benchmarks. Those families allow us to extrapolate the behavior of the algorithmsunderlying DeReS.Although our benchmarking system was implemented expressly to facilitate experimentation withDeReS, the TheoryBase can be used alone { without DeReS. All nonmonotonic reasoning systems cannow use the TheoryBase as a tool for benchmarking.Currently we are working on several improvements to DeReS that, we expect, will lead to a betterperformance. Those improvements can, roughly, be categorized in three main thrusts. First, we needbetter cluster-handling techniques. Those are necessary especially in the situation when the programdoes not admit a �ne relaxed strati�cation. Second, the natural parallelism implied by the structureof the search tree associated with the default theory makes it possible to apply tools such as PVM(Parallel Virtual Machine) or DIB (Distributed Implementation of Backtracking) for speeding up DeReSperformance. Third, a natural structure of the acyclic graph of clusters associated with the relaxedstrati�cation, allows for a better control of backtracking (in e�ect, backjumping). We expect thatthe cumulative e�ect of all these techniques will result in signi�cant improvements over the currentperformance of DeReS.AcknowledgmentsThis work was partially supported by the NSF grants IRI-9400568 and IRI-9619233.33
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