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Abstract

Feedback with carry shift registers (FCSRs) are a class of finite state devices that are similar
to linear feedback shift registers (LFSRs) in their simplicity and statistical randomness, and
in that they have algebraic tools for the analysis of their output. In this paper we describe
and analyze an alternative architecture for FCSRs that is similar to the Galois architecture for
LFSRs. We also explore architectural considerations for d-FCSRs, a natural generalization of
FCSRs. Finally, we describe a general framework for algebraically modeling LFSRs, FCSRs,
and d-FCSRs in both their Fibonacci and Galois architectures.

1 Introduction

Pseudorandom binary sequences with various statistical properties (such as high linear span, low
cross-correlation values, high pairwise Hamming distance) are important in many areas of commu-
nications and computing, such as cryptography, spread spectrum communications, error correcting
codes, and Monte Carlo integration. Linear feedback shift registers (LFSRs) provide an econom-
ical, fast, and efficient method for generating a wide variety of pseudorandom sequences. During
the last few years, the feedback-with-carry shift register (FCSR) architectures and a simple modi-
fication, the d-FCSR architectures, have been investigated as alternative methods for the efficient
generation of long pseudorandom binary sequences ([8, 10, 21, 1]). The analysis of FCSR sequences
has quite a different flavor from that of LFSR sequences, although they share an incredible list of
parallel properties (see [8, 9, 11, 12, 5]). The FCSR circuits described in these papers resemble
the “Fibonacci” configuration of the linear feedback shift register. The current paper has three
objectives:
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1. to develop and analyze the “Galois” configuration architecture for FCSRs and d-FCSRs
(cf.[18]);

2. to analyze the output sequences of d-FCSR generators and to give a relatively simple proce-
dure for choosing feedback parameters for a d-FCSR; and

3. following [13], to formalize the notion of a mathematical “model” for a finite state machine
with output, and to find such models for LFSR, FCSR, and d-FCSR generators, both in their
Fibonacci and Galois configurations.

Even in the case of LFSR’s, some of these results appear to be new. We now describe these three
points in greater detail.

Galois and Fibonacci configurations. (See Section 2.) Recall that a LFSR in the Fibonacci
(Figure 1) configuration has several tapped cells. With each clock cycle, the contents of the tapped
cells are added and the sum (modulo 2) is returned to the first cell of the shift register. It is well
known that if the corresponding connection polynomial is irreducible with degree r and if α ∈ F2r

is a root, then the output sequence may be described by

ai = Tr(α−i) ∈ F2, (1)

where Tr is the trace function from F2r to F2. In the Galois representation (Figure 2), with each
clock pulse, the output of the last cell is introduced into each of the tapped cells simultaneously,
where it is added (modulo 2) to the contents of the preceding cell. Appropriately configured, the
same output may be obtained. In Section 2.1 and 2.2 we review the standard facts about these
two configurations, including the “power series” method of analysis and the determination of the
initial loading of the registers.

In its simplest form (Figure 3), an FCSR consists of a shift register with a small amount of
auxiliary memory containing a nonnegative integer. The contents (0 or 1) of the tapped cells are
added as integers to the current contents of the memory to form a sum σ. The parity bit, σ mod 2
is fed back into the first cell while the higher order bits bσ/2c are retained for the new value of the
memory. The output is taken from the last cell and (for appropriate choice of feedback connections)
the output sequence is given by

ai = 2−i(mod q)(mod 2). (2)

In Section 2.3 we review the power series analysis of the FCSR in this “Fibonacci” configuration.
One might ask whether there is an analogous “Galois” representation for the same FCSR sequences.
Such a representation was first discussed in [18]. In Section 2.4 we carry out the power series analysis
of the Galois architecture for FCSR sequences. It turns out that the Galois representation is more
efficient than the Fibonacci representation since the additions occur simultaneously (“in parallel”)
and each individual sum involves no more than 3 bits. Moreover the analysis of the initial state is
also simpler.
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Algebraic Models. (See section 3.) Equations (1) and (2) amount to representations of the ac-
tions of certain LFSRs and FCSRs in their Fibonacci configurations by the action of multiplication
by a fixed element in a ring. In Section 3 of this paper we formalize this notion as an algebraic
model for a finite state automaton, and describe models for general LFSR’s and FCSR’s, both in
their Galois and Fibonacci configurations. (We also describe models for d-FCSR’s in Section 4.)
In each case we discover the surprising fact that the natural model for the Fibonacci configuration
involves a map from the ring to the set of states (that is, an injective model), while the model
for the Galois configuration is simpler and involves a map from the set of states to the ring (that
is, they a projective model). Even for the case of LFSR’s, the model may be fairly subtle if the
connection polynomial is reducible.

d-FCSR sequences. (See Section 4.) There is an enormous collection of variations on the basic
FCSR architecture which have also been analyzed to varying degrees ([7, 8, 10, 13, 14, 15]). Perhaps
the simplest of these variations is the d-FCSR (Figure 5), in which the feedback bit is computed
but is delayed for d − 1 clock cycles before being fed back. This architecture also has a “Galois”
representation which we describe (Figure 10) and for which we also construct models (see below).
In this paper we show how to configure these circuits so as to output pseudorandom sequences
of the form ki(mod q)(mod 2) with choices for k other than k = 2−1. It is surprising that such
complex feedback mechanisms can be analyzed at all, especially considering the tremendous but
largely unsuccessful effort which has been directed toward the analysis of “nonlinear” feedback
shift registers over the last thirty years.

Throughout this paper, Z denotes the integers; Q denotes the rational numbers, and Fq denotes
the Galois field with q elements.

Acknowledgements. Both authors would like to thank the Institute for Advanced Study in
Princeton N.J. for its hospitality and support while this paper was being prepared.

2 Architectures

In this section we describe the architecture of LFSRs and FCSRs. In each case we describe both
Fibonacci and Galois architectures. Although this material on linear feedback shift registers is
classical [3] and well known [22], it is repeated here so as to motivate the analysis of the FCSR and
d-FCSR architectures. For the purposes of this article, the contents ai of each cell is a bit (ai ∈ F2),
as are the multipliers qi, although exactly the same analysis holds when ai, qj are considered to be
elements of some finite field. (For this reason, we do not automatically convert all −1’s to +1’s.)

2.1 LFSRs: Fibonacci Architecture

Let us recall some standard facts concerning the Fibonacci representation LFSRs [3].
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Figure 1: Fibonacci LFSR.

The register is initially loaded with bits a0, a1, . . . , ar−1. With each clock cycle these bits are
added (modulo 2) with weights given by the multipliers qi and the resulting bit

ar =
r−1∑
i=0

qr−iai (mod 2) (3)

is fed back into the first cell. This equation is evidently a linear recurrence over the field F2. (See
[16] §7 p. 454. The “Fibonacci” designation refers to the fact that the famous Fibonacci series
1, 1, 2, 3, 5, 8, . . . is generated by a similar linear recurrence ar = ar−1 + ar−2 over the integers.)

To each LFSR of length r, one associates the connection polynomial

q(X) = qrX
r + qr−1X

r−1 + · · ·+ q1X − 1

where q1, q2, . . . , qr correspond to the r taps on its cells. Some authors consider instead the poly-
nomial

b(X) = −Xrq(
1
X

) = Xr − q1X
r−1 − · · · − qr−1X − qr

Then α is a root of q(X) if and only if α−1 is a root of b(X).
There are (at least) three different approaches to the analysis of the output sequence: the power

series method, which is described in the next paragraph, and the Galois field and the ring-theoretic
models, described in Section 3.1.

Power series method. Any infinite binary sequence a = (a0, a1, a2, . . .) may be identified with
its generating function A(X) =

∑∞
i=0 aiX

i which is an element of the ring F2[[X]] of formal power
series with coefficients in the integers modulo 2. It is well known (and follows directly from the
formula for the sum of a geometric series) that the sequence a is eventually periodic if and only if
its generating function is equal to the quotient of two polynomials,

A(X) =
h(X)
q(X)

∈ F2[[X]]
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and it is strictly periodic if and only if deg(h(X)) < deg(q(X)). In this case, the denominator q(X)
is the connection polynomial for a LFSR which generates the sequence a. The numerator h(X)
corresponds to the initial loading; they are related by

h(X) =
r−1∑
k=0

k∑
i=0

qiak−iX
k (4)

where q0 = 1 and where a0, a1, . . . , ar−1 denotes the initial contents of the cells (cf. [3] §2.5 p.30,
or [16] thm. 8.40, p. 416).

2.2 LFSRs: Galois Architecture

In the Galois representation (Figure 2), with each clock cycle the output of the last cell is introduced
into each of the tapped cells simultaneously, where it is added (modulo 2) to the contents of the
preceding cell.

��
��

��
��

��
��

��
��

qr qr−1 · · · q2 q1

ar−1 · · · a1 a0k k k+ + +
6 6 6

- - - -- - - -

Figure 2: Galois LFSR.

Let q1, q2, . . . , qr denote the feedback multipliers. The recurrence equations are then given by

a′i = ai+1 + qi+1a0 for 0 ≤ i ≤ r − 2
a′r−1 = qra0.

As above, form the connection polynomial q(X) = −1 +
∑r

i=1 qiX
i.

The same three methods may be used to analyze the Galois configuration: the power series
method (described in the next paragraph), the Galois field model, and the ring theoretic model
(described in Section 3.2. However, there is a difference: in the Fibonacci representation the model
is injective (cf §1) while in the Galois representation the model is projective. (See Theorems 3.1
and 3.2 of Section 3). Moreover, Formula (5) for the initial loading is considerably simpler than is
formula (4) for the Fibonacci configuration.

Power series method. Suppose b = (b0, b1, b2, . . .) is a strictly periodic (infinite) binary se-
quence, so its generating function B(X) =

∑
biX

i is the quotient of two polynomials, B(X) =
−h(X)/q(X) with deg(h) < deg(q).
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Theorem 2.1 The denominator q(X) is the connection polynomial for a (Galois)-LFSR which
generates the sequence b. The numerator −h(X) determines (and is determined by) the initial
loading a0, a1, . . . , ar−1; they are related by

h(X) = a0 + a1X + · · ·+ ar−1X
r−1 (5)

Proof: We briefly indicate how to prove this well-known result because a similar method will be
needed when we consider the Galois FCSR and the Galois d-FCSR architectures. First observe
that for any loading (a0, a1, . . . , ar−1) of the shift register, the first output bit b0 equals the first
coefficient a0 in the power series expansion of −h(X)/q(X) (where h(X) =

∑r−1
i=0 aiX

i). In partic-
ular qB+h has no constant term so it is divisible by X. Now run the shift register by one cycle to
obtain a new loading a′0, a

′
1, . . . , a

′
r−1 (5), a new function h′(X) =

∑r−1
i=0 a

′
iX

i and a new generating
function B′(X) =

∑∞
i=0 b

′
iX

i for the output sequence. (So b′i = bi+1.) By direct computation,
XB′ = (B− b0) and Xh′ = (h+ a0q). Hence X(qB′ +h′) = qB+h. By the above observation, the
constant term of qB′ + h′ vanishes as well, which is to say, qB+ h is divisible by X2. By induction
we find that Xn(qB(n) + h(n)) = qB + h, and so qB + h is divisible by Xn for all n, which is to
say, it equals 0. Hence B(X) = −h(X)/q(X). 2

2.3 FCSRs: Fibonacci Architecture

In the FCSR architecture (Figure 3), introduced in [8], the basic shift register is provided with a
small amount of auxiliary memory m which is a nonnegative integer. The contents (0 or 1) of the
tapped cells are added as integers to the current contents of the memory to form an integer sum
σ. The parity bit σ mod2 is fed back into the first cell of the shift register while the higher order
bits bσ/2c are retained for the new value of the memory. So the new values (a′0, a

′
1, . . . , a

′
r−1;m

′)
are related to the old values (a0, a1, . . . , ar−1;m) by

a′i = ai+1 for 0 ≤ i ≤ r − 2

2m′ + a′r = m+
r∑

i=1

qiar−i.

It was shown in [8] (and can be seen from the above equations) that, for any initial nonnegative
memory value m, the memory will decrease exponentially until it lies within the range 0 ≤ m ≤
wt(q + 1) and will remain in that range forever after. (Here, wt(x) denotes the number of 1’s in
the binary expansion of the nonnegative integer x.) Therefore memory overflow will never occur
provided the FCSR is equipped with at least 1 + blog2(wt(q + 1))c memory bits.

To each FCSR one can associate a connection integer

q = qr2r + qr−12r−1 + · · ·+ q12− 1 ∈ Z.

To any infinite binary sequence a = (a0, a1, a2, . . .) one may associate the formal power series

α =
∞∑
i=0

ai2i. (6)
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Figure 3: Fibonacci FCSR.

The set of all such power series forms a ring under the obvious operations of addition and mul-
tiplication; this is the ring Z2 of 2-adic integers (an elementary review of which is provided in
[8]). The ring Z2 contains all fractions α = m/n with m,n ∈ Z, provided that n is odd. The fol-
lowing (number-theoretic) lemma characterizes those 2-adic numbers which are rational numbers.
Although it is elementary and well-known, it is basic to the study of FCSR’s so we provide a short
proof (cf. [8] thm 2.1, thm. 6.1, [13], [20] thm. 15.5 p. 458).

Lemma 2.2 The sequence a is eventually periodic if and only if its 2-adic integer α is a rational
number, in which case it can be expressed as such with an odd denominator. The sequence is strictly
periodic if and only if there exist nonnegative integers h and q, with q odd and 0 ≤ h ≤ q − 1 such
that α = −h/q. In this case the period of the sequence a divides φ(q) (the number of positive
integers between 1 and q which are relatively prime to q) and its i-th term is

ai = 2−ih (mod q) (mod 2) (7)

The reverse of this sequence is the binary expansion of the fraction h/q.

Here, 2−i denotes the inverse of 2 in Z/(q), and x (mod q) (mod 2) means that first the number
x ∈ Z/(q) is represented by an integer between 0 and q− 1, then this integer is reduced modulo 2.
Proof: Proof. The statement about eventually periodic sequences follows from the statements
about strictly periodic sequences, so suppose a is strictly periodic of some period, T . Let b =∑T−1

i=0 ai be the sum of the first T terms. Then

α = b+ 2T b+ 22T b+ · · · = −b
2T − 1

which is a rational number with 0 ≤ α < 1. Every factor of 2T − 1 is odd, so if this fraction is
reduced to its lowest terms we find α = −h/q with q odd and 0 ≤ h ≤ q − 1. Conversely suppose
that α = −h/q with 0 ≤ h ≤ q−1. Euler’s function φ(q) is the number of integers x relatively prime
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to q with 1 ≤ x ≤ q − 1. Recall that q divides 2φ(q) − 1 by Euler’s theorem. (The multiplicative
group of invertible elements in Z/(q) has order φ(q), so any invertible element raised to this power
is equal to 1 (mod q).) Set B = (2φ(q) − 1)/q so that

α =
−h
q

= − Bh

2φ(q) − 1
= Bh+Bh2φ(q) +Bh22φ(q) + · · · . (8)

But 0 ≤ h < q so 0 ≤ Bh < 2φ(q) − 1 hence the binary expansion of Bh has no more than φ(q)− 1
bits, so these binary expansions do not mix in the above expression. This shows that −h/q has a
2-adic expansion whose coefficient sequence a is strictly periodic of period φ(q), although this is not
necessarily the minimal period. It follows that the minimal period of the sequence a divides φ(q).
Now we verify equation (7). Let α′ =

∑∞
i=0 ai+12i be the 2-adic number which corresponds to the

strictly periodic sequence obtained from a by throwing away the first term. Then α′ = (α− a0)/2
or −h− qa0 = 2qα′, a statement which holds in Z2 but for which the left hand side is an integer.
Hence h+ qa0 is even, or, since q is odd,

a0 = h (mod 2).

Therefore
α′ = −(h+ qa0)/2

q
= −h′/q

is a rational number with the same denominator q and with numerator h′ = 2−1(h+qa0). Reading
this equation modulo q gives h′ = 2−1h (mod q). This shows that the sequence of numerators
is given by h, 2−1h, 2−2h, . . . (mod q) and the output sequence is obtained by first realizing these
numerators as integers between 0 and q, then reducing modulo 2, which verifies equation (7). The
last statement can be verified by direct computation using (8). This completes the proof of Lemma
2.2. 2

Caution: The mapping Z/(q) → Z/(2) (given by z 7→ z (mod 2)) is not a ring homomorphism,
and depends on the particular choice of a complete set M of representatives {0, 1, 2, . . . , p−1} ⊂ Z
for the elements of Z/(p). These representatives were chosen because they have the property that
for each h ∈M , the 2-adic expansion of the fraction −h/q is strictly periodic.

The first statement in the following analog of the “power series method” follows immediately
from Lemma 2.2. The identification of the numerator h is proven in [8].

Theorem 2.3 Let a = a0, a1, . . . be a strictly period binary sequence. Let α =
∑
ai2i be the

corresponding 2-adic number, say, α = −h/q with h, q ∈ Z and 0 ≤ h ≤ q− 1. Write q =
∑r

i=0 qi2
i

with qi ∈ {0, 1} for i > 0 and q0 = −1. Then q is the connection integer for a (Fibonacci) FCSR
which generates this sequence. The numerator h corresponds to the initial loading (a0, a1, . . . , ar)
of the register contents and initial memory m according to the following equation:

h = m2r −
r−1∑
k=0

k∑
i=0

qiak−i2k ∈ Z. (9)

(It follows that the full sequence may then be described by aj = 2−j (mod q) (mod 2).)
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2.4 FCSRs: Galois Architecture

The Galois representation [18] for an FCSR is illustrated in the Figure 4.
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? ? ?
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Figure 4: Galois FCSR.

Here, the bits q1, q2, . . . , qr are multipliers. The cells denoted c1, c2, . . . , cr−1 are the memory
(or “carry”) bits. The Σ sign represents a full adder. At the j-th adder, the following input bits
are received :

• aj from the preceding cell

• a0qj from the feedback line

• cj from the memory cell,

which are added to form a sum σj (with 1 ≤ j ≤ r− 1). At the next clock cycle, this sum modulo
2 is passed on to the next cell in the register,

a′j−1 = σj mod 2,

and the higher order bit is used to replace the memory,

c′j = σj div 2.

In other words, the new values a′j−1 and c′j are given by

2c′j + a′j−1 = a0qj + aj + cj for 1 ≤ j ≤ r − 1 (10)
a′r−1 = qra0.

To analyze the behavior of this circuit as before we define the connection integer

q = −1 + q12 + q222 + · · ·+ qr2r. (11)

The following result is an analog of the power series method.
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Theorem 2.4 Suppose an r-stage (Galois)-FCSR with connection integer q is initially loaded with
register and memory contents (a0, a1, . . . , ar−1) and (c1, c2, . . . , cr−1) respectively. Set

h = a0 + (a1 + c1)2 + · · ·+ (ar−1 + cr−1)2r−1. (12)

Then the output sequence b0, b1, b2 . . . of the FCSR is the coefficient sequence for the 2-adic expan-
sion of the rational number α = −h/q.

Proof: The proof is similar to that in the Galois-LFSR case. Given h and q as above, let
B =

∑∞
i=0 bi2

i denote the 2-adic integer which is represented by the output sequence. First we
claim that qB + h ∈ Z2 is divisible by 2 (meaning that it has no constant term). In fact,

qB = (−1 + q12 + q222 + · · ·)(b0 + b12 + b222 + · · ·)
= −b0 + 2(−b1 + q1b0) + · · ·

The constant term in qB + h is −b0 + a0(mod 2). However a0 is also the first output bit, that is,
a0 = b0, which verifies the claim.

Now run the shift register one step obtaining a new loading (a′0, . . . , a
′
r−1; c

′
1, . . . , c

′
r−1) given by

(10). Let B′ =
∑∞

i=0 b
′
i2

i denote the new 2-adic number represented by the output sequence of this
new state; so b′i = bi+1. Define h′ =

∑r−1
i=0 (a′i + c′i)2

i (writing c′0 = 0 for convenience) and calculate
that 2B′ = B − b0 and 2h′ = h+ a0q. Hence

2(qB′ + h′) = qB + h.

By the above claim, the constant term of qB′ + h′ vanishes as well, which is to say that qB + h is
divisible by 22. By induction we find that 2n(qB(n) + h(n)) = qB+ h, and so qB+ h is divisible by
2n for all n, which is to say that it equals 0. 2

3 Algebraic Models

Let M be a finite state machine with output whose state change function is denoted F . For
simplicity we assume the possible output values are 0 and 1. We say that a state of M is periodic
if the machine eventually returns to this state after finitely many iterations. This implies that the
output from M starting from this state is strictly periodic. Following [13] we define a model for M
to be a representation of M by an algebraic ring R. In such a representation, states correspond to
elements of R and the state change operation corresponds to multiplication by a fixed element of
R. Sometimes R represents only a subset of the states, and sometimes several states correspond to
the same element of R. More specifically, we say a set of periodic states L is closed if it is closed
under state change. It is complete if it consists of all the periodic states. A model consists of

1. a ring R together with an element β ∈ R and a mapping T : R→ {0, 1},
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2. a function between R and a closed set L of periodic states of M so that

3. the state change on L is given by x 7→ βx and

4. the output is given by T (x).

Hence, for a given initial state, the output sequence of the machine is given by

ai = T (βix).

Sometimes the function in (2) above is a mapping S : R → L ⊆ {periodic states of M}.
Condition (3) then says that for all x ∈ R we have S(βx) = F (S(x)). If this is the case and S is
one to one, we say the model is an injective model. If moreover L is complete and S is onto, then
we say the model is a complete injective model.

In other cases the function is a mapping E : L→ R. Condition (3) then says that for all x ∈ L
we have E(F (x)) = βE(x). If this is the case and E is onto, we say the model is a projective model.
If moreover L is complete and E is one to one, then we say the model is a complete projective model.

For complete models, an inverse mapping can be described. However, it may require a nontrivial
amount of computation to do so, particularly when attempting to describe the initial state of the
machine, cf. (4), (5), (9), (12).

The notion of models can be used to connect what are intuitively different architectures for
the “same” type of register. We construct a projective model for one architecture and an injective
model for a second architecture, using the same ring R and the same state change element β. The
composition of the models then connects the operation of the two architectures and makes precise
the relationship between the two.

3.1 LFSRs: Fibonacci Architecture

The Fibonacci architecture for LFSRs has traditionally been analyzed using representations of
sequences by powers of elements in Galois fields. This works very well when the connection poly-
nomial is irreducible and moderately well when it is a product of distinct irreducible polyomials.
In general, however, such representations become quite complicated. In this subsection we first see
that in the first two cases such representations fit into our notion of model. We then see that, using
injective models based on more general rings, we obtain very simple representations of arbitrary
LFSR sequences by powers of elements.

Galois field model. Suppose for the moment that the connection polynomial q(X) has degree r
(that is, qr 6= 0), and is irreducible. Then its roots all lie in the Galois field F2r . Fix any surjective
F2-linear mapping T : F2r → F2. (The usual choice is the trace, Tr(x) = x+x2 +x22

+ · · ·+x2r−1
,

but any linear mapping will do.) Choose a single root α ∈ F2r of the connection polynomial q(X).
To each z ∈ F2r associate the following state S(z) of the LFSR:
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T (α1−rz) T (α2−rz) · · · T (α−1z) T (z)

Theorem 3.1 Every state of the LFSR is periodic. The ring R = F2r , the function T : F2r →
Z/(2), and the mapping S : F2r → {periodic states} constitute a complete injective model for the
operation of the LFSR. The state change is given by z 7→ α−1z. The output sequence is given by
aj = T (α−jz).

Proof: The proof is standard (and elementary): α−1 is a root of b(X) so α−r =
∑r

i=1 qiα
i−r. The

injectivity and completeness follows from the fact that {1, α−1, · · · , α1−r} is a basis for F2r over
F2. 2

It is also possible to construct a projective model for the LFSR, namely E = S−1 : {states} →
F2r . This mapping associates to each state of the LFSR an element z ∈ F2r of the finite field and
the change of state is given by z 7→ α−1z. This may be accomplished under our assumption that
q(X) is irreducible because the elements {1, α, α2, . . . , αr−1} are linearly independent over F2, so
the equations T (zαi) = ai (0 ≤ i ≤ r − 1) may be solved uniquely for z ∈ F2r . However, solving
for z involves some nontrivial computation which is equivalent to inverting a matrix or finding a
dual basis for F2r .

Next, suppose that q(X) = g1(X)g2(X) · · · gm(X) is a product of irreducible factors gi(X) of
degree di, with no factor repeated, and that q(x) has degree r. The mapping S is no longer a one to
one correspondence: it becomes necessary to change the definition of the ring R. The roots of gi(X)
lie in the Galois field F2di . Let R = F2d1 × F2d2 × · · · × F2dm be the product ring with addition
and multiplication defined coordinate-wise. (It is not a field.) A choice αi ∈ F2di of root of each
gi(X) determines an element α = (α1, α2, . . . , αm) ∈ R. This element is invertible and its inverse is
α−1 = (α−1

1 , α−1
2 , . . . , α−1

m ). A choice of surjective linear mapping Ti : F2di → F2 determines a linear
mapping T : R→ F2 by T (a1, a2, . . . , am) =

∑
Ti(ai). To each element z = (z1, z2, . . . , zm) ∈ R we

may associate a state S(z) of the shift register,

T (α1−rz) T (α2−rz) · · · T (α−1z) T (z)

Then, as in Theorem 3.1 above, every state is periodic and this mapping S : R → {states} is
a complete injective model. The change of state is given by the mapping z 7→ α−1z. In summary,
each output sequence of the shift register may be expressed as the well-known linear combination
(cf. [16] thm. 8.21 p. 404),

ai = T (α−iz) =
m∑

j=1

Tj(α−i
j zj). (13)

If the connection polynomial q(X) has repeated factors, then the situation is more complicated
(see [6], [16] §8.23 p. 405, or [22] §5.3.3, §5.5.3). In the next subsection we follow [13] and display
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a model for the action of the shift register which holds for any connection polynomial q(X). This
model is implicit in [20] §7.3 and in [19].

Ring-theoretic model. Let F2[X] be the ring of polynomials in X with 0, 1 coefficients. Let
us denote the mapping F2[X] → F2 which assigns to each polynomial its constant term by z 7→
z (modX). It is a homomorphism of rings. The connection polynomial q(X) = −1+q1X+q2X

2 +
· · ·+ qrX

r generates an ideal (q) in this ring, and we consider the quotient,

R = F2[X]/(q).

We assume qr 6= 0 so that, in this ring,

Xr =
1
qr

(1− q1X − · · · − qr−1X
r−1) = 1 + q1X + · · ·+ qr−1X

r−1.

It follows that any element z ∈ R in this quotient may be uniquely represented as a polynomial
z(X) = z0 + z1X + · · · + zr−1X

r−1 of degree less than r, and for any such z ∈ R we will denote
its constant term by z0 = z (modX) ∈ F2. We define the mapping T : R → F2 by T (z) = z0
(T (z) = z (modX)).

Caution: As in Section 2.3, the mapping T is not a ring homomorphism. For example,
T (x · xr−1) = T (xr) = 1, whereras T (x)T (xr−1) = 0 · 0 = 0. Its definition depends on the
fact that we have first chosen a complete set of representatives in F2[X] for the elements of R,
consisting of polynomials of degree < r. There are many other possible choices for a complete set
of representatives, which may give different mappings R→ F2.

Since 1 = q1X + · · ·+ qrX
r (mod q) we see that X is invertible in R with

X−1 = q1 + q2X + · · ·+ qrX
r−1 (14)

and that
X−r = q1X

−(r−1) + q2X
−(r−2) + · · ·+ qrX

0

For any z ∈ R we may associate the following state S(z) of the shift register,

X−r+1z (q)(X) · · · X−1z (q)(X) z (q)(X)

where (q)(X) denotes (mod q)(modX). The following is a special case of results in [13].

Theorem 3.2 Every state of the LFSR is periodic. The association S between elements of R and
states of the shift register is a one-to-one correspondence (whether or not q(X) is irreducible). The
change of state is given by z 7→ X−1z. The collection {R,S, T} is a complete injective model for the
LFSR. The output sequences of the LFSR may be described by the sequence ai = T (X−iz(X)) =
X−iz(X) (mod q) (modX).
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Proof: Proof. The association S : R→ {States}may be regarded as a map R→ Fr
2, in which case

it is linear (over F2). We show this mapping is one-to-one. Suppose z = z0 + z1X+ · · ·+ zr−1X
r−1

maps to the zero state. Then z0 = z (modX) = 0 so the constant term is zero. Therefore z is
divisible by X, and X−1z = z1 + z2X + · · ·+ zr−1X

r−2 and this is therefore the representation of
X−1z (mod q). But X−1z (mod q) (modX) = 0 so z1 = 0. Continuing in this way we conclude that
z = 0. Since R is a vector space of dimension r (over F2), this shows that the above association is
a one-to-one correspondence.

Next, consider the change of state. Fix z ∈ R and consider the associated state of the shift
register, as described above. Then the element X−1z is associated to the state with all cell contents
shifted to the right by one step, except for the leftmost cell which contains X−rz = q1X

−(r−1)z +
q2X

−(r−2)z+ · · ·+ qrX
0z. But this is the appropriate linear combination of the old contents of the

cells.
The completeness is immediate from the fact that S is one-to-one. 2

If q is irreducible then the ring R = F2[X]/(q) is a field, isomorphic to F2r , from which one may
recover Theorem 3.1. If q is reducible, say q(X) = g1(X)e1g2(X)e2 · · · gm(X)em is its decomposition
into irreducible factors, then R is isomorphic to the product R1R2 · · ·Rm with Ri = F2[X]/(gei

i ).
If all the ei = 1 then each Ri

∼= F2deg(gi) , from which one may recover equation (13).

3.2 LFSRs: Galois Architecture

In this subsection we construct models for the Galois architecture for LFSRs. As with the Fibonacci
architecture, the classical analysis can be seen as based on models where R is a Galois field, but we
obtain a simple model in the general case by using more general rings. In the Galois architecture
case the models are projective.

Galois field model. Let us suppose that q(X) has degree r and is irreducible. Let α be a root
of q(X) in the Galois field F2r . Define a mapping E : {states} → F2r which associates to any state

ar−1 ar−2 · · · a1 a0

the following element
z = a0 + a1α+ a2α

2 + · · ·+ ar−1α
r−1 ∈ F2m . (15)

Define the linear mapping T : F2r → F2 by T (
∑r−1

i=0 biα
i) = b0. Then we have the following

analogue of Theorem 3.1.

Theorem 3.3 Every state of the shift register is periodic. The collection {R = F2r , E, T} is a
complete projective model for the LFSR in its Galois configuration. The state change is given by
z 7→ α−1z.
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Proof: The completeness follows from the facts that E is F2-linear and that the minimal polyno-
mial of α has degree r. 2

Combining this with Theorem 3.2, we have the following.

Corollary 3.4 There is a one to one correspondence between periodic states of the Galois LFSR
with connection polynomial q(x) and periodic states of the Fibonacci LFSR with connection poly-
nomial q(x) so that corresponding states produce the same output.

This particular model was chosen to make the mapping E as simple as possible. One could just
as easily construct a model in which the mapping T is simple. In fact, given any surjective linear
mapping T ′ : F2r → F2 define E′ : {states} → F2r by

E′(s) = CE(s) = C(
r−1∑
i=0

siα
i)

where s = (ar−1, . . . , a1, a0) denotes the above state and where C ∈ F2r is the unique element such
that T (x) = T ′(Cx) for all x ∈ F2r . Then the collection {R = F2r , E′, T ′} constitutes a projective
model for the Galois-LFSR.

If q(X) is reducible, one may still choose a root α and construct the mapping (15) however it
will fail to be one to one. In particular, the contents a0 of the output cell may not be uniquely
determined by z. If q(X) = h1(X)h2(X) · · ·hm(X) is a product of irreducible factors with no
repeated factors then, as in §3.1 define R = F2d1 × · · · × F2dm where dj = deg(hj). Choose roots
αj ∈ F

2dj of hj(X). Define T : R→ F2r by T (z1, z2, . . . , zm) =
∑m

i=1 Ti(zi) where

Ti(
di∑

j=0

bijα
j
i ) = bi0.

Corresponding to the state (ar−1, ar−2, . . . , a1, a0) of the shift register, we may associate the element
z = (z1, z2, . . . , zm) ∈ R given by

zj =
r−1∑
i=o

aiα
i
j

that is, z =
∑r−1

j=1 ajα
j where α = (α1, α2, . . . , αm) ∈ R. Then, as in the Theorem 3.3, the mapping

E : {states} → R is a one to one correspondence, the change of state is given by z 7→ α−1z, and
the collection {R,E, T} is a projective model for the Galois-LFSR.

Ring-theoretic model. As in Theorem 3.2, let R = F2[X]/(q), and define T : R → F2 by
T (z) = z (modX).Assume deg(q) = r but do not necessarily assume that q is irreducible. Associate
to each state s = (ar−1, ar−2, . . . , a1, a0) of the shift register the following element

z = E(s) = a0 + a1X + a2X
2 + · · ·+ ar−1X

r−1.
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As in Theorem 3.2, every state of the shift register is periodic. The mapping E gives a one to one
correspondence between the states of the shift register and elements z ∈ R; the change of state is
given by z 7→ X−1z; the output sequence is given by

ai = (X−iz) (mod q) (modX); (16)

and the collection {R,E, T} forms a complete projective model of the LFSR.

3.3 FCSRs: Fibonacci Architecture

For FCSR sequences, the Galois field model and the Ring-theoretic models merge into a single
model. Take R = Z/(q) with distinguished element β = 2−1. Define T : R → Z/(2) by T (z) =
z (mod 2) and define S : R → {states} by assigning to any h ∈ Z/(q) the initial state with
ai = 2−ih (mod q) (mod 2) (for 0 ≤ i ≤ r − 1) and with initial memory

m =
1
2r

(h+
r−1∑
k=0

k∑
i=0

qiak−i2k).

Let Γq = {strictly periodic states of the FCSR with connection integer q}. Note that the state
(1, 1, · · · , 1;wt(q+1)− 1), where wt(q+1) is the Hamming weight of q+1, is a periodic state with
output equal to the all 1s sequence. Its associated 2-adic number is −1.

Theorem 3.5 Let q be an odd positive integer. Then S is a one to one function from Z/(q) onto
L = Γq − {(1, 1, · · · , 1;wt(q + 1) − 1)}. The state change is given by h 7→ 2−1h and the output
sequence is aj = 2−jh (mod q) (mod 2). The collection {R,S, T} constitute an injective model for
the FCSR.

Proof: That {R,S, T} is a model follows from Section 6 and Theorem 11.1 of [8]. To see that S is
injective, suppose to the contrary that (a0, · · · , ar−1;m) = S(g) = S(h) = (b0, · · · , br−1;n). Then

1
2r

(g +
r−1∑
k=0

k∑
i=0

qiak−i2k) = m = n =
1
2r

(h+
r−1∑
k=0

k∑
i=0

qibk−i2k).

But ai = bi for every i, so g/2r = h/2r and thus g = h.
It is known that the 2-adic numbers associated with the periodic outputs from the FCSR with

connection integer q are precisely the rational numbers −p/q with 0 ≤ p ≤ q [8]. Thus there are
precisely q + 1 periodic states. It follows that in order to see that S maps onto L, it suffices to
show that the state (1, 1, · · · , 1;wt(q + 1)− 1) is not in the image of S.

Suppose to the contrary that there is an integer h such that 1 = 2−jh (mod q) (mod 2) for
every j. Since h(mod q) is odd if and only if −h(mod q) is even, this is equivalent to saying there
is an h such that all 2−jh(mod q) are even. Since 2 is invertible mod q, we can let m = 2ordq(2)h
and conclude that there is some m such that all 2jm(mod q) are even. Let j be maximal so that
2jm < q. Then q < 2j+1m < 2q, so 2j+1m(mod q) = 2j+1m− q, which is odd. This contradiction
proves the theorem. 2
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Remark 1. Although the mapping S always gives a strictly periodic state of the FCSR, we do
not know a simple characterization of these states. The initial loading of the register portion is
simply the lower order r bits in the binary expansion of the number

W = h

(
2φ(q) − 1

q

)

(however we do not know a similar simple formula for the initial value of the memory). To see
this, let B = (2φ(q) − 1)/q as in the proof of lemma 2.2. Then Bq ≡ −1 (mod 2φ(q)). But r < φ(q)
so Bq ≡ −1 (mod 2r) which gives

W = h

(
2φ(q) − 1

q

)
≡ −h/q (mod 2r).

So the lower order r bits in the binary expansion of W coincides with the first r bits in the 2-adic
expansion of −h/q, which is also the first r bits to be output by the FCSR. However these first r
bits also coincide with the initial loading of the register portion of the FCSR.

Remark 2. If q is prime then Z/(q) is a field and its multiplicative group (Z/(q))∗ is cyclic. In
this case, 2−1 is a generator of (Z/(q))∗ if and only if 2 is a primitive root modulo q. (Such a choice
of q gives rise to maximal length sequences, or `-sequences.) If q is composite, say q = ge1

1 g
e2
2 · · · gem

m

is its prime decomposition, then the ring R = Z/(q) decomposes as a product R = R1R2 · · ·Rm

with Rj = Z/(gej

j ), in complete analogy with the LFSR case.

Remark 3. This model is not complete. As seen in the proof of Theorem 3.5, the state
(1, 1, · · · , 1;wt(q + 1) − 1) is not in the image of S. One can construct a different model that
contains this state in its image by using {1, 2, · · · , q} as a set of representatives for the residue
classes modulo q in the definition of z(mod q)(mod 2) however the image of S will omit the zero
state.

3.4 FCSRs: Galois Architecture

Now we wish to describe a model for the (Galois)-FCSR. Define R = Z/(q) and T : R → Z/(2)
as in Theorem 3.5. Define E : {states} → Z/(q) to be the mapping which assigns to any state
(a0, a1, . . . , ar−1; c1, . . . , cr−1) the element h (mod q), where h is defined in (12).

Notice that if qj = 0 then the memory cell cj will eventually drop to 0 and will remain 0 forever
after. So for every periodic state there is a periodic state that produces the same output and
satisfies cj = 0 whenever qj = 0. Let us say that a state satisfying this condition is an “admissible”
state. (So the admissible states may be thought of as representing a Galois-FCSR in which memory
cells cj are provided only when the corresponding feedback tap qj is nonzero.) Let Γq be the set
of admissible states. Note that the state (1, . . . , 1; q1, . . . , qr−1) is always admissible and produces
the all 1 sequence as output.
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Theorem 3.6 The collection {R,E, T} is a projective model for the Galois-FCSR. For any ad-
missible initial loading, the output of the Galois FCSR is strictly periodic. The mapping E is a
surjection from Γq − {(1, . . . , 1; q1, . . . , qr−1)} to Z/(q) such that the change of state is given by
h 7→ 2−1h. Hence the output sequence is bj = h2−j (mod q) (mod 2).

Proof: The greatest possible value for h is when all ai = 1 and all the admissible cj = 1. In this
case cj = qj for all j, so h = 1 + (1 + q1)2 + · · · + (1 + qr−1)2r−1 = 2r − 1 + q + 1 − qr2r = q. So
for any admissible state s, we have: 0 ≤ h = E(s) ≤ q and hence the 2-adic expansion for −h/q
(which is the output sequence of the shift register) is strictly periodic. Reducing equation (11)
modulo q and multiplying by 2−1 gives

2−1 = q1 + q22 + q322 + · · ·+ qr2r−1 (modq), (17)

so

2−1h = a02−1 + (a1 + c1)20 + (a2 + c2)21 + · · ·+ (ar−1 + cr−1)2r−2

= (a0q1 + a1 + c1)20 + (a0q2 + a2 + c2)21 + · · ·
+(a0qr−1 + ar−1 + cr−1)2r−2 + a0qr2r−1

= (2c′1 + a′0)2
0 + (2c′2 + a′1)2

1 + · · ·+ (2c′r−1 + a′r−2)2
r−2 + a′r−12

r−1

= a′0 + (a′1 + c′1)2 + (a′2 + c′2)2
2 + · · ·+ (a′r−1 + c′r−1)2

r−1,

which describes the change of state.
Finally, to show that the output function is correct, we must show that for any admissible state

(a0, . . . , ar−1; c1, . . . , cr−1) other than (1, . . . , 1; q1, . . . , qr−1), we have x def= a0 + (a1 + c1)2 + · · · +
(ar−1 + cr−1)2r−1(mod q) = a0. We have x =

∑r−1
i=0 ai2i +

∑r−1
i=1 ci2

i ≤ (2r − 1) + (q + 1− 2r) = q,
with equality only if (a0, . . . , ar−1; c1, . . . , cr−1) = (1, . . . , 1; q1, . . . , qr−1). The theorem follows. 2

Combining this with Theorem 3.5 we have the following.

Corollary 3.7 There is an onto function from the set of admissible periodic states of the Galois
FCSR with connection integer q to the set of periodic states of the Fibonacci FCSR with connection
integer q such that corresponding states produce the same output.

Remark 1. We do not know a simple formula describing the contents of the kth cell as a function
of time. Despite Theorem 3.6, we do not know how to intrinsically characterize the periodic states
of the Galois-FCSR, (other than to say that they must be admissible states) because there may
be several different states corresponding to the same number h. However, there is only one way
to obtain h = 1 (namely, by a0 = 1 and all other a′s and c′s are 0), so this state is necessarily a
periodic state. If 2 is primitive modulo q, then all the other periodic states are obtained from this
one by running the shift register.

Remark 2. This is not a complete model. Any state for which ai = 1 and ci = 0 has the same
image under E as the state that is identical, except that ai = 0 and ci = 1.
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4 d-FCSR Architectures

The d-FCSR architecture was introduced in [8] and [10], where its basic properties are listed. (See
also [13].) In this section we first recall the operation of these shift registers and summarize the
results from [4] which explain how to design them so as to give predictable outputs. We then
describe a Galois architecture for d-FCSRs. We also describe models for both architectures.

4.1 Fibonacci Architecture for d-FCSR

The operation of a d-FCSR is similar to that of the FCSR except that each “carried” bit is delayed
d− 1 steps before being added (see Figures 5 and 6).

This is best understood using the ring Z[π] which consists of polynomials in π (with integer
coefficients), subject to the formal relation πd = 2. The ring Z[π] contains the integers Z and it
can be embedded as a subring of the real numbers R by mapping π to the positive d

√
2. However

there are other embeddings into the complex numbers. Any z ∈ Z[π] may be uniquely expressed as
a polynomial z = z0 + z1π + · · ·+ zd−1π

d−1 with zi ∈ Z by making use of the equation πd = 2 · π0

whenever higher powers of π are encountered. Let us say that such an element z is nonnegative if
each zi ≥ 0. (This is stronger than saying that the associated real number is nonnegative.) Using
the binary expansion of each zi, we see that a nonnegative element z ∈ Z[π] can be uniquely
expressed as a polynomial

z =
m∑

i=0

z′iπ
i

with 0,1 coefficients. Addition and multiplication preserve nonnegative elements, and are performed
in the obvious way, except that carried bits are advanced d steps because

1 + 1 = 2 = 0 + 0π + 0π2 + · · ·+ 0πd−1 + πd,

so it is best not to think of these coefficients as lying in the field F2. The operations (modπ) and
(div π) make sense in this ring. If z = z0 + z1π+ · · ·+ zd−1π

d−1 then z (modπ) = z0 (mod 2) ∈ F2,
and we say that z is odd if z (modπ) = 1. (For example, −1 = 1−πd so −1 (modπ) = 1.) Similarly
z (div π) = z1 + z2π + · · ·+ zd−1π

d−2.
A d-FCSR consists of a shift register with cell contents a0, a1, . . . , ar−1, feedback connections

qr, qr−1, . . . , q1, and memory cells m0,m1, . . . ,ms, each of which is a 0 or 1. We represent the
memory by the nonnegative element m = m0 + m1π + · · · + msπ

s ∈ Z[π]. Associated to the
feedback connections we define the connection “number”

q = −1 + q1π + q2π
2 + · · ·+ qrπ

r. (18)

Then q ∈ Z[π] is odd, and q + 1 is nonnegative. The operation of the d-FCSR may be described
as follows: Form the integer sum σ′ =

∑r−1
i=0 aiqr−i. Write σ′ as a nonnegative element of Z[π],

that is, as a polynomial with 0, 1 coefficients in π, using 2 = πd. Using addition in Z[π] form
the (nonnegative) sum σ = m + σ′. Shift the contents of the register cells to the right by one
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step. Place the bit ar = σ (modπ) in the leftmost register cell. Replace the memory by m′ =
σ (div π) = (σ − ar)/π. Thus the new values (a′0, a

′
1, . . . , a

′
r−1;m

′) are related to the old values
(a0, a1, . . . , ar−1;m) by

a′i = ai+1 for 0 ≤ i ≤ r − 1

πm′ + a′r = m+
r∑

i=1

qiar−i.

Implementation. The block diagram for a d-FCSR is the same as that of an FCSR, but since
addition in Z[π] is needed, it is slightly more convenient to break the addition into two parts. The
part labeled Σ adds the 0,1 inputs as integers and outputs the result σ′ according to its binary
expansion. The part labeled Π is an adder in Z[π].

m

Π

ar−1 ar−2 · · · a1 a0

��
��
q1 ��

��
q2 ��

��
qr−1 ��

��
qr· · ·

∑?

6

�

- -

�
�
�
�

mod π

Figure 5: Fibonacci d-FCSR

For d = 2 the Z[π] adder Π, together with the memory m may be described as follows (Figure
6). Each symbol Σ represents a full adder with 3 inputs, cascaded so as to form a ripple counter.
With each clock cycle the current contents m of the memory is added to the integer σ′ which is
presented at the input to the adder according to its binary expansion. The result σ is returned to
the memory (which involves modifying only the even numbered memory cells). Then the contents
of the memory are shifted one step to the right, thus outputting the lowest order bit σ (modπ) and
retaining the higher order bits, σ div π (with the highest order bit, m6 in the following example,
set to 0).

Let wt(q + 1) denote the number of nonzero q’s involved in the feedback. It can be seen from
Figure 6 (or from the change of state equations above) that the memory will decrease until mi = 0
for all i > d log2(wt(q + 1)) + d, so no memory overflow will occur provided the shift register is
provided with memory cells m0,m1, . . . ,ms where s ≥ d log2(wt(q + 1)) + d. The deeper analysis
of a d-FCSR is completely parallel to that of an FCSR however some less familiar mathematics is
needed.
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Figure 6: A Z[π]-adder for d = 2.

Power series method. Let Zπ be the ring of “π-adic integers” consisting of all formal power
series in π

α =
∞∑
i=0

aiπ
i (19)

with ai = 0, 1. Addition and multiplication are performed in the obvious way, using the relation
πd = 2 whenever necessary; in particular Zπ contains the 2-adic integers Z2. Since

−1 = 1 + πd + π2d + π3d + · · ·

we see that Zπ also contains Z[π]. In fact, Zπ contains all fractions α = a/b with a, b ∈ Z[π]
provided that b is odd, (meaning that b (modπ) = 1) in which case we shall refer to (19) as “the”
π-adic expansion of a/b. Such fractions are precisely the elements of Zπ whose π-adic expansions
are eventually periodic. The following result was proven in [10].

Theorem 4.1 Suppose an r-stage (Fibonacci) d-FCSR with connection integer q is initially loaded
with register contents (a0, a1, . . . , ar−1) and memory m. Set q0 = −1 and

h = mπr −
r−1∑
k=0

k∑
i=0

qiak−iπ
k

Then the output sequence of the d-FCSR is the coefficient sequence for the π-adic expansion of the
fraction α = −h/q. Conversely, if a = a0, a1, . . . is an eventually periodic binary sequence with
corresponding π-adic integer α =

∑∞
i=0 aiπ

i = −h/q and if q + 1 is nonnegative, then q is the
connection number of a d-FCSR which generates this sequence.

Proof: 2

A surprising consequence is that not every periodic binary sequence may be realized as the output
sequence of a d-FCSR: only those for which q + 1 is nonnegative. This deficiency (if indeed it is
such) can be rectified by considering a “polarized” d-FCSR in which the cells qi,mi are permitted
to take values in {±1, 0}. It can be seen that no “overflow” will ever occur and that any q ∈ Z[π]
may be realized as the connection number of such a polarized d-FCSR.
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Strictly periodic π-adic expansions. One of the main results in [4] is a characterization
of the strictly periodic d-FCSR sequences. Let Q[π] be the d-dimensional vectorspace (over Q)
with basis {1, π, π2, . . . , πd−1}. (In fact it is the fraction field of Z[π] and it is a totally ramified
degree d extension of the rational numbers Q, however we will not need these facts in this paper.)
Let τ : Q[π] → Qd be the vectorspace isomorphism given by τ(a0 + a1π + · · · + ad−1π

d−1) =
(a0, a1, . . . , ad−1). Then τ(Z[π]) consists of all points in Qd with integer coordinates, so we will
refer to Z[π] as the set of lattice points in Q[π].

Fix q ∈ Z[π]. Recall that the norm N(q) of q is the determinant of the action given by multipli-
cation by q on the vector space Q[π]. With respect to the above basis, the matrix for multiplication
by q may be easily calculated. For d = 2 and q = q0 + q1π, and for d = 3 and q = q0 + q1π + q2π

2,
these matrices are, respectively

(
q0 2q1
q1 q0

)
and

 q0 2q2 2q1
q1 q0 2q2
q2 q1 q0

 .
The matrix for arbitrary d is similar. It follows (by reducing this matrix modulo 2) that q ∈ Z[π] is
odd if and only if its norm N(q) ∈ Z is odd. Let (q) denote the ideal in Z[π] generated by q ∈ Z[π]
and let R = Z[π]/(q) denote the quotient ring. The number of elements in the ring R is |N(q)|. If
z ∈ Z[π], we denote by z (mod q) its image in R. If q is odd then π is invertible in R.

If E = {e1, e2, . . . , ek} is a finite collection of linearly independent vectors in Euclidean space
Qd, let us denote the half-open parallelepiped spanned by E to be the set

P (E) =

{
k∑

i=1

aiei| 0 ≤ ai < 1

}
. (20)

Let
∆q = Z[π] ∩ P (q, qπ, qπ2, . . . , qπd−1)

be the set of lattice points in the parallelepiped (in Q[π]) which is spanned by the set of vectors
{q, qπ, qπ2, . . . , qπd−1}. Also let us denote the closed parallelepiped spanned by E to be the set

P̄ (E) =

{
k∑

i=1

aiei| 0 ≤ ai ≤ 1

}
(21)

and
∆̄q = Z[π] ∩ P̄ (q, qπ, qπ2, . . . , qπd−1).

In [4] we prove the following result.

Theorem 4.2 Suppose that h, q ∈ Z[π] and that q is odd. Then the π-adic expansion of the fraction
α = −h/q is strictly periodic if and only if h ∈ ∆̄q. Moreover, the mapping Z[π] → Z[π]/(q) induces
a one to one correspondence

∆q ↔ Z[π]/(q). (22)
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(In other words, the set ∆q is a complete set of representatives for the elements of Z[π]/(q).) For
such an h ∈ ∆q the π-adic expansion of α = −h/q =

∑∞
i=0 biπ

i is given by

bi = hπ−i (mod q) (modπ). (23)

Here, (as in Theorem 3.1 and Lemma 2.2), for any z ∈ Z[π]/(q) the symbol z (modπ) means
that z must first be replaced by the corresponding element in the complete set of representatives
∆q, then this element is reduced modulo π to obtain an element of Z[π]/(π) = Z/(2). (The resulting
mapping Z[π]/(q) → Z/(2) is not a ring homomorphism.) Since the image π (mod q) ∈ Z[π]/(q)
of π is invertible, the quantity hπ−i (mod q) makes sense in Z[π]/(q).

Remark. A face F ⊂ P of the parallelepiped (20) is the set of points obtained by setting some
of the coefficients aj = 0. The set of lattice points ∆q ∩ F in any face correspond under equation
(22) to an additive subgroup of Z[π]/(q). If Z[π]/(q) is a prime field then there are no additive
subgroups other than {0}, in which case all the nonzero elements of ∆q lie in the interior of the
parallelepiped.

Model for Fibonacci d-FCSR. As in the FCSR case, one can construct a ring-theoretic model
with R = Z[π]/(q), T : R→ {0, 1} given by T (z) = z (modπ) as above, and with S : R→ {states}
defined to be the mapping which associates to z ∈ R the initial loading ai = π−iz (mod q) (modπ)
for 0 ≤ i ≤ r − 1 and with initial memory

m =
1
πr

(z +
r−1∑
k=0

k∑
i=0

qiak−iπ
k).

Then Theorems 4.1 and 4.2 may be restated as follows:

Theorem 4.3 Let q ∈ Z[π] and suppose q + 1 is nonnegative. Then the collection {R,S, T}
forms an injective model for the d-FCSR with connection number q. The state change is given by
z 7→ π−1z and the output sequence is ai = π−iz (mod q) (modπ). The image of S is the set of
states whose output is a π-adic number h/q with h in the open parallelipiped ∆q.

It is possible to give a much more down-to-earth description of these sequences when the norm
N = |N(q)| is an odd prime, which we henceforth assume. In [4] we prove the following:

Lemma 4.4 Suppose q ∈ Z[π] is odd and that N = |N(q)| is prime. Then the natural composition
Z → Z[π] → Z[π]/(q) induces an isomorphism of rings,

Z/N ∼= Z[π]/(q) (24)

which is therefore a field.
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d = 2 d = 3
q q0 + q1π q0 + q1π + q2π

2

N(q) q20 − 2q21
q30 + 2q31

+4q32 − 6q0q1q2

δ q0 − q1π
(q20 − q1q2) + (2q22 − q0q1)π

+(q21 − q0q2)π2

m −2q1/q0 2(q21 − q0q2)/(q20 − q1q2)
s0 q0 q20 − q1q2

Figure 7: Parameters of Z[π]

Let ψ : Z[π]/(q) → Z/(N) denote the inverse to this isomorphism. It is completely determined
by the single integer m = ψ(π) because for any integers ci (with 0 ≤ i ≤ d − 1), the mapping ψ
satisfies ψ(

∑d−1
i=0 ciπ

i) =
∑d−1

i=0 cim
i. The prime number N may be considered as an element of Z[π]

and as such, it turns out to be divisible by π (see [4]). Define si ∈ Z by expanding

δ = N(q)/q =
d−1∑
i=0

siπ
i. (25)

The following result is proven in [4].

Theorem 4.5 Let h, q ∈ Z[π]. Suppose that N = |N(q)| is an odd prime number and that h ∈ ∆q

lies in the strictly periodic region described in Theorem 4.2. Let m = ψ(π) and let s0 be defined by
equation (25). Then, for all j, the following equation holds,

π−jh (mod q) (modπ) = m−jψ(h)s0 (modN) (mod 2)

In other words, the output sequence (23) may be simply described as Abj(modN)(mod 2) for
appropriately chosen A = ψ(h)s0 ∈ Z/(N) and b = m−1 ∈ Z/(N). The numbers m and s0 can be
computed directly from knowledge of q, although sometimes just knowing that md ≡ 2 (modN)
nearly determines m. For d = 2 and d = 3 these computations are tabulated in Figure 7.

An Example Consider the d-FCSR with d = 2 and q = 5+2π. The shift register is 4-stage with
feedback coefficients q1 = 0, q2 = q3 = q4 = 1 (so that q + 1 = 6 + 2π). Then N(q) = 17 which is
prime, so the parallelogram contains 16 elements in its interior, see Figure 8.

The isomorphism ψ : Z[π]/(q) → Z/(17) maps π to m = 6, which is primitive modulo 17, so
we obtain a maximal length output sequence. The constant s0 = 5 and computations for the table
(Figure 9) may be simplified by observing that 6−1 ≡ 3 (mod 17). Each element in Z[π]/(q) has a
unique representative h in the above parallelogram; these representatives are listed in the second
column of the following table. The corresponding element in Z/(17) is listed in the third column.
The fourth column (which is the d-FCSR sequence under consideration) is the third column modulo
2, and it concides with the second column modulo π as predicted by Theorem 4.5.
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Figure 8: Parallelogram for q = 5 + 2π.

i π−i (mod(q)) 5 · 6−i(mod 17) output
0 5 + 5π 5 1
1 7 + 5π 15 1
2 7 + 6π 11 1
3 8 + 6π 16 0
4 6 + 4π 14 0
5 4 + 3π 8 0
6 3 + 2π 7 1
7 4 + 4π 4 0
8 4 + 2π 12 0
9 2 + 2π 2 0
10 2 + π 6 0
11 1 + π 1 1
12 3 + 3π 3 1
13 5 + 4π 9 1
14 6 + 5π 10 0
15 5 + 3π 13 1

Figure 9: Model states for q = 5 + 2π.
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Figure 10: Galois 2-FCSR.

4.2 Galois architecture for d-FCSRs

In the Galois architecture for a d-FCSR, the carried bits are delayed d − 1 steps before being fed
back, so the output of the memory or “carry” cell ci is fed into the register cell ai+d−2. (Recall that
the register cells are numbered starting from a0.) If there are r feedback multipliers q1, . . . , qr and r
carry cells c1, . . . , cr then r+d−1 register cells a0, . . . , ar+d−2 are evidently needed since cr will feed
into ar+d−1. This is illustrated in Figure 10 for d = 2. If d ≥ 3 the situation is more complicated
and t “additional” memory cells cr+1, . . . , cr+t are needed, which feed into t “additional” register
cells ar+d−1, . . . , ar+t+d−2. It is not at all obvious at first glance whether the amount t of extra
memory can be chosen to be finite without incurring a memory overflow during the operation of
the shift register. However (see Theorem 4.8 below) we show that this is indeed the case and
henceforth we suppose that t has been chosen as described there, to be sufficiently large so as to
avoid any memory overflow. Suppose a Galois d-FCSR is initially loaded with given values (a0, a1,
. . . , ar+t+d−2; c1, c2, . . . , cr+t). The register operates as follows. (To simplify notation, set qj = 0
for j ≥ r + 1, set cj = 0 for j ≤ 0 and also for j ≥ r + t+ 1, and set aj = 0 for j ≥ r + t+ d− 1.)
For each j (with 1 ≤ j ≤ r+ t+ d− 1) form the integer sum σj = a0qj + aj + cj−d+1; it is between
0 and 3. The new values are given by a′j−1 = σj (mod 2) and c′j = σj (div 2), that is,

2c′j + a′j−1 = a0qj + aj + cj−d+1 for 1 ≤ j ≤ r + t+ d− 1 (26)

(Note, for example, that these equations say a′r+t+d−2 = cr+t.)
For such a Galois d-FCSR define the connection integer

q = −1 +
r∑

i=1

qiπ
i ∈ Z[π].

For a given initial loading (a0, . . . , ar+t+d−2; c1, c2, . . . , cr+t) using the same conventions as above,
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define

h =
r+t+d−2∑

i=0

(ai + ci−d+1)πi ∈ Z[π]. (27)

Theorem 4.6 If t is large enough that no memory overflow occurs (as described in Theorem 4.8
below), then the output sequence {b1, b1, . . .} of the d-FCSR coincides with the π-adic expansion of
the fraction α = −h/q ∈ Zπ. Thus if the Galois FCSR is in a purely periodic state,

bi = π−ih(mod q)(modπ).

Proof: The proof is similar to that of Theorem 2.4. Given h and q as above, let B =
∑∞

i=0 biπ
i

denote the π-adic number which is represented by the output sequence. Compute qB + h =
(−b0 + a0) + (−b1 + q1b0 + a1)π + · · · . But a0 = b0 since this is the first bit to be output from the
shift register. Hence the quantity qB + h has no constant term.

Now run the shift register one step, obtaining a shifted output sequence b′0, b
′
1, . . ., a correspond-

ing π-adic number B′, a new loading (a′0, a1, . . . , a
′
r+d−2; c

′
1, . . . , c

′
r) given by (26), and hence a new

h′. Compute that πB′ = (B − b0) ∈ Z[π] and πh′ = (h+ a0q) ∈ Z[π] hence

π(qB′ + h′) = (qB + h).

By the same argument as above, the constant term of qB′ + h′ vanishes. Hence qB + h is divisi-
ble by π2. By induction we find that qB+h is divisible by πn for all n, which is to say, qB+h = 0. 2

Using Theorem 4.5 we have the following corollary.

Corollary 4.7 Suppose a Galois d-FCSR with connection number q = −1 +
∑r

i=1 qiπ
i ∈ Z[π] is

chosen such that N = |N(q)| ∈ Z is a prime number. Suppose the initial loading is chosen so that
(27) h ∈ ∆q lies in the set of strictly periodic elements (Theorem 4.2). Then the output sequence
{b0, b1, b2, . . .} of the d-FCSR is given by

bi = s0m
−iψ(h) (modN) (mod 2).

Memory considerations In the following analysis we make use of some ideas from [13]. Let us
denote the standard embedding Z[π] → R (which maps π to the positive d

√
2) by x 7→ |x|. Recall

that an element x =
∑m

i=o xiπ
i ∈ Z[π] is positive if each of the coefficients xi ≥ 0. This implies

(but is not implied by): |x| ≥ 0. For a given positive real number R there may be infinitely many
elements x ∈ Z[π] such that |x| ≤ R. However there are only finitely many positive such elements
x.

Theorem 4.8 If t is chosen so that

|π|r+t−2(|π| − 1) ≥ 1
2
|q| (28)
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then no memory overflow will occur and in fact, for any initial loading of the shift register the
memory will decrease until the value (27) of h satisfies

|h| ≤ |q|
|π| − 1

(29)

and it will remain within this range thereafter.

Here, as in [13], the fact that |π| > 1 is crucial.
Proof: First suppose the initial loading (a0, . . . , ar+t+d−2; c1, . . . , cr+t) satisfies (29). Then the
same will be true for every subsequent state of the shift register. For let (a′0, . . . , a

′
r+t+d−2;

c′1, . . . , c
′
r+t) denote the next state of the shift regsiter with corresponding value h′ ∈ Z[π]. Then

πh′ = h+ a0q (as in the proof above) so

|h′| ≤ |h|+ |q|
|π|

≤ 1
|π|

( |q|
|π| − 1

+ |q|
)

=
|q|

|π| − 1

as claimed. The same calculation shows that if |h| > |q|/(|π| − 1) then

|h′| − |q|
|π| − 1

≤ 1
|π|

(
|h| − |q|

|π| − 1

)
.

Thus the value of h will drop until it enters the range (29). Now let us estimate the maximum
number of memory cells which are needed in order to accomodate all such values of h. (The
following estimates can be improved.) The worst possible case occurs when all ci = ai = 0 except
for the last possible term (ar+t+d−2 = 1 or cr+t = 1) in which case

h = πr+t+d−2 = 2πr+t−2.

Then (29) gives

|π|r+t−2(|π| − 1) ≤ 1
2
|q|.

Consequently, if t is chosen so that (28) holds then no memory overflow will occur. 2

A deeper result of Klapper and Xu [13] states that even if negative coefficients are permitted
in the register contents, the memory will nevertheless remain bounded.

Model for Galois d-FCSR Now we wish to describe a model for the Galois d-FCSR. Define
R = Z[π]/(q) and T : R → Z/(2) as in Theorem 4.3. Define E : {states} → Z/(q) to be
the mapping which assigns to any state (a0, a1, . . . , ar+t+d−2; c1, . . . , cr+t) the element h (mod q),
where h is defined in (27).

Unfortunately, we do not have a clear notion of “admissible states” for the Galois d-FCSR
architecture when d ≥ 2. The best we can do is to let L denote the set of states for which h is in
the open parallelipiped P (q, qπ, · · · , qπd−1). Then Theorem 4.6 gives us the following result.
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Theorem 4.9 The collection {R,E, T} is a projective model for the Galois-FCSR. For any initial
loading in L, the output of the Galois FCSR is strictly periodic. The mapping E is a surjection
from L to Z[π]/(q) such that the change of state is given by h 7→ π−1h. Hence the output sequence
is bj = hπ−j (mod q) (modπ).

Corollary 4.10 Suppose a Galois d-FCSR with connection number q = −1 +
∑r

i=1 qiπ
i ∈ Z[π] is

chosen such that N = |N(q)| ∈ Z is a prime number. Suppose the initial loading is chosen so that
(27) h ∈ ∆q lies in the set of strictly periodic elements (Theorem 4.2). Then the output sequence
{b0, b1, b2, . . .} of the d-FCSR is given by

bi = s0m
−iψ(h) (modN) (mod 2).

This association induces a one to one correspondence between the strictly periodic states of the
d-FCSR and the elements h ∈ Z/N(q).

By choosing different complete sets of representatives for Z[π]/(q) in ∆̄q we obtain different
models with the same ring R. Every periodic state is accounted for by at least one such model.
Thus we have the following corollary to Theorems 4.9 and 4.3.

Corollary 4.11 If q + 1 is nonnegative, then there is an onto function from the set of periodic
states of the Galois d-FCSR with connection integer q to the set of periodic states of the Fibonacci
d-FCSR with connection integer q such that corresponding states produce the same output.

Unfortunately our understanding of the Galois d-FCSR architecture still leaves much to be
desired. We do not know how to find a class of “admissible” states for which the output is strictly
periodic (as we did in the case of the FCSR). We do not know an optimal estimate on the amount
of memory needed for the d-FCSR (except in the case d = 2). We do not know how to describe
the output of the kth cell.

5 Conclusions

We have found a “Galois” representation for FCSR and d-FCSR pseudorandom sequence gener-
ators. We have constructed “models” for the behavior of LFSR, FCSR, and d-FCSR generators,
both in their Fibonacci and Galois representations. In each case, we find the Galois representation
to be simpler, especially with regard to the computation of the initial loading of the register. More-
over, in the FCSR and d-FCSR cases, the Galois circuitry is faster since the arithmetic operations
occur in parallel. We have analyzed the operation of the d-FCSR circuit using some rather sophis-
ticated number theory, and have shown how it can be configured so as to give output sequences of
the form ai = Abi (modN) (mod 2).
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