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1 Probability Spaces

Probability theory is concerned with events whose outcomes are not known ahead. Rather,
the likelihoods of various outcomes are known. Formally, the set of outcomes is called a
sample space S. For example, if the event is a coin flip, then S = {H,T}. If the event is
the time of arrival of the next request for service at a server, then S is the nonnegative real
numbers. We will be concerned with sample spaces of two types – discrete (meaning finite
or countable) and continuous (ie the real numbers, or the nonnegative real numbers or an
interval of real numbers). We need a way of specifying probabilities for sets of outcomes.
The probabilities should satisfy various properties (we use P (A) to denote the probability
that some outcome in the set A occurs):

a. P (A) ≥ 0 for any A.

b. If A is a subset of B, then P (A) ≤ P (B).

c. If A and B are disjoint, then P (A ∪B) = P (A) + P (B).

d. P (S) = 1, P (∅) = 0.

Note that (b) follows from (a) and (c). It also follows that P (A ∪B) = P (A) + P (B)−
P (A ∩B) (exercise: prove this) and, A ⊂ B implies P (B −A) = P (B)− P (A) (so P (A) =
1 − P (A), where A is the complement of A). The pair (S, P ) will be called a probability
space.

In the case of a discrete sample space, this means that we must attach a number, P (x),
to each x ∈ S, such that 0 ≤ P (x) ≤ 1, and the sum of all the P (x)s is 1. For example, in
flipping a coin, the coin is “fair” if P (H) = P (T ) = 1

2
.

In the case of a continuous sample space, say the nonnegative reals, we must specify,
for each interval [0, a], a nonnegative real number P ([0, a]), such that P ([0, a]) ≤ P ([0, b]) if
a < b, and lima→∞ P ([0, a]) = 1. Then for 0 ≤ a ≤ b, P ((a, b]) = P ([0, b])− P ([0, a]). Prob-
abilities of open intervals can be expressed as limits of probabilities of closed intervals (eg
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P ((a, b)) = limc→b− P ((a, c]),). This allows us to specify probabilities for all sets which are
unions of open and closed intervals. It is important to note that in a continuous probability
space, not all sets have probabilities (this is difficult to prove). Moreover, the probability of
a single point is often zero.

The function F (x) = P ([0, x]) is called the probability distribution function, and its
derivative, f(x) = F ′(x), if it exists, is called the probability density function. F (x) is an
antiderivative (indefinite integral) of f(x), and F (0) = 0, so F (a) =

∫ a
0 f(x)dx. For example,

the exponential distribution is defined by f(x) = λe−λx, where λ is a positive constant. Then
F (a) =

∫ a
0 λe

−λxdx = 1− e−λa. We will often assume that arrival times at queues satisfy an
exponential distribution. λ is called the arrival rate in this case. Exponential distributions
have the property that as x increases, it is less and less likely to occur.

Another important example is the uniform distribution. Here S = (0, 1), and f(x) = 1
if x ∈ S, and f(x) = 0 if x /∈ S. Thus F (a) = a if 0 ≤ a ≤ 1. More generally, P ([a, b]) =
b− a, a ≤ b, a, b ∈ S. Thus all outcomes are equally likely.

As a third example, let a be a fixed point, and define P (A) = 1 if a ∈ A, P (A) = 0 if
a /∈ A.

From now on we will use the term event for a subset of a probability space for which a
probability is defined.

2 Composite probability spaces and conditional prob-

abilities

We often want to discuss probabilities of combinations of events. Let S1, S2 be two sample
spaces, with probabilities P1, P2. We can define a new probability space S = S1 × S2, with
P (A × B) = P1(A)P2(B). (S, P ) is the composite of (S1, P1) and (S2, P2). For example,
flipping two coins is the composite of two coin flips. If the first coin satisfies P1(H) = p,
so P1(T ) = 1 − p, and the second P2(H) = q, so P2(T ) = 1 − q, then P ( two heads) =
pq, P ( a head and a tail) = p(1 − q) + q(1 − p), P ( at least one head) = p(1 − q) + q(1 −
p) + qp = 1− (1− p)(1− q), etc.

Moreover, if S is a composite space, then we can speak of the conditional probability of
an event A given that some other event B occurs, denoted P (A | B). We have

P (A | B) =
P (AB)

P (B)
.

A and B are called independent events if P (A | B) = P (A), ie P (A)P (B) = P (AB). For
example, the probability of two heads given that the first coin is a head is

P (2 heads | first coin head) = P (two heads and first coin head)/P (first head)
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= P (two heads)/P (first coin head)

= pq/p

= q,

and
P (2 heads) = pq,

which is not equal to q (unless p = 1), so these are not independent events. But

P (first coin head|2nd coin head) = P (2 heads)/P (2nd coin head)

= pq/q

= p,

P ( first coin head) = p,

so these are independent events.
Two useful formulas are the following, called Bayes’ formulas:

P (A|B) =
P (B|A)P (A)

P (B)
,

P (A) = P (A | B)P (B) + P (A | B̄)(1− P (B))

where B̄ is the complement of B. (exercise: prove them).

3 Random Variables

We are often concerned with some function of an event. E.g., in rolling dice, we are concerned
with the total rolled, not the actual pair of numbers. Such a function is called a random
variable. If X is a random variable, and T is a set of values in the range of X, then we define
P (X ∈ T ) to be the probability of the set of points a such that X(a) ∈ T . If t is a single
value in the range of T , we write P (X = t) = P (X ∈ {t}). For example, in the case of dice, if
we assume the probability of each number on a die is 1/6, and X is the random variable “the
sum of the values on two dice” then P (X = 5) = P ((1, 4))+P ((2, 3))+P ((3, 2))+P ((4, 1)) =
4/36.

As another example, suppose we toss a coin with P (H) = p until a tail appears. Let
N denote the number of heads before the first tail. Then P (N = 0) = 1 − p, P (N =
1) = p(1 − p), P (N = 2) = p2(1 − p), and in general, P (N = k) = pk(1 − p). Note that
P (N = anything) =

∑
pn(1 − p) = (1 − p)/(1 − p) = 1, as it should. Random variables

such as this and the previous example, whose ranges are discrete sets, are called discrete
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random variables, and all probabilistic questions can be answered by the probabilities that
they equal single values, f(a) = P (X = a) (the probability mass function).

The distribution function of the real valued (or continuous) random variable X is defined
as F (a) = P (X ≤ a), and the density function of X (if it exists) is the derivative of
F, f(a) = F ′(a). These functions are defined for all real values. F (a) is nondecreasing
and tends to 0 and 1 at positive and negative infinity, respectively. As with probability
distributions, all probabilistic questions about X can be answered by F (a) (or f(a)).

4 Examples of random variables

1. Bernoulli trials: If an experiment can be classified a success or failure, define X = 0
if success, X = 1 if failure. X is called a Bernoulli trial. The probability mass is
defined by p(0) = 1−p, p(1) = p, for some p, 0 ≤ p ≤ 1. The example of coin tossing is
a Bernoulli trial. In the dice example, we might consider a 7 or 11 a success, anything
else a failure, so p = P (7) + P (11) = P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6),
(6, 5)}) = 8/36 = 2/9. Delivery of a bit is a typical Bernoulli trial.

2. Binomial random variable: Suppose n independent trials are performed, each with
probability p of success. Let X be the number of successes in the n trials. X is
the binomial random variable with parameters (n, p). We have p(i) =

(
n
i

)
pi(1 −

p)n−i, i = 0, 1, . . . , n. For example, if four fair coins are flipped, the probability of

two heads is p(2) =
(

4
2

)
(1

2
)2(1

2
)2 = 3

8
. If an eight bit byte is transmitted, and the

probability of a single bit being damaged is .1, then the probability of at least two
errors is 1−

(
8
0

)
(.9)8 −

(
8
1

)
(.9)7(.1)1 = .18689527.

3. Poisson random variable: X, whose range is the nonnegative integers, is Poisson
with parameter λ if p(i) = e−λ(λi)/(i!), i = 0, 1, . . . A binomial random variable with
parameters (n, p) can be approximated by a Poisson random variable with λ = np, if
n is large (Poisson random variables are generally easier to compute with).

4. Uniform random variable: X is uniform over (0, 1) if f(x) = 1 for 0 < x <
1, f(x) = 0 otherwise. Thus P (a ≤ X ≤ b) =

∫ b
a 1dx = b− a, if 0 ≤ a ≤ b ≤ 1.

5. Exponential random variable: X is exponential with parameter λ > 0 if f(x) =
λe−λx for nonnegative x, and f(x) = 0 for negative x. Thus F (a) = 1−e−λx. The time
between consecutive arrivals at a queue and service times at a resource are frequently
assumed to be exponential random variables.
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5 Expectations

We want a notion of average value of a random variable. In the discrete case, if X has mass
p(x), we define E[X] =

∑
xp(x). In the continuous case, if X has density f(x), we define

E[X] =
∫∞
−∞ xf(x)dx. E[X] is called the expected value of X. Examples:

1. Bernoulli trials with parameter p: E[X] = 0× (1− p) + 1× p = p.

2. Binomial with parameter (n, p):

E[X] =
n∑
i=0

iP (i)

=
n∑
i=0

i

(
n

i

)
pi(1− p)n−i

=
n∑
i=0

i
n!

i!(n− i)!
pi(1− p)n−i

=
n∑
i=1

n!

(i− 1)!(n− i)!
pi(1− p)n−i

= np
n∑
i=1

(n− 1)!

(i− 1)!(n− i)!
pi−1(1− p)n−i

= np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

= np(p+ (1− p))n−1

= np

3. Poisson random variable with parameter λ:

E[X] =
∞∑
i=0

i
e−λλi

i!

=
∞∑
i=1

e−λλi

(i− 1)!

= λe−λ
∞∑
i=1

λi−1

(i− 1)!

= λe−λ
∞∑
k=0

λk

k!

= λe−λeλ

= λ
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4. Uniform random variable over (a, b): f(x) = 1/(b− a) for a < x < b.

E[X] =
∫ b

a

x

b− a

=
b2 − a2

2(b− a)

=
b+ a

2

5. Exponential random variable with parameter λ:

E[X] =
∫ ∞
0

xλe−λxdx

= −xe−λx
∣∣∣∣∞
0

+
∫ ∞
0

e−λxdx

= 0− e−λx

λ

∣∣∣∣∞
0

=
1

λ

If g(x) is a function, and X is a random variable, we can define a new random variable
Y = g(X) and ask about its expectation. One way to do this is to compute the distribution
of Y from that of X. A second way is the following, known as the law of the unconscious
statistician:

Proposition 5.1 If X is discrete with mass pX(x), then E[g(X)] =
∑
g(x)pX(x). If X is

continuous with density fX(x) then E[g(X)] =
∫
g(x)fX(x)dx.

6 Joint distributions

We are often interested in probability statements concerning two random variables X and
Y at once. We define the joint probability distribution of X and Y to be F (a, b) = P (X ≤
a, Y ≤ b), any real a, b. We can derive the distribution functions FX and FY of X and Y from
F by FX(a) = P (X ≤ a) = P (X ≤ a, Y ≤ ∞) = F (a,∞) and similarly FY (b) = F (∞, b).

If X and Y are discrete, we define the joint probability mass p(x, y) = P (X = x, Y = y)
and pX(x) =

∑
y p(x, y), pY (y) =

∑
x p(x, y). If X and Y are continuous, we say they are

jointly continuous if there is a function f(x, y) (the joint density function) such that for
any sets A and B,P (X ∈ A, Y ∈ B) =

∫
A

∫
B f(x, y)dydx. The density functions fX(x) and

fY (y) can be derived from f(x, y) by fX(x) =
∫∞
−∞ f(x, y)dy, fY (y) =

∫∞
−∞ f(x, y)dx.
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If g(x, y) is a function of two variables, then E[g(X, Y )] =
∑
x

∑
y g(x, y)p(x, y), in the

discrete case, E[g(x, y)] =
∫∞
−∞

∫∞
−∞ g(x, y)f(x, y)dydx, in the continuous case.For example,

if g(x, y) = x+ y, then, in the continuous case,

E[X + Y ] =
∫ ∞
−∞

∫ ∞
−∞

(x+ y)f(x, y)dydx

=
∫ ∞
−∞

∫ ∞
−∞

xf(x, y)dydx+
∫ ∞
−∞

∫ ∞
−∞

yf(x, y)dydx

=
∫ ∞
−∞

xfX(x)dx+
∫ ∞
−∞

yf(x, y)dxdy

= E[X] +
∫ ∞
−∞

yfY (y)dy

= E[X] + E[Y ]

that is, the expected sum of two random variables is the sum of their expected values.
This result generalizes: if X1, . . . , Xn are random variables, and a1, . . . , an are real numbers,
then E[a1X1 + . . . + anXn] = a1E[X1] + . . . + anE[Xn]. Exercise: use this to compute the
expectation of a binomial random variable.

X and Y are said to be independent if P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b).
It follows that F (a, b) = FX(a)FY (b), p(x, y) = pX(x)pY (y) if X and Y are discrete, and
f(x, y) = fX(x)fY (y) if X and Y are continuous. Exercise: if X and Y are independent
continuous random variables, prove that E[XY ] = E[X]E[Y ].

7 Higher moments

The expected value E[X] of a random variable X is also referred to as the first moment
or mean. E[Xn], n a positive integer, is referred to as the nth moment, and provides
additional information on average behavior. Another interesting quantity is the variance
V ar(X) = E[(X − E[X])2]. This measures the expected square of the deviation of X
from its expected value, ie, how scattered the values of X are likely to be. Note that
V ar(X) = E[X2 − 2XE[X] + E[X]2] = E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2.

For example, if X is Poisson with parameter λ, we know E[X] = λ, so V ar(X) =
E[X2]− λ2. Now

E[X2] =
∞∑
0

i2
e−λλi

i!

= e−λ
∞∑
1

i
λi

(i− 1)!
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= e−λ(λ
∞∑
1

λi−1

(i− 1)!
+ λ2

∞∑
2

λi−2

(i− 2)!

= e−λ(λ+ λ2)eλ

= λ+ λ2

so V ar(X) = λ.
Now suppose X is exponentially distributed with parameter λ. Then E[X] = 1/λ, so

V ar(X) = E[X2]− 1/λ2.

E[X2] =
∫ ∞
0

x2λe−λxdx

= −x2e−λx
∣∣∣∣∞
0

+
∫ ∞
0

2xe−λxdx

= 0 +
2

λ
E[X]

=
2

λ2

so V ar(X) = 1/λ2.

8 Exponential distribution

A random variable X is said to be memoryless if for all s, t ≥ 0, P (X > s + t | X >
t) = P (X > s). If X is the time until the next request for service in seconds, it says the
probability that the next request doesn’t come in s + t seconds given that it has not come
by t seconds is the same as the initial probability that it does not come in s seconds. In
other words, if no request arrives by time t, then the distribution of the remaining time
until an arrival is the same as the distribution of the original time until an arrival, i.e.
the arrivals forget that nothing has arrived in t seconds. The condition is equivalent to
P (X > s + t) = P (X > s)P (X > t). It is simple to check that the exponential random
variable is memoryless. It can also be proven that any memoryless random variable is
exponential.

If X represents the interarrival time as above, we can define the arrival rate function
r(t) = f(t)/(1 − F (t)). To interpret r(t), suppose no arrival has occurred in t units, and
we want the probability that an arrival occurs within dt units. This is P (X ∈ (t, t + dt) |
X > t) = P (X ∈ (t, t + dt), X > t)/P (X > t) = P (X ∈ (t, t + dt))/P (X > t), which is
approximately f(t)dt/(1 − F (t)) = r(t)dt. So r(t) is the probability density of an arrival
after t units of waiting. If X is exponential, f(t) = λe−λt, and F (t) = 1− e−λt, so r(t) = λ.
Thus the arrival rate is constant. λ is often called the arrival rate of X.
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9 Stochastic processes: the Poisson process

A stochastic process is a collection R = {X(t), t ∈ T} of random variables, for some index set
T . T may be discrete or continuous and we call R discrete or continuous accordingly. T is
often interpreted as time, and X(t) as the state of a system at time t. The range of the X(t)s
is then referred to as the state space of the system. For example, we can model a queue by a
stochastic process {X(t)}, with index set the nonnegative reals, where X(t) is the number of
tasks in the queue at time t. A special case of a stochastic process is a counting process. This
is a stochastic process {N(t)} in which N(t) is the number of occurrences of some event.
Hence in a counting process, N(t) ≥ 0, and N(t) is integer valued and nondecreasing. For
example, if N(t) is the number of arrivals at a queue up to time t, then N(t) is a counting
process, as is the process M(t) = the number of requests that have been granted service up
to time t. Note that X(t) = N(t)−M(t) is the number of requests in the waiting queue at
time t. Two processes {X1(t)} and {X2(t)} are independent if for each t,X1(t) and X2(t)
are independent random variables.

A process has independent increments if the numbers of events occuring in disjoint inter-
vals are independent. This is typically assumed in the case of queueing systems. It would
mean for example that the number of arrivals between the tenth and twentieth seconds is
independent of the number of arrivals in the first five seconds. This assumption is really not
quite valid (since most computing systems are closed - ie have a bounded number of tasks
- the number of tasks awaiting service will affect the number that are likely to arrive), but
makes the analysis tractable, and is often close to being valid.

If N is a counting process and I = [a, b] is any interval, we can define a random variable
XI = N(b) − N(a) = the number of events in the interval I. N is said to have stationary
increments if XI depends only on the length of I, ie if J is another interval with the same
length as I, then XJ and XI have the same distribution. This assumption is reasonable
in a system whose behavior does not vary, say, with the time of day. For example, it is
not reasonable to assume stationary increments for numbers of arrivals at a bank (nobody
arrives at night). This is another simplifying assumption that makes analysis tractable.

A counting process {N(t), t ≥ 0} is a Poisson process with rate λ > 0 if

a. N(0) = 0,

b. N has independent increments, and

c. the number of events in any interval of length t is Poisson distributed with mean λt.

I.e., for all s, t ≥ 0, and n ≥ 0,

P (N(t+ s)−N(s) = n) =
e−λt(λt)n

n!
.
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Note that this implies that a Poisson process has stationary increments. The first two
conditions are usually easy to verify by the nature of our assumptions about N , but the
third is difficult to verify. In order to simplify this, we have

Theorem 9.1 N is a Poisson process if and only if

i. N(0) = 0,

ii. N has stationary, independent increments,

iii. P (N(h) = 1) = λh+ o(h),

iv. P (N(h) ≥ 2) = o(h).

(Recall that a function f is o(h) if limh→0(f(h)/h) = 0.)

Thus the probability of one event in a small interval is approximately proportional to
the length of the interval, with proportion λ, and the probability of two events is negligible.

Now suppose N is a Poisson process, and let T1 be the time of occurence of the first event,
and Tn be the time between the occurences of the (n− 1)th and nth events. The sequence
{Tn, n = 1, 2, . . .} is called the sequence of interarrival times. We wish to determine the
distributions of the Tn. First note that T1 > t iff no events occur in [0, t], so P (T1 > t) =
P (N(t) = 0) = e−λt. So T1 is exponentially distributed with parameter λ. Moreover,

P (T2 > t) =
∫ ∞
0

P (T2 > t | T1 = s)ds = E[P (T2 > t|T1)].

But

P (T2 > t | T1 = s) = P ( no events in (s, s+ t]|T1 = s)

= P ( no events in (s, s+ t]), by independent increments,

= e−λt.

Thus T2 is exponentially distributed with parameter λ, and also is independent of T1. Re-
peating this gives

Proposition 9.2 Tn, n = 1, 2, . . . are independent identically distributed exponential ran-
dom variables with parameter λ (ie, mean = 1/λ).

This makes sense. The assumption of stationary, independent increments says the system
“restarts” itself at each instant, ie, has no memory. Note that we can recover N(t) from
{Ti} : N(t) = n if and only if n is the least integer such that

∑n
i=1 Ti ≤ t. In fact, if we
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start with {Ti}, independent identically distributed exponential random variables, then the
stochastic process defined as above will be Poisson. Thus this is an equivalent definition of
a Poisson process.

We are also interested in the waiting time Sn until the nth event, which is
∑n

1 Ti. It can
be shown that the density function fSn of Sn is λe−λt(λt)n−1/(n − 1)!. This distribution is
called the gamma distribution, and has mean n/λ, and variance n/λ2 (exercise: prove this).

Suppose {N1(t)} and {N2(t)} are independent Poisson processes, with rate λ1 and λ2

respectively. We can define N(t) = N1(t) + N2(t). We claim that N(t) is also a Poisson
process, with rate λ1 + λ2. This can be seen most easily from the theorem above, since

P (N(h) = 1) = P (N1(h) = 1)P (N2(h) = 0) + P (N1(h) = 0)P (N2(h) = 1)

= λ1h(1− λ2h) + (1− λ1h)λ2h+ o(h)

= (λ1 + λ2)h+ o(h), and

P (N(h) > 1) = P (N1(h) > 1) + P (N2(h) > 1) + P (N1(h) = 1)P (N2(h) = 1)

= o(h) + o(h) + λ1hλ2h+ o(h)

= o(h).

On the other hand, suppose that N(t) is a Poisson process with rate λ, and the events
seperate into two classes, such that the probability that an event is of the first class is p. Let
N1(t) and N2(t) be the number of class 1 and class 2 arrivals up to time t. Then it can be
shown that N1(t) and N2(t) are independent Poisson processes with rates λp and λ(1− p),
respectively.
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