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Abstract

Cross-correlation functions are determined for a large class of geometric sequences
based on m-sequences in characteristic two. These sequences are shown to have low
cross-correlation values in certain cases. They are also shown to have significantly
higher linear complexities than previously studied geometric sequences. These results
show that geometric sequences are candidates for use in spread-spectrum communica-
tions systems in which cryptographic security is a factor.
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1 Introduction

Easily generated pseudorandom sequences with high linear complexities and low correlation
function values are sought in many applications of modern communication systems. For
example, sequences with low cross-correlations are necessary in code division multiple access
(CDMA) communication systems to determine the sign of the signal being sent on each
channel. The smaller the pairwise cross-correlations, the higher the capacity of the system.
The sequence is more difficult for an adversary to determine if its linear complexity is high.
This lends a degree of security to CDMA systems.
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Linear feedback shift registers have long been studied as simple devices that generate
statistically random sequences. Particular interest has been given to m-sequences, the max-
imal period sequences generated by linear feedback shift registers. From a cryptographic
point of view, however, these sequences are highly vulnerable to attack, for example, by
the Berlekamp-Massey algorithm [11]. The linear complexity of a sequence is a measure of
its resistance to this attack. Thus there is a need for easily generated sequences with high
linear complexities and low cross-correlations. In particular, there is interest in sequences
generated by devices based on linear feedback shift registers, but with some nonlinearity to
increase the linear complexity. Notable early examples are GMW sequences [6] and bent
sequences [14]. More general sequences, in which a nonlinear feedforward function is applied
to an m-sequence over a finite field, have been studied in the past decade by a number of
authors, for example [1, 2, 3, 4, 7, 8]. We call these sequences geometric sequences. This is
a very general class of binary pseudorandom sequences which includes m-sequences, GMW
sequences, and bent sequences, and is closely related to No sequences [13].

One way to view geometric sequences is as a compromise between m-sequences and
general binary sequences. If r is a power of 2, then an arbitrary binary sequence of period
r − 1 can be produced as follows. Choose a function, h, from the field of r elements,
GF (r), to GF (2) = {0, 1}. Let α be a primitive element of GF (r), so that the elements
1, α, α2, · · · , αr−2 are distinct. Apply h term-by-term to this sequence. The difficulty with
this approach is that h tends to be very difficult to compute if the linear complexity is high.
Moreover, finding cross-correlations is difficult in the absence of any algebraic structure. The
higher the linear complexity, the more non-linear h must be, and the more non-linear h is, the
harder it is to compute cross-correlations. Geometric sequences are produced by restricting
h to be a composition: first apply a linear (or nearly linear) function, L, from GF (r) to an
intermediate field, GF (q), then apply a highly nonlinear function, f , from GF (q) to GF (2).
The function, f , called the feedforward function, is applied to a far smaller domain, so we
can, if necessary, apply brute force search to obtain f with desirable properties. On the other
hand, enough algebraic structure is retained to make the calculation of the cross-correlation
of the final sequence easier. The goal then is to do this while keeping the linear complexity
high.

The geometric sequences studied to date have m-sequences as their intermediate se-
quences over GF (q) (equivalently, T is a trace function, as described below). These se-
quences can be designed to have low cross-correlations and higher linear complexities than
m-sequences. However, their cross-correlations are known in only a small number of cases,
and their linear complexities are far from the maximum possible for arbitrary sequences.
The author (with Chan and Goresky) has previously considered cross-correlation function
values of pairs of geometric sequences that are obtained from the same q-ary m-sequence but
different nonlinear feedforward functions [4] and of geometric sequences in characteristic two
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whose underlying m-sequences differ by a quadratic decimation [7]. (A quadratic decimation
is a k-fold decimation – every k-th element – where the sum of the coefficients of the base q
expansion of k equals two. We refer to this as a quadratic decimation because of the relation
to quadric hypersurfaces, as explained later).

In order to find sequences with higher linear complexities than previously studied geo-
metric sequences it is necessary to consider further modifications to m-sequences. In this
paper we study cross-correlation function values and linear complexities of geometric se-
quences whose underlying sequences over GF (q) are sums of pairs of linear feedback shift
register sequences, one of which is an m-sequence. Specifically, our main results are the
calculation of the cross-correlations of a geometric sequence based on an m-sequence over
GF (q), and a geometric sequence based on a sum of the same m-sequence and a quadratic
decimation of that m-sequence. The results allow the cross-correlations for particular feed-
forward functions to be computed inductively in terms of correlation-like functions of much
shorter sequences. These shorter sequences depend only on the feedforward functions, and
not on the underlying m-sequences. Careful choice of the feedfoward functions gives us
sequences with very low cross-correlations. We also describe the number of shifts of the
sequences for which each cross-correlation value occurs. Finally, we show that these gener-
alized geometric sequences can be constructed with significantly higher linear complexities
than ordinary geometric sequences. These linear complexities may be higher by as much as
a factor of q for sequences based on m-sequences over GF (q).

The technique for computing cross-correlations is based on counting the points of in-
tersection of hyperplanes and quadric hypersurfaces over a finite field. To prove our main
theorems on cross-correlations, we first give a complete accounting of the cardinalities of
these intersections, based on a standard classification of quadratic forms. We next deter-
mine the ranks and types in this classification of the quadratic forms that occur in geometric
sequences. This allows us to compute the desired cross-correlation functions. These func-
tions may also be interpreted as generalized exponential sums of a type often considered in
algebraic geometry and related areas of coding theory [16], though we do not exploit this
point of view.

We assume a basic understanding of finite fields and the trace function, since this material
is very well explained in the excellent survey papers and books on the subject [5, 10, 12, 15].
Let q be a fixed power of 2 and let GF (q) denote the Galois field with q elements. For any
n ≥ 1, we denote the trace function from GF (qn) to GF (q) by Trqn

q , defined by Trqn

q (x) =∑n−1
i=0 xqi

. Recall that Trqn

q is a GF (q)-linear function, that every GF (q)-linear function f
from GF (qn) to GF (q) can be written in the form f(x) = Trqn

q (Ax) for some A ∈ GF (qn),

and that, for any m ≥ 1, Trqnm

q (x) = Trqn

q (Trqnm

qn (x)). Also recall that every element x in a

finite field of characteristic two has a unique square root x1/2. (This is a consequence of the
fact that the function x → x2 is a linear function with trivial kernel.)
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Let α be a primitive element of GF (qn). The sequence U whose ith element is Ui =
Trqn

q (αi) is a q-ary m-sequence. It is well known that the sequences of this form are precisely
the maximal period sequences that can be generated by linear feedback shift registers of
length n with entries and coefficients in GF (q) [10]. In particular, they are easy to generate
by hardware. Let k = 1 + qj (that is, k has q-adic weight two) and let γ be any element of
GF (qn). The sequence whose ith element is Trqn

q (γαki) is called a quadratic decimation of
U, and is itself an m-sequence if k is relatively prime to qn − 1. Note that we could take
k = q` + qj, but this gives rise to the same sequence as taking k = 1 + qj−`. More generally,
if δ ∈ GF (qn), we consider the sequence V whose ith term is Vi = Trqn

q (γαki + δαi). (This
amounts to adding a shift of U to V.) The case where k is relatively prime to qn − 1 and
δ = 0 (i.e., V is an m-sequence) has been treated previously by Klapper, Chan, and Goresky
[7]. Those results are a special case of the current results. Note that the condition that k
is relatively prime to qn − 1 is equivalent to the condition that n/ gcd(n, j − i) is odd, by
Lemma 2.1 below.

Let f and g be (nonlinear) functions from GF (q) to GF (2). The sequences S and T
whose ith elements are f(Ui) and g(Vi), respectively, are called geometric sequences, and it
is these sequences whose cross-correlation functions we determine. The results are expressed
in terms of statistical properties of f and g.

Definition 1.1 The cross-correlation function of two sequences with period L is

ΘS,T(τ) =
L∑

i=1

(−1)Si+τ (−1)Ti .

In the next subsections we state the main theorems and discuss some of their conse-
quences. In Section 2 some basic facts from number theory and the theory of quadratic
forms are recalled. These are useful in finding standard forms for the quadric hypersurfaces
that appear and in counting solutions to quadratic equations. Section 3 contains a complete
analysis of the numbers of points in the intersections of hyperplanes and quadric hypersur-
faces in characteristic two. The forms of the quadrics that appear in the cross-correlation
of geometric sequences are determined in Section 4. The proofs of the main theorems are
completed in Section 5. The linear complexities of generalized geometric sequences are
determined in Section 6.

1.1 Statements of the Main Theorems

In this section we state the main theorems on cross-correlations of geometric sequences. Let
q be a power of 2 and f and g be functions from GF (q) to GF (2), γ, δ ∈ GF (q), k = 1 + qj

and α primitive in GF (qn). Then S is the sequence whose ith element is f(Trqn

q (αi)) and T
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is the sequence whose ith element is g(Trqn

q (γαi + δαki)). We let I(f) =
∑

x∈GF (q)(−1)f(x),

the imbalance of f , F (u) = (−1)f(u), and G(u) = (−1)g(u). We write d = gcd(n, j), ω =
(−1)n/(2d) when n/d is even, and η(s) = −1 if s 6= 0 and η(0) = q − 1.

For a given shift τ of S, let H(x) = Trqn

q (ατx), L(x) = Trqn

q (γx), and R(x) = Trqn

q (δxk).
We often think of GF (qn) as an n-dimensional vector space over GF (q). When a basis
(set of coordinates) has been chosen for GF (qn) over GF (q), we replace the variable x by
x̄ = (x1, · · · , xn) and by abuse of notation write H(x̄), L(x̄), and R(x̄). H(x̄) and L(x̄) are
linear functions and R(x̄) is a quadratic form (this is proved in Theorem 4.1).

We state our results in three cases, differentiated by whether δ is a kth power and the
parity of n/d. As seen in Section 2, every quadratic form can be put into one of three
standard types by a change of coordinates. The breakdown into cases corresponds to this
classification, as determined by Theorem 4.1. Once coordinates have been chosen so that R
is expressed as one of the standard types, if L(x̄) =

∑n
i=1 cixi, then we let ρ

def
= R(c1, · · · , cn)

and, if R has Type II, σ
def
= cm, where m is the rank of R (the smallest number of variables

that can be used to express R). These values are independent of the choice of coordinates
expressing R as a standard type (this fact can be seen, for example, as a consequence of our
theorems on the cross-correlation).

The breakdown of cases further depends on relations among three vector spaces. The
symmetric bilinear form, D, is defined by D(x̄, ȳ) = R(x̄+ ȳ)−R(x̄)−R(ȳ). The null space
of R, denoted by Null(R), is the set of w̄ such that R(w̄) = 0 and for every x̄, D(w̄, x̄) = 0.
The null space of D, denoted by Null(D), is the set of w̄ such that for every x̄, D(w̄, x̄) = 0.
The kernel of L, denoted by Ker(L), is the set of w̄ such that L(w̄) = 0.

To simplify things, we express our results in terms of ΓS,T(τ) = ΘS,T(τ)−qn−2I(f)I(g)+
F (0)G(0). Each theorem includes a table of the number of occurrences of each value of
ΓS,T(τ), for varying τ . The tables are divided into categories depending on L and ρ. Within
each category a listing is given of number of occurrences of each case of the theorem, de-
pending on the parameters r, s, and t used to described the values of ΓS,T(τ). Note that in
some cases certain values of these parameters cannot occur.

Theorem 1.2 Let n/d be even and δ be a kth power in GF (qn).

A. If Null(R) ⊆ Ker(L), then ΓS,T(τ) takes the values

1. ωqn/2+d−2I(f)(I(g)− qG(ρ));

2. ωqn/2+d−1F (t)(I(g)− qG(ρ));

3. −ωqn/2+d−1∑
u 6=0

∑
v(−1)Trq

2(sv/u2)F (u + t)G(v + ρ).
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Conditions on L, R Case Parameters Number of Occurences

L = 0 1 – qn − qn−2d

2 t = 0 qn−2d−1 − ω(q − 1)qn/2−d−1 − 1

3 s 6= 0, t = 0 qn−2d−1 + ωqn/2−d−1

L 6= 0, ρ = 0 1 – qn − qn−2d

2 t 6= 0 qn−2d−2

2 t = 0 qn−2d−2 − ω(q − 1)qn/2−d−1 − 1

3 s, t 6= 0 qn−2d−2

3 s 6= 0, t = 0 qn−2d−2 + ωqn/2−d−1

ρ 6= 0 1 – qn − qn−2d

2 t 6= 0 qn−2d−2 − ωqn/2−d−1

2 t = 0 qn−2d−2 − 1

3 s, t 6= 0 qn−2d−2 − ω(−1)Trq
2(ρs/t2)qn/2−d−1

3 s 6= 0, t = 0 qn−2d−2

B. If Null(R) 6⊆ Ker(L), then ΓS,T(τ) takes the values

1. 0;

2. ωqn/2+d−2(I(f)I(g)− q
∑

u F (u)G(su + t)).

Case Parameters Number of Occurences

1 – qn − qn−2d+1 + qn−2d − 1

2 s 6= 0 qn−2d−1 − ωη(t)qn/2−d−1

Theorem 1.3 If n/d is even and δ is not a 1 + qjth power in GF (qn), then ΓS,T(τ) takes
the values

1. ωqn/2−1F (t)(qG(ρ)− I(g));

2. ωqn/2−1∑
u 6=0

∑
v(−1)Trq

2(sv/u2)F (u + t)G(v + ρ).
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Conditions on L, R Case Parameters Number of Occurences

L = 0 1 t = 0 qn−1 + ω(q − 1)qn/2−1 − 1

2 s 6= 0, t = 0 qn−1 − ωqn/2−1

L 6= 0, ρ = 0 1 t 6= 0 qn−2

1 t = 0 qn−2 + ω(q − 1)qn/2−1 − 1

2 s, t 6= 0 qn−2

2 s 6= 0, t = 0 qn−2 − ωqn/2−1

ρ 6= 0 1 t 6= 0 qn−2 + ωqn/2−1

1 t = 0 qn−2 − 1

2 s, t 6= 0 qn−2 + ω(−1)Trq
2(ρs/t2)qn/2−1

2 s 6= 0, t = 0 qn−2

Theorem 1.4 Let n/ gcd(n, j − i) be odd.

A. If Null(D) ⊆ Ker(L), then ΓS,T(τ) takes the values

1. 0;

2. −q(n+d)/2−2(I(f)I(g)− q
∑

u F (su)G(u2 + t));

3. q(n+d)/2−2(I(f)I(g)− q
∑

u F (su)G(u2 + t)).

Conditions on L, R Case Parameters Number of Occurences

L = 0 1 – qn − qn−d+1 + qn−d − 1

2 s 6= 0, t = 0 (qn−d + q(n−d)/2)/2

3 s 6= 0, t = 0 (qn−d − q(n−d)/2)/2

L 6= 0 1 – qn − qn−d+1 + qn−d − 1

2 s, t 6= 0 qn−d−1/2

2 s 6= 0, t = 0 (qn−d−1 + q(n−d)/2)/2

3 s, t 6= 0 qn−d−1/2

3 s 6= 0, t = 0 (qn−d−1 − q(n−d)/2)/2

B. If Null(R) ⊆ Ker(L), but Null(D) 6⊆ Ker(L), (i.e., σ 6= 0) then ΓS,T(τ) takes the
values

1. q(n+d)/2−2I(f)
∑

v(−1)Trq
2(v+1)G(σ2v + ρ);
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2. q(n+d)/2−1F (t)
∑

v(−1)Trq
2(v+1)G(σ2v + ρ);

3. (−1)Trq
2((t+ρ)/σ2+1)q(n+d)/2−2(q

∑
u F (ru + s)G(u2 + σu + t)− I(f)I(g)).

Conditions on L, R Case Parameters Number of Occurences

L(x̄) = σxm 1 – qn − qn−d+1

2 t 6= 0 qn−d−1 − q(n−d)/2−1

2 t = 0 qn−d−1 + (q − 1)q(n−d)/2−1 − 1

3 r 6= 0, s = 0 qn−d−1 + η( t+ρ
σ2 + 1)q(n−d)/2−1

L(x̄) 6= σxm, ρ = 0 1 – qn − qn−d+1

2 t 6= 0 qn−d−1 − (−1)Trq
2(ρ/σ2+1)q(n−d)/2−1

2 t = 0 qn−d−1 + (−1)Trq
2(ρ/σ2+1)(q − 1)q(n−d)/2−1 − 1

3 r, s 6= 0 qn−d−2

3 r 6= 0, s = 0 qn−d−2 + η( t+ρ
σ2 + 1)q(n−d)/2−1

ρ = σ2 1 – qn − qn−d+1

2 t 6= 0 qn−d−1 − q(n−d)/2−1

2 t = 0 qn−d−1 + (q − 1)q(n−d)/2−1 − 1

3 r, s 6= 0 qn−d−2 + (−1)Trq
2(r2(ρ/σ2+1)(t+ρ+σ2)/s2)q(n−d)/2−1

3 r 6= 0, s = 0 qn−d−2

ρ 6= σ2, ρ 6= 0 1 – qn − qn−d+1

2 t 6= 0 qn−d−1 − (−1)Trq
2(ρ/σ2+1)q(n−d)/2−1

2 t = 0 qn−d−1 + (−1)Trq
2(ρ/σ2+1)(q − 1)q(n−d)/2−1 − 1

3 r, s 6= 0 qn−d−2 + (−1)Trq
2(r2(ρ/σ2+1)(t+ρ+σ2)/s2)q(n−d)/2−1

3 r 6= 0, s = 0 qn−d−2

C. If Null(R) 6⊆ Ker(L), then ΓS,T(τ) takes the values

1. 0.

2. q(n+d)/2−2∑
u,v(−1)Trq

2(ru+tv)F (u)G(v).

3. −q(n+d)/2−2∑
u,v(−1)Trq

2(ru+tv)F (u)G(v).

Case Parameters Number of Occurences

1 – qn − (q − 1)2qn−d − 1

2 r, t 6= 0 (qn−d + q(n−d)/2)/2

3 r, t 6= 0 (qn−d − q(n−d)/2)/2
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The first step in the proof of the main theorems is a reduction of the expression for the
cross-correlation of S and T.

Proposition 1.5 Let Hu = {x : Trqn

q (ατx) = u} and Qv = {x : Trqn

q (γxk +δx) = v}. Then

ΘS,T(τ) =
∑

u,v∈GF (q)

|Hu ∩Qv|F (u)G(v)− F (0)G(0).

Proof: As i ranges from 1 to qn − 1, αi ranges through all nonzero elements of GF (qn),
since α is primitive. Hence

ΘS,T(τ) =
∑

x∈GF (qn)

F (Trqn

q (ατx))G(Trqn

q (γxk + δx))− F (0)G(0). (1)

Suppose that elements x, y of GF (qn) satisfy Trqn

q (ατx) = Trqn

q (ατy) and Trqn

q (γxk + δx) =
Trqn

q (γyk+δy). Then x and y contribute the same value to the sum in equation 1. Gathering
all such terms together we get the expression for ΘS,T(τ) in the statement of the proposition.

2

If we treat GF (qn) as an n-dimensional affine space over GF (q), then Hu is a hyperplane
and Qv is a (possibly inhomogeneous) quadric hypersurface. We have reduced the problem
of computing cross-correlations of geometric sequences to that of finding intersections of
hyperplanes and quadric hypersurfaces. More generally, if k has q-adic weight r (i.e., the
sum of the coefficients in its base q representation equals r) then Qv is a hypersurface of
degree r.

1.2 Consequences of the Main Theorems

Consider the circumstance in which f(0) = g(0) = 0 and f and g are balanced, i.e., I(f) =
I(g) = 0. These conditions hold, for example, for m-sequences, GMW sequences, and the
more general cascaded GMW sequences [8]. They are desirable statistical properties in many
applications. Under the hypotheses of Theorem 1.2,

|ΘS,T(τ) + 1| ≤ qn/2+d(q − 1) = qn/2+gcd(n,j)(q − 1).

Under the hypotheses of Theorem 1.3,

|ΘS,T(τ) + 1| ≤ qn/2(q − 1).

Under the hypotheses of Theorem 1.4

|ΘS,T(τ) + 1| ≤ q(n+d)/2 = q(n+gcd(n,j))/2.
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The maximum cross-correlation for the sequences satisfying the hypotheses of Theorem 1.4
is minimized when d = 1.

We can improve these bounds by careful choice of f and g, still assuming f and g are
balanced. We further assume d = 1 in Theorems 1.2 and 1.4. In all cases, minimizing the
maximum of |ΘS,T(τ) + 1| is equivalent to minimizing the maximum of a set of correlation
functions or (in Theorem 1.3.2) of triple correlation functions of sequences of period q. There
are three types of correlation functions which occur.

A. In Theorems 1.2.B.2, 1.4.A.2, 1.4.A.3, and 1.4.B.3 correlation functions of the form∑
u F (su)H(u + t) occur, with various restrictions on s, and t. H is a function defined in

terms of G. Keeping t fixed, and considering the sum over u 6= 0, we have the set of shifted
correlations of a pair of sequences of period q− 1. Minimizing the maximum of these values
will minimize the maximum of |ΘS,T(τ) + 1|. If we can achieve a value close to q1/2, then in
Theorems 1.4.A.2, 1.4.A.3, and 1.4.B.3 the maximum of |ΘS,T(τ) + 1| will be close to qn/2.
In Theorem 1.2.B.2, |ΘS,T(τ) + 1| will be close to q(n+1)/2.

B. In Theorems 1.4.B.2 and 1.4.C.2 the Walsh transform
∑

u(−1)Trq
2(su)H(u) occurs, for

various functions H. By Parseval’s identity, the smallest maximum value the transform can
achieve (subject to the restraint that H is balanced) is q/(q−1)1/2. In Theorem 1.4.B.2 this
leads to the lower bound of q(n+1)/2/(q − 1)1/2 ∼ qn/2 for the maximum of |ΘS,T(τ) + 1|. In
Theorem 1.4.C.2 this leads to the lower bound of q(n+1)/2/(q−1) ∼ q(n−1)/2 for the maximum
of |ΘS,T(τ) + 1|.
C. In Theorems 1.2.A.3 and 1.4.2 the sum

∑
u 6=0

∑
v(−1)Trq

2(sv/u2)F (u + t)G(v + ρ) occurs.
This can be thought of as a correlation of three sequences of period q, or as the correlation of
one sequence with the Walsh transform of another. Thus, it is plausible that we can achieve
a maximum value (as s and t vary) of q for this double sum. If so, then in Theorem 1.2.A.3
we can achieve a maximum of qn/2+1 for |ΘS,T(τ) + 1| and in Theorem 1.3.2 we can achieve
a maximum of qn/2 for |ΘS,T(τ) + 1|.

Assuming these bounds, it follows that we have the following values for the minimum
maximum value of |ΘS,T(τ) + 1|. We leave the question of whether these values can be
achieved (or even improved) to further study.
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Theorem min of max of |ΘS,T(τ) + 1|
1.2.A qn/2+1

1.2.B q(n+1)/2

1.3 qn/2

1.4.A qn/2

1.4.B qn/2

1.4.C q(n−1)/2

2 Algebraic Tools

In this section we recall several useful facts from number theory and the theory of quadratic
forms over a finite field. These facts will be used in the proofs of the main theorems. More
complete treatments can be found in various standard texts such as [10, 12].

As a standard consequence of the division algorithm we have:

Lemma 2.1 Let b be an even integer and n, i, and j be non-negative integers and set
d = gcd(n, j). Then

gcd(bn − 1, bj − 1) = bd − 1. (2)

gcd(bn − 1, bj + 1) =

{
1 if n/d is odd
1 + bd if n/d is even.

(3)

Recall that a quadratic form over GF (q)n is a homogeneous polynomial of degree two in
n variables with coefficients in GF (q). We are concerned with counting the number of times
certain quadratic forms over GF (q)n take on different values. To do so, it is convenient to
represent the quadratic forms by a small number of standard types, by changing coordinates
(a change of coordinates has no effect on the number of times a quadratic form takes on a
particular value). Such classifications are well known. We follow here the treatment given
by Lidl and Niederreiter [10].

Recall that the rank of a quadratic form is the smallest number of variables required to
represent the quadratic form, up to a change of coordinates. The co-rank of a quadratic
form in n variables is n minus the rank. A quadratic form is said to be nonsingular if it
has rank n. If R is a quadratic form, then we define the associated symmetric bilinear form
D(x̄, ȳ) = R(x̄ + ȳ)− R(x̄)− R(ȳ), where x̄ = (x1, · · · , xn) and ȳ = (y1, · · · , yn). Note that
R is not uniquely determined by D if q is even, unlike the the case where q is odd. D may
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even be zero for nonzero R. We also refer to the rank of D, the smallest m such that D can
be represented in terms of x1, · · · , xm, y1, · · · , ym, after a change of coordinates. The rank of
D is at most the rank of R.

Associated with R are two important vector spaces. The null space of R, denoted by
Null(R), is the set of w̄ such that R(w̄) = 0 and for every x̄, D(w̄, x̄) = 0. The null space
of D, denoted by Null(D), is the set of w̄ such that for every x̄, D(w̄, x̄) = 0. Associated
with the linear function L is the kernel of L, denoted by Ker(L), which consists of those w̄
such that L(w̄) = 0. We will use properties of these vector spaces to determine the ranks of
the quadratic forms that arise.

Lemma 2.2 The dimension of Null(R) is the co-rank of R. The dimension of Null(D) is
the co-rank of D.

Proof: Let m be the rank of R, and assume that coordinates x1, · · · , xn have been chosen
so that R is expressed in terms of x1, · · · , xm. Let V = {(x1, · · · , xn) : x1 = · · · = xm = 0}.
The first assertion will be proved by showing V = Null(R) since the dimension of V is
n − m, the co-rank of R. The inclusion V ⊆ Null(R) is straightforward, so assume the
opposite inclusion is false, that is, that there is a w ∈ Null(R) which is not in V . By
changing coordinates, we may assume that w consists of a 1 in the mth coordinate and 0s
elsewhere, and the description of V remains unchanged. It follows that for some a ∈ GF (q),
and polynomials b(x1, · · · , xm−1) and c(x1, · · · , xm−1) over GF (q),

R(x̄) = ax2
m + b(x̄)xm + c(x̄).

In this representation we have

D(x̄, ȳ) = 2axmym + b(x̄ + ȳ)(xm + ym)− b(x̄)xm − b(ȳ)ym + c(x̄ + ȳ)− c(x̄)− c(ȳ).

The fact that R(w) = 0 implies a = 0. The fact that, for every x̄, D(w, x̄) = 0 implies
that, for every x̄, b(x̄)(1 + xm) − b(x̄)xm = 0, so b(x̄) = 0. Thus R is written in terms of
x1, · · · , xm−1, contradicting the fact that the rank of R is m. Thus Null(R) ⊆ V and so
Null(R) = V .

The proof of the second assertion is similar. 2

We first describe the classification of quadratic forms in two variables. We assume from
now on that q is a power of 2.

Lemma 2.3 Given c, d, e ∈ GF (q) (not all zero), define the quadratic form g(x, y) = cx2 +
dxy + ey2. Then g(x, y) is nonsingular if and only if d 6= 0. Let b be a fixed element of
GF (q) satisfying Trq

2(b) = 1. Under a linear change of coordinates g is equivalent to the
quadratic form

12



1. xy, if d 6= 0 and Trq
2(ec/d

2) = 0;

2. bx2 + xy + by2, if d 6= 0 and Trq
2(ec/d

2) = 1;

3. x2, if d = 0.

Let v ∈ GF (q). In case (1), g(x, y) = v has 2q − 1 solutions if v = 0, and q − 1 solutions if
v 6= 0. In case (2), g(x, y) = v has only the zero solution if v = 0, and has q + 1 solutions
if v 6= 0. In case (3), g(x, y) = v has q solutions for every v.

More generally, quadratic forms R(x1, . . . , xn) in n variables over GF (q) (with q even)
have been classified [10, Theorem 6.30] as follows. Let Bm(x̄) = x1x2 +x3x4 + · · ·+xm−1xm.

Proposition 2.4 Every quadratic form R of rank m in n variables over GF (q), q even, is
equivalent under a change of coordinates one of the following three standard types:

Type I: Bm(x̄);

Type II: Bm−1(x̄) + x2
m;

Type III: Bm−2(x̄) + bx2
m−1 + xm−1xm + bx2

m.

For any v ∈ GF (q), let η(v) = −1 if v 6= 0 and η(0) = q − 1. The number of solutions
to the equation R(x̄) = v is:

Type I: qn−1 + η(v)qn−m/2−1;

Type II: qn−1;

Type III: qn−1 − η(v)qn−m/2−1.

We say that a quadratic form is Type j if it is equivalent to a Type j standard form.
We are also concerned with the number of times certain inhomogeneous equations take on
different values.

Proposition 2.5 Let R(x̄) be a quadratic form of rank m. The number of solutions to the
equation

R(x̄) +
m∑

i=1

cixi = v (4)

is
Type I: qm−1 + η(v + R(c̄))qm/2−1;

Type II: 1. qm−1 if cm = 0;
13



2. qm−1 + (−1)Trq
2((v+Bm−1(barc))/c2m)q(m−1)/2 if cm 6= 0;

Type III: qm−1 − η(v + R(c̄))qm/2−1.

Proof: The results for Type I and Type III forms follow from the previous proposition
after an affine change of coordinates which replaces x1 by x1 + c2, x2 by x2 + c1, etc. This
eliminates the linear terms and replaces v by v + R(c̄).

In the case of a Type II form, we can eliminate the first m− 1 linear terms by the same
change of basis, replacing v by v + Bm−1(c̄), resulting in

R(x̄) + cmxm = v + Bm−1(x̄). (5)

Let w = v +Bm−1(c̄). We cannot eliminate the remaining linear term cmxm. If cm = 0, then
we are done by the previous proposition. Thus we may assume cm 6= 0.

Let µm(cm, w) denote the number of solutions to equation (5). By Lemma 2.3, µ1(cm, w) =
2 if Trq

2(w/c2
m) = 0, and µ1(cm, w) = 0 if Trq

2(w/c2
m) = 1. In general, letting σm(w) be the

number of solutions to Bm(x̄) = w, we have

µm(cm, w) =
∑

u∈GF (q)

µ1(cm, u)σm−1(u + w)

= 2 ·
∑

Trq
2(u/c2m)=0

σm−1(u + w)

= 2 ·
∑

Trq
2(u/c2m)=0

(qm−2 + η(u + w)q(m−3)/2)

=

{
2 · q

2
(qm−2 − q(m−3)/2) if Trq

2(w/c2
m) = 1

2 q−1
2

(qm−2 − q(m−3)/2) + 2(qm−2 + (q − 1)q(m−3)/2) if Trq
2(w/c2

m) = 0

by Proposition 2.4. The proposition follows. 2

3 Intersections of Quadric Hypersurfaces with Hyper-

planes

In this section we give a complete description of the cardinalities of the intersections of
quadric hypersurfaces with hyperplanes over a finite field of characteristic 2. These cardi-
nalities form the coefficients in Proposition 1.5.

We work in this section in affine n-space GF (q)n over GF (q), writing x̄ for the n-tuple
of variables (x1, . . . , xn). We choose a fixed element b ∈ GF (q) such that Trq

2(b) = 1.
Throughout this section H(x̄) =

∑n
i=1 aixi and L(x̄) =

∑n
1=0 cixi are linear polynomials and

R(x̄) is a quadratic form in one of the three standard types. For any u, v ∈ GF (q), we
14



think of H(x̄) = u as defining a hyperplane, and Q(x̄)
def
= R(x̄) + L(x̄) = v as defining a

quadric hypersurface. The rank of R is denoted by m, and the number of solutions to the
simultaneous equations

H(x̄) = u (6)

Q(x̄) = v (7)

(i.e., the intersection of a hyperplane with a quadric hypersurface) is denoted by N(u, v).
The analysis of N(u, v) is carried out on a case by case basis. The first two cases apply

to arbitrary R, while the remaining cases depend on the type of R.

Proposition 3.1 Suppose that ciaj 6= cjai for some i, j > m. Then N(u, v) = qn−2.

Proof: By hypothesis, the linear polynomials
∑n

r=m+1 arxr and
∑n

r=m+1 crxr are linearly
independent. Therefore, for any fixed values of x1, · · · , xm, the equations

n∑
r=m+1

arxr = u +
m∑

r=1

arxr

and
n∑

r=m+1

crxr = v + R(x̄) +
m∑

r=1

crxr

have qn−m−2 solutions over xm+1, · · · , xn. The qm possible values of x1, · · · , xm give qn−2

solutions in all. 2

Proposition 3.2 Suppose that am+1 = · · · = an = 0 and some ci 6= 0, with i > m. Then
N(u, v) = qn−2.

Proof: Choose x1, · · · , xm so that
∑m

r=1 aixi = 0. There are qm−1 choices for such x1, · · · , xm.
Then the equation

n∑
r=m+1

crxr = v + R(x̄) +
m∑

r=1

crxr

has qn−m−1 solutions over xm+1, · · · , xn, for qn−2 solutions in all. 2

In the following we let ε = 1 if R has Type I and ε = −1 if R has Type III.

Proposition 3.3 Suppose that for some i > m, ai 6= 0, and (cm+1, · · · , cn) = s(am+1, · · · , an)
for some s ∈ GF (q). Let d` = c` + sa`, for 1 ≤ ` ≤ n.

15



1. If R has Type I or Type III, then

N(u, v) = qn−2 + εη(v + su + R(d̄))qn−m/2−2.

(Note that R(d̄) = R(c̄) + sD(c̄, ā) + s2R(ā).)

2. If R has Type II, and λ = Trq
2((v + su + Bm−1(d̄))/d2

m) when dm 6= 0, then

N(u, v) =

{
qn−2 if dm = 0
qn−2 + (−1)λqn−m/2−3/2 if dm 6= 0.

Proof: It follows from the hypotheses that N(u, v) is the number of solutions to the equa-
tions

n∑
j=1

ajxj = u, (8)

R(x̄) +
m∑

j=1

djxj = v + su. (9)

The variables x`, m + 1 ≤ ` ≤ n appear in equation (8) but not in equation (9), so we can
choose any values for x1, · · · , xm satisfying equation (9), then find a complete solution by
solving

n∑
j=m+1

ajxj = u +
m∑

j=1

ajxj.

Thus N(u, v) is qn−m−1 times the number of solutions to equation (9). The proposition
follows from Proposition 2.5. 2

Proposition 3.4 Suppose that am+1 = am+2 = · · · = an = cm+1 = cm+2 · · · = cn = 0, or
m = n.

1. Let R have Type I or Type III, and φ = Trq
2((v + R(c̄))R(ā)/(u2 + D(ā, c̄)2)) when

u 6= D(ā, c̄).

a. If R(ā) 6= 0, then

N(u, v) =

{
qn−2 + ε(−1)φqn−m/2−1 if u 6= D(ā, c̄)
qn−2 if u = D(ā, c̄).

b. If R(ā) = 0, then

N(u, v) =

{
qn−2 if u 6= D(ā, c̄)
qn−2 + εη(v + R(c̄))qn−m/2−1 if u = D(ā, c̄).
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2. Let R have Type II.

a. If am = cm = 0, then N(u, v) = qn−2.

b. If am = 0 and cm 6= 0, then N(u, v) = qn−2 when u 6= D(ā, c̄) + cmR(ā)1/2,
and N(D(ā, c̄) + cmR(ā)1/2, v) = qn−2 + (−1)µqn−m/2−1/2 where µ = Trq

2((v +
Bm−1(c̄))/c

2
m).

c. Otherwise N(u, v) = qn−2 + (−1)πη(w)qn−m/2−3/2 where π = Trq
2(Bm−1(ā)/a2

m)
and w = v+u2/a2

m+(cm/am)u+R(c̄)+R(ā)c2
m/a2

m+D(ā, c̄)cm/am+D(ā, c̄)2/a2
m.

Proof: Suppose first that R has Type I or Type III. After the affine change of coordinates
used in Proposition 2.5, we find that N(u, v) is the number of solutions to the equations

m∑
i=1

aixi = u + D(ā, c̄) (10)

and
R(x̄) = v + R(c̄). (11)

The number of solutions over x1, · · · , xn is qn−m times the number of solutions over x1, · · · , xm.
Thus we may assume that n = m.

Now let R have Type I. By symmetry, we may assume that am 6= 0. We can solve for
xm in equation (10):

xm =
1

am

(u + D(ā, c̄) +
m−1∑
i=1

aixi).

Thus equation (11) becomes

Bm−2(x̄) +
m−1∑
i=1

ai

am

xixm−1 +
u + D(ā, c̄)

am

xm−1 = v + R(c̄). (12)

N(u, v) is qn−m times the number of solutions to this last equation. We next change coor-
dinates by

x2i−1 7→ x2i−1 + a2ixm−1, x2i 7→ x2i + a2i−1xm−1

for 1 ≤ i ≤ m/2− 1, and
xm−1 7→ amxm−1.

Equation (12) becomes

Bm−2(x̄) + R(ā)x2
m−1 + (u + D(ā, c̄))xm−1 = v + R(c̄).
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If R(ā) 6= 0, then the result follows from Proposition 2.5, while if R(ā) = 0, the result
follows from Proposition 2.4. A similar analysis works if R has Type III, though extra care
is required if a1 = · · · = am−2 = 0. The details are left to the reader.

Finally, suppose R has Type II. We can change coordinates affinely to obtain equations

m∑
i=1

aixi = u + D(ā, c̄) (13)

and
Bm−1(x̄) + x2

m + cmxm = v + Bm−1(c̄).

If a1 = · · · = am−1 = 0, then am 6= 0 and xm = u/am (since D(ā, c̄) = 0). The result
follows in this case from Proposition 2.4. Otherwise, we may assume by symmetry that
am−1 6= 0, solve for xm−1 in equation (13), and change coordinates to arrive at the equation

Bm−3(x̄) + Bm−1(ā)x2
m−2 + amxm−2xm + x2

m + (u + D(ā, c̄))xm−2 + cmxm = v + Bm−1(c̄).

If am = 0, we can change coordinates by

xm 7→ xm + Bm−1(ā)1/2xm−2,

resulting in the equation

Bm−3(x̄) + x2
m + (u + D(ā, c̄) + cmBm−1(ā)1/2)xm−2 + cmxm = v + Bm−1(c̄).

If, moreover, cm = 0, then we have qn−2 solutions. Suppose cm 6= 0. We have qn−2

solutions if u 6= D(ā, c̄) + cmBm−1(ā)1/2. If u = D(ā, c̄) + cmBm−1(ā)1/2, then we have
qn−2 + (−1)µqn−m/2−1/2 solutions.

If am 6= 0, we can apply the change of coordinates

xm−2 7→ xm−2 +
cm

am

, xm 7→ xm +
u + D(ā, c̄)

am

to eliminate the linear terms. Proposition 2.4 can then be applied to give the stated value
for N(u, v). 2

4 Analysis of Types and Ranks

We now begin the proof of Theorems 1.2, 1.3, and 1.4. We first determine the types of the
quadratic forms involved. We then use the results of Section 3 to evaluate the coefficients in
the expression for the cross-correlation in Proposition 1.5. Any choice of basis e1, e2, . . . , en
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for GF (qn) as a vector space over GF (q) determines an identification GF (q)n → GF (qn)
by x̄ = (x1, x2, . . . , xn) 7→ ∑

i xiei = x. When such a basis has been chosen, we shall write x̄
if the element x is to be thought of as a vector in GF (q)n, and we shall write x when the
same vector is to be thought of as an element of the field GF (qn). Fix δ 6= 0 ∈ GF (qn) and
define the function R : GF (q)n → GF (q) by R(x̄) = Trqn

q (δxk).

Theorem 4.1 Suppose k = 1 + qj (so k has q-adic weight 2). Then R(x̄) is a quadratic
form.

1. If n/ gcd(n, j) is even and δ is not a (1 + qj)th power in GF (qn), then the rank of R
is n, hence even. Moreover, if n

2 gcd(n,j)
is odd, then R is a Type III quadratic form,

while if n
2 gcd(n,j)

is even, then R is a Type I quadratic form.

2. If n/ gcd(n, j) is even and δ is a (1 + qj)th power in GF (qn), then the rank of R is
n− 2 gcd(n, j), hence even. Moreover, if n

2 gcd(n,j)
is odd, then R is a Type I quadratic

form, while if n
2 gcd(n,j)

is even, then R is a Type III quadratic form.

3. If n/ gcd(n, j) is odd, then the rank of R is n − gcd(n, j) + 1, hence even. Moreover,
R is a Type II quadratic form.

Proof: If e1, e2, . . . , en is a basis for GF (qn) over GF (q), then

R(x̄) = Trqn

q (δ(
n∑

h=1

xheh)
1+qj

)

= Trqn

q (δ(
n∑

h=1

xheh)(
n∑

l=1

(xle
qj

l ))

=
n∑

h=1

n∑
l=1

ahlxhxl

where ahl = Trqn

q (δehe
qj

l ), and R(x̄) is a quadratic form.
The third case was handled by Klapper, Chan, and Goresky [7]. Hence we may assume

that n/ gcd(n, j) is even. It follows that j 6= 0.
Consider the null space, W , of R, defined by

W = {w ∈ GF (qn) : R(w) = 0 and ∀y ∈ GF (qn), R(w + y) = R(y)}.

W is a GF (q)-vector subspace in GF (qn), and, by Lemma 2.2, the dimension of W is the
co-rank of R, which we next determine.

Let w ∈ GF (qn). Expanding the expression (w + y)1+qj
, we see that w ∈ W if and

only if Trqn

q (δw1+qj
) = 0 and for every y ∈ GF (qn), Trqn

q (δwyqj
) = Trqn

q (δwqj
y). Since
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Trqn

q (x) = Trqn

q (xq), the right hand side of the latter equation is unchanged if we raise its
argument to the power qj, which gives

Trqn

q (δwyqj

) = Trqn

q (δqj

wq2j

yqj

),

or
Trqn

q ((δw + δqj

wq2j

)yqj

) = 0

for all y ∈ GF (qn). This implies that δw = δqj
wq2j

.
Let z = δw1+qj

. Then w ∈ W if and only if Trqn

q (z) = 0 and zqj−1 = 1, i.e., z ∈ GF (qj).

This second condition is equivalent to z ∈ GF (qj) ∩ GF (qn) = GF (qgcd(n,j)). Moreover, if
y ∈ GF (qgcd(n,j)), then

Trqn

q (y) = Trqgcd(n,j)

q (Trqn

qgcd(n,j)(y))

= Trqgcd(n,j)

q (
n

gcd(n, j)
y) = 0,

since n/ gcd(n, j) is even. Hence w ∈ W if and only if δw1+qj ∈ GF (qgcd(n,j)).

Suppose there is a w 6= 0 ∈ W . Let u satisfy uq2 gcd(n,j)−1 = 1. We have that n/ gcd(n, j)
is even, so 2 gcd(n, j) divides n, and thus q2 gcd(n,j)−1 divides qn−1. Therefore u ∈ GF (qn).
We have

(δ(uw)1+qj

)qgcd(n,j)−1 = 1,

that is, uw ∈ W . The cardinality of the set of such u in GF (qn) is qq gcd(n,j)− 1. Conversely,
if v ∈ W , then

(v/w)(1+qj)(qgcd(n,j)−1) = 1.

It follows that
(v/w)q2 gcd(n,j)−1 = 1,

and so W has cardinality q2 gcd(n,j) or has cardinality 1 (i.e., consists of only 0).
We next show that there is a w 6= 0 ∈ W if and only if δ is a (1 + qj)th power. If

δ = d1+qj
, then w = d−1 ∈ W . Conversely, suppose v = δw1+qj ∈ GF (qgcd(n,j)). Let u be

a primitive q2 gcd(n,j) − 1 root of 1 in GF (qn). Then u1+qj
is a primitive qgcd(n,j) − 1 root of

1, i.e., a primitive element of GF (qgcd(n,j)). It follows that there is an integer m such that
v = u(1+qj)m. Therefore, δ = (um/w)1+qj

. This proves the assertions regarding the rank of
R.

We suppose lastly that δ is not a 1 + qjth power and determine the type of R. The case
where δ is a 1 + qjth power is similar. Let b 6= 0 ∈ GF (q). Suppose that R is a Type I
quadratic form. Then the equation R(x) = b has qn−1 − qn/2−1 = qn/2−1(qn/2 − 1) solutions
by Proposition 2.4. Also, if R(x) = b, and u1+qj

= 1, then R(ux) = b. There are qgcd(n,j) + 1

20



such u in GF (qn), so qgcd(n,j) + 1 divides qn/2 − 1. By Lemma 2.1, this is only possible if
n/(2 gcd(n, j)) is even. Similarly, it can be shown that if R is a Type III quadratic form,
then n/(2 gcd(n, j)) is odd. If R had Type II, then the number of solutions to R(x) = b
would be qn−1, which cannot be divisible by qgcd(n,j) + 1, so Type II is impossible. The
assertions regarding the type of R in this case follow. 2

5 Proofs of the Main Theorems

Completing the proofs of the main theorems is now a matter of combining the results of
Section 3 with Theorem 4.1. In each case we have a fixed quadratic form R(x̄), whose type
is established by Theorem 4.1, a linear function L(x̄), and a linear function H(x̄) whose
coefficients are determined by the shift τ (R, L, and H are defined over GF (q)). As τ
ranges through all possible shifts, H ranges through all possible nonzero linear functions.
Thus, in determining the distribution of values of ΘS,T(τ) for fixed geometric sequences S
and T, we keep R and L fixed and let H vary through all nonzero linear functions. For
any fixed R, L, and H, one of the propositions of Section 3 applies. The results of that
proposition are then used in Proposition 1.5 to determine a value for ΘS,T(τ). The counts
of the number of shifts τ giving rise to each value of ΘS,T(τ) are also determined by the
propositions of Section 3.

Assume we have chosen coordinates so that R(x̄) is in one of the three standard types,
with rank m. We write L(x̄) =

∑n
i=1 cixi, H(x̄) =

∑n
i=1 aixi, and ρ = R(c̄). The condition

Null(R) ⊆ Ker(L) is equivalent to cm+1 = · · · = cn = 0. The condition Null(D) ⊆ Ker(L)
is equivalent to cm = · · · = cn = 0 when R is a Type II quadratic form. We let ε = 1 if R
has Type I, ε = −1 if R has Type III, and σ = cm if R has Type II. Thus by Theorem 4.1,
ω = ε if δ is not a kth power (i.e., in Theorem 1.3), and ω = −ε if δ is a kth power (i.e., in
Theorem 1.2). In order to compute the coefficients N(u, v), we must count the simultaneous
solutions to

H(x̄) = u (14)

and
R(x̄) + L(x̄) = v, (15)

for arbitrary u, v ∈ GF (q). The proofs are handled in several cases depending on the
parameters ci that determine the shift τ .

A. Suppose that (cm+1, · · · , cn) = s(am+1, · · · , an) for some s, and there is an i > m such
that ai 6= 0. Then we can apply Proposition 3.3. This condition is satisfied by qn− qm shifts
if cm+1 = · · · = cn = 0, and qm+1 − qm shifts otherwise. This gives
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1. Case A.1 of Theorem 1.2, when s = 0. Here

N(u, v) = qn−2 + εη(v + ρ)qn/2+d−2,

so
ΓS,T(τ) = ωqn/2+d−2I(f)(I(g)− qG(ρ)).

This value occurs for qn − qn−2d shifts.

2. Case B.2 of Theorem 1.2, where

N(u, v) = qn−2 + εη(v + su + R(c̄) + sD(c̄, ā) + s2R(ā))qn/2+d−2,

so

ΓS,T(τ) = ωqn/2+d−2(I(f)I(g)− q
∑
u

F (u)G(su + ρ + sD(c̄, ā) + s2R(ā)))

= ωqn/2+d−2(I(f)I(g)− qF (u)G(su + t)),

where t = ρ + sD(c̄, ā) + s2R(ā). For a given t, the number of shifts for which this
value occurs is the number of a1, · · · , am such that t = ρ + sD(c̄, ā) + s2R(ā), which is
given by Proposition 2.5 as qn−2d−1 + εη(t)qn/2−d−1.

3. Case A.1 of Theorem 1.4, when cm = s = 0. Here N(u, v) = qn−2, so ΓS,T(τ) = 0.
This value occurs for qn − qn−d+1 shifts.

4. Case B.1 of Theorem 1.4, when s = 0 and cm 6= 0. Here

N(u, v) = qn−2 + (−1)Trq
2((v+Bm−1(c̄))/c2m)q(n+d)/2−2

= qn−2 + (−1)Trq
2((v+ρ)/σ2+1)q(n+d)/2−2,

so
ΓS,T(τ) = q(n+d)/2−2I(f)

∑
v

(−1)Trq
2(v+1)G(σ2v + ρ),

after substituting σ2v + ρ for v. This value occurs for qn − qn−d+1 shifts.

5. Case C.1 of Theorem 1.4, when cm = sam 6= 0. Here N(u, v) = qn−2, so ΓS,T(τ) = 0.
This value occurs for qn−d+1 − qn−d shifts.

6. Cases C.2 and C.3 of Theorem 1.4, when cm 6= sam. Here

N(u, v) = qn−2 + (−1)Trq
2((v+su+Bm−1(d̄))/d2

m)q(n+d)/2−2
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(recall d̄ = c̄ + sā), so

ΓS,T(τ) = q(n+d)/2−2
∑
u,v

(−1)Trq
2((v+su+Bm−1(d̄))/d2

m)F (u)G(v)

= (−1)Trq
2(Bm−1(d̄)/d2

m)
∑
u,v

(−1)Trq
2((v+su)/d2

m)F (u)G(v).

We have Trq
2(Bm−1(d̄)/d2

m) = 1 whenever there is a z ∈ GF (q) such that Trq
2(z) = 1

and Bm−1(d̄)/d2
m = z. There are q/2 values of z for which Trq

2(z) = 1, all nonzero,
and for each of these, Bm−1(d̄)/d2

m = z for qn−d−1 − q(n−d)/2−1 values of d1, · · · , dm−1

for each fixed nonzero dm. Therefore, (−1)Trq
2(Bm−1(d̄)/d2

m) = −1 for (qn−d − q(n−d)/2)/2
values of a1, · · · , am−1 and (−1)Trq

2(Bm−1(d̄)/d2
m) = 1 for (qn−d + q(n−d)/2)/2 values of

a1, · · · , am−1 for each am 6= cm/s. Letting r = s/(c2
m + s2a2

m), and t = 1/(c2
m + ssa2

m),
we find that ΓS,T(τ) =

∑
u,v(−1)Trq

2(ru+tv)F (u)G(v) for (qn−d + q(n−d)/2)/2 shifts and

ΓS,T(τ) = −∑u,v(−1)Trq
2(ru+tv)F (u)G(v) for (qn−d − q(n−d)/2)/2 shifts for each r 6= 0

and t 6= 0 in GF (q).

B. Suppose there is an i > m such that ci 6= 0, and am+1 = · · · an = 0. Equivalently,
Null(R) 6⊆ Ker(L), and Null(R) ⊆ Ker(H). In this case N(u, v) = qn−2 for all u and v by
Proposition 3.2, so ΓS,T(τ) = 0. This contributes qm − 1 shifts to case B.1 of Theorem 1.2,
and case C.1 of Theorem 1.4.

C. Suppose (cm+1, · · · , cn) and (am+1, · · · , an) are linearly independent. Then N(u, v) =
qn−2 by Proposition 3.1, so ΓS,T(τ) = 0. This contributes qn − qm+1 shifts to case B.1 of
Theorem 1.2 and case C.1 of Theorem 1.4.

In the remaining cases we may assume that cm+1 = · · · = cn = am+1 = · · · = an = 0 and
apply Proposition 3.4 to compute N(u, v).

D. Suppose R has Type I or III and R(ā) 6= 0. Then

N(u, v) =

{
qn−2 + ε(−1)φqn−m/2−1 if u 6= D(ā, c̄)
qn−2 if u = D(ā, c̄).

where φ = Trq
2((v + R(c̄))R(ā)/(u2 + D(ā, c̄)2)) if u 6= D(ā, c̄). Consequently

ΓS,T(τ) = ε
∑

u 6=D(ā,c̄)

∑
v

(−1)φqn−m/2−1F (u)G(v)

= εqn−m/2−1
∑
u 6=0

∑
v

(−1)Trq
2(vR(ā)/u2)F (u + D(ā, c̄))G(v + R(c̄))
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where we have substituted u + D(ā, c̄) for u, and v + R(c̄) for v. We next let

t = D(ā, c̄) and s = R(ā). (16)

Thus
ΓS,T(τ) = εqn−m/2−1

∑
u 6=0

∑
v

(−1)Trq
2(sv/u2)F (u + t)G(v + R(c̄)).

This gives case A.3 of Theorem 1.2 and case 2 of Theorem 1.3. To count the number of
shifts for which these values occur, we apply Proposition 3.4.1 to equation (16).

E. Suppose R has Type I or III and R(ā) = 0. Then

N(u, v) =

{
qn−2 if u 6= D(ā, c̄)
qn−2 + εη(v + R(c̄))qn−m/2−1 if u = D(ā, c̄).

Consequently,
ΓS,T(τ) = εqn−m/2−1F (D(ā, c̄))(qG(R(c̄))− I(g)).

Letting t = D(ā, c̄) and R(ā) = 0, we have

ΓS,T(τ) = εqn−m/2−1F (t)(qG(R(c̄))− I(g)).

This gives case A.2 of Theorem 1.2 and case 1 of Theorem 1.3. We can again count the
number of shifts giving rise to these values by applying Proposition 3.4.1.

F. Suppose R has Type II and cm = 0 (i.e., Null(D) ⊆ Ker(L). Note that in this case
ρ = Bm−1(c̄)).

1. If am = 0, then N(u, v) = qn−2 by Proposition 3.4. Hence ΓS,T(τ) = 0. This con-
tributes qn−d − 1 shifts to case A.1 of Theorem 1.4.

2. If am 6= 0, N(u, v) = qn−2 + (−1)πη(w)qn−m/2−3/2 where π = Trq
2(Bm−1(ā)/a2

m) and
w = v + u2/a2

m + ρ + D(ā, c̄)2/a2
m, by Proposition 3.4. Thus,

ΓS,T(τ) = (−1)πq(n+d)/2−2(q
∑
u

F (u)G(
u2

a2
m

+ ρ +
D(ā, c̄)2

a2
m

)− I(f)I(g))

= (−1)πq(n+d)/2−2(q
∑
u

F (amu)G(u2 + ρ +
D(ā, c̄)2

a2
m

)− I(f)I(g)).

Letting am = s 6= 0, Bm−1(ā) = a2
mr, and ρ + D(ā, c̄)2/a2

m = t, i.e., D(ā, c̄) =
am(t + ρ)1/2, we have

ΓS,T(τ) = (−1)Trq
2(r)q(n+d)/2−2(q

∑
u

F (su)G(u2 + t)− I(f)I(g)).
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Counting shifts is now a bit more complicated since we would like to determine which
sign occurs, thus eliminating r.

If c1 = · · · = cm−1 = 0, then t = ρ = 0. For a fixed s, there are q/2 values of r for
which Trq

2(r) = 0, including r = 0. Thus there are (qn−d + q(n−d)/2)/2 shifts with a
positive sign, and (qn−d − q(n−d)/2)/2 shifts with a negative sign.

If the ci are not all zero, we may apply Proposition 3.4 again for fixed r, s, t. If ρ = 0,
then this value occurs for qn−d−2 shifts if t 6= 0, and for qn−d−2 + η(r)q(n−d)/2−1 shifts
if t = 0. To eliminate r, we collect terms for which Trq

2(r) = 0. We have a plus sign
for qn−d−1/2 shifts when t 6= 0, and for (qn−d−1 + q(n−d)/2)/2 shifts when t = 0. We
have a minus sign for qn−d−1/2 shifts when t 6= 0, and for (qn−d−1 − q(n−d)/2)/2 shifts
when t = 0.

If ρ 6= 0, this value occurs for qn−d−2 +(−1)Trq
2(ρr/(t+ρ))q(n−d)/2−1 shifts if t 6= ρ, and for

qn−d−2 shifts if t = ρ. If t = ρ, then each sign occurs for qn−d−1/2 shifts, so let t 6= ρ
be fixed. Then the number of shifts giving a plus sign is given by

|{r : Trq
2(r) = 0} ∩ {r : Trq

2(
ρ

t + ρ
r) = 0}|(qn−d−2 + q(n−d)/2−1)

+ |{r : Trq
2(r) = 0} ∩ {r : Trq

2(
ρ

t + ρ
r) = 1}|(qn−d−2 − q(n−d)/2−1)

=
qn−d−1

2
+ q(n−d)/2−1(2|{r : Trq

2(r) = 0} ∩ {r : Trq
2(

ρ

t + ρ
r) = 0}| − q

2
).

If t 6= 0, then the intersection is an intersection of two non-parallel hyperplanes (over
GF (2)), which has cardinality q/4, so this reduces to qn−d−1/2. If t = 0, then the
two hyperplanes coincide, so we have (qn−d−1 + q(n−d)/2)/2 shifts. Similarly, we have
qn−d−1/2 shifts giving a minus sign if t 6= 0, and (qn−d−1 − q(n−d)/2)/2 shifts giving a
minus sign if t = 0.

G. Finally, suppose R has Type II and cm 6= 0 (i.e., Null(R) ⊆ Ker(L), but Null(D) 6⊆
Ker(L)). We have, according to Proposition 3.4, two cases to consider.

1. If am = 0, then N(u, v) = qn−2 when u 6= D(ā, c̄) + cmR(ā)1/2, and N(D(ā, c̄) +
cmR(ā)1/2, v) = qn−2 + (−1)µqn−m/2−1/2, where µ = Trq

2((v + Bm−1(c̄))/c
2
m). Thus

ΓS,T(τ) = q(n+d)/2−1F (D(ā, c̄) + cmR(ā)1/2)
∑
v

(−1)µG(v)

= q(n+d)/2−1F (D(ā, c̄) + σR(ā)1/2)
∑
v

(−1)Trq
2(v+1)G(σ2v + ρ),
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where we have substituted σ2v + ρ = c2
mv + Bm−1(c̄) + c2

m for v. Letting s = D(ā, c̄)
and r2 = R(ā) = Bm−1(ā), we see that

ΓS,T(τ) = q(n+d)/2−1F (s + σr)
∑
v

(−1)Trq
2(v+1)G(σ2v + ρ).

For fixed s and r, the number, K, of shifts that give this value is, according to Propo-
sitions 2.4 and 3.4, given by one of the following.

(a) If L(x̄) = σxm, then s = 0 and

K =

{
qn−d−1 − q(n−d)/2−1 if r 6= 0
qn−d−1 + (q − 1)q(n−d)/2−1 − 1 if r = 0.

(b) If L(x̄) 6= σxm but Bm−1(c̄) = 0 (i.e., ρ = σ2), then

K =


qn−d−2 if s 6= 0
qn−d−2 − q(n−d)/2−1 if s = 0, r 6= 0
qn−d−2 + (q − 1)q(n−d)/2−1 − 1 if s = r = 0.

(c) If Bm−1(c̄) 6= 0 (i.e., ρ 6= σ2), then

K =


qn−d−2 + (−1)Trq

2(Bm−1(c̄)r2/s2)q(n−d)/2−1 if s 6= 0
qn−d−2 if s = 0, r 6= 0
qn−d−2 − 1 if s = r = 0.

Let t = s + σr, so

ΓS,T(τ) = q(n+d)/2−1F (t)
∑
v

(−1)Trq
2(v+1)G(σ2v + ρ).

To count the number of shifts giving this value we must sum over all s and r such that
t = s + σr. Suppose first that L(x̄) = σxm. Then s = 0, and t = σr, so the number of
shifts giving this value is qn−d−1− q(n−d)/2−1 if t 6= 0 and qn−d−1 + (q− 1)q(n−d)/2−1− 1
if t = 0.

Suppose next that L(x̄) 6= σxm, but Bm−1(c̄) = 0. If t = 0, then the number of shifts
giving this value is (q − 1)qn−d−2 + qn−d−2 + (q − 1)q(n−d)/2−1 − 1 = qn−d−1 + (q −
1)q(n−d)/2−1− 1. If t 6= 0, then the number of shifts giving this value is (q− 1)qn−d−2 +
qn−d−2 − q(n−d)/2−1 = qn−d−1 − q(n−d)/2−1.

Suppose last that Bm−1(c̄) 6= 0. If t = 0, then s = σr, so the number of shifts giving
this value is (q − 1)(qn−d−2 + (−1)Trq

2(Bm−1(c̄)/σ2)q(n−d)/2−1) + qn−d−2 − 1 = qn−d−1 +
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(−1)Trq
2(Bm−1(c̄)/σ2)(q − 1)q(n−d)/2−1 − 1. If t 6= 0, then the number of shifts giving this

value is ∑
s 6=0

(qn−d−2 + (−1)Trq
2(Bm−1(c̄) s2+t2

σ2s2
)q

n−d
2
−1) + qn−d−2

= qn−d−1 + (−1)Trq
2(

Bm−1(c̄)

σ2 )q
n−d

2
−1
∑
s 6=0

(−1)Trq
2(s)

= qn−d−1 − (−1)Trq
2(

Bm−1(c̄)

σ2 )q
n−d

2
−1.

Note that R(c̄) = Bm−1(c̄) + σ2.

2. If am 6= 0, then N(u, v) = qn−2 + (−1)Trq
2(Bm−1(ā)/a2

m)η(v + u2/a2
m + σu/am + ρ +

R(ā)σ2/a2
m + D(ā, c̄)σ/am + D(ā, c̄)2/a2

m)qn−m/2−3/2. Thus

ΓS,T(τ) =

(−1)Trq
2(Bm−1(ā)/a2

m)q(n+d)/2−2(q
∑
u

F (u)G(
u2

a2
m

+
σu

am

+ ρ +
R(ā)σ2

a2
m

+
D(ā, c̄)σ

am

+
D(ā, c̄)2

a2
m

)− I(f)I(g))

= (−1)Trq
2(Bm−1(ā)/a2

m)q(n+d)/2−2(q
∑
u

F (amu + D(ā, c̄))G(u2 + σu + ρ +
R(ā)σ2

a2
m

)

−I(f)I(g)),

where we have substituted amu + D(ā, c̄) for u. To count shifts, we let r = am,
s = D(ā, c̄), and t = ρ + R(ā)σ2/a2

m = ρ + σ2 + Bm−1(ā)σ2/a2
m. Then

ΓS,T(τ) = (−1)Trq
2((t+ρ)/σ2+1)q(n+d)/2−2(q

∑
u

F (ru + s)G(u2 + σu + t)− I(f)I(g)).

If L(x̄) = σxm, then s = 0 and this value occurs for qn−d−1 +η( t+ρ
σ2 +1)q(n−d)/2−1 shifts

for each r 6= 0 and t in GF (q). If L(x̄) 6= σxm, but ρ = 0, this value occurs for qn−d−2

shifts for each r 6= 0, s 6= 0, and t in GF (q) and for qn−d−2 + η( t+ρ
σ2 + 1)q(n−d)/2−1

shifts for s = 0 and each r 6= 0 and t in GF (q). If ρ 6= 0, this value occurs for
qn−d−2 + (−1)Trq

2(r2(ρ/σ2+1)(t+ρ+σ2)/s2)q(n−d)/2−1 shifts for each r 6= 0, s 6= 0, and t in
GF (q) and for qn−d−2 shifts for s = 0 and each r 6= 0 and t in GF (q).

This concludes the proofs of the three main theorems.
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6 Linear Complexity

In this section we compute the linear complexity of the geometric sequences considered in the
previous section. Our results are based on the work of Zierler and Mills [17] on the linear
complexity of algebraic combinations of sequences. Zierler and Mills considered general
recurrent sequences over a field F . These are sequences of elements of F (or sequences over
F ) which satisfy linear recurrences whose coefficients are in F . Let S be a sequence over F .
A recurrence,

∀k ≥ 0 : Sk+n =
n−1∑
i=0

aiSi+k, (17)

is said to have length n. The smallest n such that S satisfies a recurrence of length n is the
linear complexity of S, denoted by λF (S). We will write λq for λGF (q). It is well known that
if 2λF (S) consecutive elements of S are known, then S can be (efficiently) determined by
the Berlekamp-Massey algorithm [11]. Thus sequences that are used in cryptographically
sensitive applications must have large linear complexities.

If equation (17) is the (necessarily unique) minimal length recurrence satisfied by S, then
the connection polynomial of S is the polynomial

fS(t) = tn −
n−1∑
i=0

ait
i.

If we think of t as the shift operator on sequences, then fS(t) is the unique monic generator
of the ideal of annihilators of S in the ring F [t]. If fS(t) has roots α1, · · · , αn (over an
algebraic closure F̄ of F ), then S can be written uniquely as

Si =
n∑

j=1

cjα
i
j, (18)

for some cj 6= 0 ∈ F̄ . In particular, the number of terms in a representation of S such as in
equation (18) equals the linear complexity.

Zierler and Mills studied these notions from the point of view of the set of sequences
annihilated by a polynomial f(t), and considered what polynomials annihilate sums and
products of such sets of sequences. Their results can be used to describe the connection
polynomials of term-by-term sums and products of pairs of sequences. If f1(t) and f2(t) are
polynomials, then (f1 ∨ f2)(t) is the polynomial whose roots are the distinct products αβ,
where α is a root of f1(t) and β is a root of f2(t). Note that if f1 and f2 have coefficients in
F , then f1 ∨ f2 does as well, by Galois theory.

Proposition 6.1 Let S and T be linearly recurrent sequences over F . Then
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1. fS+T divides the least common multiple of fS and fT, and

λF (S + T) ≤ λF (S) + λF (T). (19)

If, moreover, fS and fT have no roots in common, then fS+T = fSfT and we have
equality in equation (19).

2. fST divides fS ∨ fT and

λF (ST) ≤ λF (S)λF (T)

= the number of distinct root products γδ, γ a root of fS, δ a root of fT.

If, moreover, all the root products from fS and fT are distinct, then fST = fS∨fT and
λF (ST) = λF (S)λF (T).

Details of the proofs of this proposition can be found in [9].
In our situation we have two sequences U and V over GF (q), defined by

Ui = Trqn

q (γαi) =
n−1∑
j=0

γqj

αiqj

and

Vi = Trqn

q (δαki) =
n−1∑
j=0

δqj

αkiqj

,

where α is a primitive element of GF (qn) γ 6= 0 ∈ GF (qn), δ ∈ GF (qn), and k 6= 0. We also
have a function g : GF (q) → GF (2), and define Si = g(Ui+Vi). We can, however, think of g
as having range GF (q) and therefore express it as a polynomial, g(x) =

∑q−1
i=0 aix

i. The image
of g is in GF (2) if and only if a0, aq−1 ∈ GF (2), and for i ≤ i ≤ q − 2, a2

i = a
(2i mod q−1)

.

It is straightforward, however, to see that λ2(S) = λq(S), so from now on we will put no
restriction on g. In case δ = 0, the linear complexity of S has been computed as

λq(S) =
∑
ai 6=0

nwt(i),

where wt(i) is the number of ones in the binary expansion of i [2, 9]. We will therefore
assume that δ 6= 0. S can be built from U and V by a series of algebraic operations, and we
will keep track of what happens to the linear complexity as we do so. For any k < qn−1, we
denote by χ(k) the number of distinct elements of the form αkqj

, i.e., the size of the Galois
coset of αk. χ(k) can be computed as the least r such that qn − 1 divides (qr − 1)k. In
particular, χ(k) = n if gcd(k, qn − 1) = 1.
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1. fU(t) has roots {α, αq, · · · , αqn−1} and λq(U) = n.

2. fV(t) has roots {αk, αkq, · · · , αkqn−1} and λq(U) = χ(k).

3. Suppose k is not a power of q. Then fU and fV have distinct roots, so fU+V = fUfV,
which has roots {α, αq, · · · , αqn−1}∪{αk, αkq, · · · , αkqn−1}. Thus λq(U+V) = n+χ(k).

4. Suppose g(x) = x2i
, and k is not a power of q. Then the roots of fS are the 2ith

powers of the roots of fU+V, {α2i
, α2iq, · · · , α2iqn−1} ∪ {α2ik, α2ikq, · · · , α2ikqn−1} and

λq(S) = n + χ(k).

5. Suppose g(x) = xb, 1 ≤ b ≤ q − 1, and k is a sum of at least two distinct powers of q.
Let b =

∑e−1
j=0 bj2

j, bj ∈ {0, 1}, q = 2e. Then S is a product of sequences of the form
considered in the preceding paragraph, one for each bj = 1. The set of roots of fS(t)
is thus a subset of

C = {
∏

bj=1

α2jkrj qmj
= α

∑
bj=1

2jkrj qmj

: rj ∈ {0, 1}, 0 ≤ mj ≤ n− 1}.

In fact, if i 6= j, then 2ikriqmi and 2jkrjqmj have no terms in common in their binary
expansions. Therefore 2ikriqmi 6≡ 2jkrjqmj (mod qn − 1), so by Proposition 6.1, C is
precisely the set of roots of fS(t). Similarly, all the root products in C are distinct, so
λq(S) = |C| = (n + χ(k))wt(b).

6. A similar argument shows that the sets of root products that arise for distinct bs are
disjoint. We have proved

Theorem 6.2 Let g : GF (q) → GF (q), g(x) =
∑q−1

i=0 aix
i. Let k < qn be a sum of at least

two distinct powers of q, and let γ 6= 0, δ 6= 0 be elements of GF (qn). Then the sequence
whose ith term is g(Trqn

q (γαi + δαki)) has linear complexity

λq(S) =
∑
ai 6=0

(n + χ(k))wt(i).

Thus the linear complexity of these sequences is higher than that of previously studied
geometric sequences. χ(k) can be as large as n, so the largest possible linear complexity we
can achieve here is

∑
ai 6=0

(2n)wt(i) =
log q∑
r=0

(
log q

r

)
(2n)r

= (2n + 1)log q,
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which is approximately q(n+1)log q, i.e., q times greater than the maximum linear complexity
achievable with previously studied geometric sequences.

More generally, let {k1, · · · , kd} be a set of integers such that each ki < qn is a sum of
distinct powers of q, and for i 6= j, there is no r such that ki ≡ qrkj (mod qn − 1) (this
holds, for example, if wt(ki) 6= wt(kj)). Let

Si = g(Trqn

q (
d∑

j=1

γjα
kji)),

where
∑q−1

i=0 aix
i and each γj is nonzero. Then S has linear complexity

λq(S) =
∑
ai 6=0

(
d∑

j=1

χ(kj))
wt(i).

7 Conclusions

In this paper we introduce a general class of easily generated binary sequences based on
combinations of shift register sequences over a finite field with nonlinear feedforward func-
tions. We have exhibited formulas for the cross-correlation of these sequences with standard
geometric sequences in terms of the feedforward functions. The cross-correlations can be
minimized either by exhaustive search or by further analysis. It may be possible, for exam-
ple, to apply these formulas recursively.

We have also expressed the linear complexity of these generalized geometric sequences
in terms of algebraic expressions for the feedforward functions. These sequences are seen to
have higher linear complexities than standard geometric sequences by a factor of as much
as q.

Several questions remain. First, it is as yet unclear whether feedforward functions can
be chosen to minimize the cross-correlation values while simultaneously making the linear
complexity close to maximal. Second, we have not computed the cross-correlation of a pair of
generalized geometric sequences, or even their autocorrelation functions. Using the approach
taken here, this problem leads to the computation of the number of points in the intersection
of pairs of degree two hypersurfaces. In general this is a hard problem, but in this case there
is some hope that the special form of the equations will make it tractable. Finally, much
more general geometric sequences can be considered, say by applying a feedforward function
to an arbitrary linear combination of decimations of m-sequences. It is unlikely that much
can be said in general about the cross-correlations of such sequences, but there may be other
special cases (e.g., particular decimations) in which inductive formulas can be found. This
would likely lead to sequences with higher linear complexity, since the linear complexity
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tends to go up both with the number of m-sequences in the linear combination, and with
the degree of the decimation.

The geometric sequences studied here are closely related to No sequences [13]. Let n = 2,
T = q + 1 (so αT is a primitive element of GF (q)), gcd(r, q − 1) = 1, g(x) = Trq

2(x
r), and

δ ∈ GF (qn1). Then the sequence V whose ith element is Vi = g(Trq2

q (α2i + δαTi)) is a No
sequence (No and Kumar described their sequences slightly differently, but this description
is equivalent). This is not quite the form of sequences studied here due to the squaring of
α in the first term. However, it is likely that the cross-correlation of an m-sequence with
a No sequence or even more general sequences can be computed using similar techniques.
The hope is that we can find large families of sequences with low cross-correlations and high
linear complexities.
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