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Abstract. We discuss the dual marching tetrahedra (DMT) method. The DMT 
can be viewed as a generalization of the classical cuberille method of Chen et al. 
to a tetrahedronal. The cuberille method produces a rendering of quadrilaterals 
comprising a surface that separates voxels deemed to be contained in an object of 
interest from those voxels not in the object. A cuberille is a region of 3D space 
partitioned into cubes. A tetrahedronal is a region of 3D space decomposed into 
tetrahedra. The DMT method generalizes the cubille method from cubes to tetra-
hedra and corrects a fundamental problem of the original cuberille method where 
separating surfaces are not necessarily manifolds. For binary segmented data, we 
propose a method for computing the location of vertices this is based upon the 
use of a minimal discrete norm curvature criterion. For applications where de-
pendent function values are given at grid points, two alternative methods for 
computing vertex positions are discussed and compared. Examples are drawn 
from a variety of applications, including the Yes/No/Don’t_Know data sets re-
sulting from inconclusive segmentation processes and Well-Log data sets. 

1   Introduction 

The original cuberille method [3] is primarily concerned with the rendering of a sur-
face that separates the voxels that are part of an object from the voxels that are not 
part of the object. Due to the wide spread need for such techniques, there continues to 
be a fair amount of published literature on this topic. See [2], [4], [6], [9], [13] and 
[19] for example. Here we discuss the tetrahedronal version of this method or, in 
other words, the dual marching tetrahedra (DMT) method.  In addition, here we are 
not only interested in the rendering, but we are also interested in methods that will 
produce the geometry consisting of a polygon mesh representation of the separating 
surface. This geometry can not only be used for rendering, but it also allows for the 
efficient application of surface parameterizations, curvature texture applications and 
many other geometry processing tools. The next four paragraphs constitute an anno-
tated outline of the present paper. 

1. As motivation and background, we first discuss the polygon mesh surface 
which would result from the application of the cuberille method. Among other 
properties, it is noted that this surface is not always guaranteed to be a mani-
fold. This may not be a problem when only a rendering of the surface is re-
quired, but geometric processing of the polygon mesh surfaces such as 
parameterization, volume inside/outside determination or curvature computa-
tions can not be applied to nonmanifold surfaces.  
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2. Next, we discuss the dual marching tetrahedral method, DMT, which produces a 
polygon mesh surface with a vertex lying in each tetrahedron that has both 
marked and unmarked grid points. In Section 2.1, we describe a method for 
computing the actual vertex positions which is based upon discrete norm curva-
ture. In Section 3, we show examples where the new tetrahedronal method is ap-
plied to the general class of segmented data sets called “Yes/No/Don’t_Know”. 
We also illustrate the application of the tetrahedronal method to the general class 
of data often called “Well-Log” data. 

3. Using methods of decomposing cubes into tetrahedra without using additional 
grid points, we also show in Section 3 how to apply the DMT method to the 
more conventional rectilinear lattice data or cuberille data. 

4. Next, we note that it is very simple to extend the application of the method from 
binary classified grid points to the case where there are dependent function val-
ues given at every grid point. The generalization to this type of data is accom-
plished by using thresholding to create a binary classification and so the basic 
method immediately applies. In addition to the minimum discrete norm curva-
ture method for computing vertex positions, in Section 4. we describe two 
methods based upon dependent function values. We note the connection to the 
marching tetraheda (MT) method through its dual graph and compare results.  

2   Background and Motivation Based Upon the Cuberille Method 

As we previously mentioned, much of the motivation for the DMT method is based 
upon the original Cuberille Method which is described in [3]. This approach to rend-
ing surface bounded objects from computed tomography (CT) data is classical due to 
the simplicity of the method. A cuberille is a dissection of space into cubes called 
voxels. The total collection of all of these voxels is segmented into two groups, 
namely those voxels that belong to an object of interest and those voxels that do not 
belong to this object. A rendering of the surface bounding the object is accomplished 
by rendering all of the directed faces which separate the voxels of the object and from 
those of the background. The process of determining these distinguished voxels that 
belong to the object is often referred to as segmentation. See [11], [13], [21] and [23]. 
While the objective of the original cuberille method was mainly the rendered image of 
the separating surface, here we are also interested in obtaining a representation of the 
separating surface as a polygon mesh surface. This geometry not only can be used  
for rendering of the object, but it can also facilitate many subsequent geometry  
processing operations involving the object of interest; such as, parameterizing or 
computing the volume or the area of the separating surface. The collection of cen-
troids of the voxels forms a three dimensional rectilinear lattice we denote by 

zyxijk NkNjNiP ,,1,,,1,,,1, LLL ===  The cubes with corners from this lattice 

are denoted by ijkC . The centers of the cubes of the lattice points are the “corners” of 

the voxels. The separating surface S , is a polygon surface comprised of quadrilater-
als with vertices NaVa ,,1, L=  taken as the centroids of the cubes ijkC  where at 

least one of the voxels intersecting ijkC  is in the object and one is not in the object. 
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The topology (edge connectivity) of the vertices is determined by the various configu-
rations shown in Figure 1. At the onset, there are a total of 256= 2^8 possible cases to 
consider, but with the use of rotations, the number of cases is reduced to 23 equiva-
lence classes with representers of each class shown in Figure 1. See [17]. As can be 
easily seen from this table, nonmanifold surfaces are produced by configurations C3, 
C6, C7, C10, C12, C13, C15, C16 and C19 (where C0 is upper left and C22 is lower 
right).  While these configurations are not overly abundant in typical applications, 
they do occur, on the average, approximately 0.07%, 0.08%, 0.015%, 0.025%, 0.05%. 
0.00005%, 0.015%, 0.08%, 0.07% respectively.  

C

C  

Fig. 1. The figure on the left shows the connectivity of the quad patches of the cuberille method 
for the various configurations. Each configuration is a representer of an equivalence class deter-
mined by rigid rotations of the 256 possible cases. See [17] for a table indicating the rotation 
group element, the representer and the cases. An example of the cuberille method is shown in the 
top, right image where a tumor has been segmented from the brain. The data is the Harvard brain 
tumor data (see [11], [23]) available from Surgical Planning Laboratory at Brigham and Women’s 
Hospital, www.spl.harvard.edu and consists of an array of size 256256124 ×× . The bottom 
image is a zoom-in of the top image so that the voxel features of the image are clearly visible. 

2.1   The Dual Marching Tetrahedra Method 

Let ( ) NizyxP iiii ,,1,,, L==  denote the grid points which are segmented as marked or 

unmarked. We assume these points are not collectively coplanar. We assume that the 
grid points have been arranged into a collection of tetrahera to form a tetrahedronal. A 
tetrahedonal consists of a list of 4-tuples which we denote by tI . Each 4-tuple, 

tIijkl ∈ denotes a single tetrahedron with the four vertices lkji PPPP ,,,  which is de-

noted as ijklT . A valid tetrahedronal requires: i) No tetrahedron tijkl IijklT ∈,  is de-

generate, i. e. the points lkji PPPP ,,,  are not coplanar, ii) The interiors of any two 
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tetrahedra do not intersect and iii)  The boundary of two tetrahedra can intersect only 
at a common triangular face. See [16] for a survey of methods for computing optimal 
(Delaunay) tetrahedronals of the convex hull of scattered 3D point sets. 
 

      

Fig. 2. The three active cases of the DMT method. From left to right: one, two and three points 
classified as being contained in the object of interest. The lower image illustrates the notation of 
the tetrahedronal method. 

A tetrahedron is said to be active if among its 4 grid points there are both marked 
grid points and unmarked grid points. There are three distinct configurations for these 
active tetrahedra as shown in Figure 2. Similarly, a triangular face of an active tetra-
hedron is active provided it contains both marked and unmarked grid points. Interior 
to each active tetrahedron, 

ikji nnnnT , there is a vertex 
ikji nnnnV . For each interior 

active triangular face, there is an edge of S  joining the two vertices of the two tetra-
hedra sharing this triangular face. If 

kji nnnF  denotes the interior active triangular face 

and 
akji nnnnT  and 

bkji nnnnT ,,,  denote the two active tetrahedra sharing this face then 

an edge joins 
akji nnnnV  and 

bkji nnnnV . 

In addition to the surface nets approach [9], we propose a scheme for  
computing the positions of the vertices that is based upon minimizing discrete norm 
curvature estimates at each vertex which we now describe. For the tetrahedron  
defined by the points lkji PPPP ,,,  we consider the tetrahedra lattice points 

( ) NdPcPbPaPV lkjidcba /,,, +++=  where the integers dcba ,,,  satisfy the two 

conditions Ndcba << ,,,0  and Ndcba =+++ . For each point dcbaV ,,,  in lkjiT ,,,  

we use the discrete curvature methods of Dyn et al [8] and Kim et al [12] to compute 

an estimate of the norm curvature ( ) ( ) ( )[ ] ( )SKSMSkSk 24 22
2

2
1 −=+  where 

bkji nnnnV
akji nnnnV

anP

bnP

inP
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( )Sk1 and ( )Sk2  are the principal curvatures, ( )SM  is the mean curvature and ( )SK  

is Gaussian curvature.  These estimates are based upon a triangulation of dcbaV ,,,  and 

the vertices of its 1-ring that maintain the edges of separationg surface S  and do not 
introduce any additional edges containing dcbaV ,,,  The estimates are computed as 

( ) ( ) ASK i /23 ∑−= απ , ( ) AeSM ii /75. ∑= β , where ie  is an edge joining 

dcbaV ,,,  and a vertex of its 1-ring, iβ  is its dihedral angle, iα is a subtended angle 

and A  is the sum of the areas of all the adjacent triangles.  We take as our first 

approximation ( )1
,,, lkjiV  the point dcbaV ,,,  associated with the smallest estimate of 

norm curvature. These values are computed for all tetrahedra containing vertices of 
the separating surface S .  We do another pass over all of the tetrahedra containing 

vertices of S  leading to the approximations ( )2
,,, lkjiV . This is continued until the user 

specified criteria for convergence is satisfied.  In practice usually 7 or 8 digits of 
accuracy are obtained in less than 6 iterations (a complete loop through all active 
tetrahedra). A resolution of N = 5, … , 9 is a typical choice. 

3   Application to the General Types of Data Sets: 
Yes/No/Don’t_Know, Well-Log and Cuberille 

In this section we describe three fairly widely observed types of data sets for which 
the DMT method applies. These are the so-called Yes/No/Don’t_Know, Well-Log 
and cuberille data sets. The first type is from the application of segmentation results 
applied to conventional rectilinear data and the second and third types result from 
some very common types of methods for taking samples.   

3.1   Yes/No/Don’t_Know Data Sets 

MRI and CAT scan data sets can be viewed as samples of a function defined over a 
rectilinear lattice. Often segmentation algorithms are invoked to determine which of 
the lattice points belong to a certain specified type and which do not. For example, we 
may wish to determine which lattice points of a MRI scan are brain matter and which 
are not. See [11] and [23] for more discussion on this. Quite often, segmentation algo-
rithms require the user to specify the values for certain parameters. Even if domain 
experts are used to “tune” these algorithms, the results can be, in some applications, 
“inconclusive”. This means that, for some lattice grid points, the algorithm reports 
that these lattice points definitely belong to the object, for others it reports that these 
lattice points definitely do not belong to the object. But for some points the algorithm 
cannot definitely report one way or the other and so these lattice points could or could 
not be part of the object of interest. The technique, we present, for handling this type 
of data is illustrated in Figure 3. The left image illustrates with the black circles  
the lattice points known to be part of the object and the white circles indicate lattice 
points which are definitely not part of the object. The gray circles indicate the 
“Don’t_Know” lattice points where the segmentation algorithm is inconclusive. The 
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gray points are simply removed and the convex hull of the remaining white and black 
lattice points are collectively triangulated or, in the 3D case, tetrahedralized into a 
tetrahedronal. For a survey on methods of tetrahedral zing general scattered points see 
[16]. Once we have a tetrahedronal with segmented grid points, the methods of  
Section 2 immediately apply. 

 

     

Fig. 3. In the left image the white circles indicate lattice (grid) points that are definitely not 
contained in an object of interest, the black points are ones that are definitely belonging to the 
object and the grey points are undetermined. In the middle image, the grey points have been 
removed and the convex hull of the remaining white and black points are triangulated.  In the 
right image a separating polygon is obtained by the 2-D version of the DMT method. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The results of the DMT method applied to a yes/no/don’t know data set resulting from 
a segmentation algorithm applied to rectilinear data obtained from the scan of a Chimp tibia 
bone (only the top portion is used). The right image illustrated the application of the DMT to a 
Well-Log data set yielding a bounded region where copper exists at beyond trace levels. 

In Figure 4 we show the results of applying this method to segmented data repre-
senting a portion of a bone. Lattice points in the voxel grid have been classified as 
definitely bone, definitely not bone and inconclusive. The lattice points that could not 
conclusively be determined as bone or not are removed and the remaining 3D lattice 
points are used as the bases of a tetrahedronal. The tetrahedronal method is applied 
where the actual vertex positions are determined by the minimal discrete curvature 
method described in Section 2. 
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3.2   Well-Log Type Data 

In the geophysical sciences, it is quite common to collect measurements at various 
depths (or heights) at several locations. The locations ( )ii yx ,  are often positions on 

the earth and the depth (or height) may possibly vary from location to location. Also 
the number of measurements per location may vary.  This type of data can be repre-
sented as ( ) iikikii nkNiMzyx LK ,1;,,1,,,, ==  where in  is the number of meas-

urements taken at location ( )ii yx ,  and 1or0=ikM .  The example in the right image 

of Figure 4 utilizes data courtesy of D. Kinsel (See [15]) and represents from 9 to 43 
samples taken from 13 well locations.  The samples are tested for copper concentra-
tions above trace levels and marked 0 or 1 accordingly.  The region where copper can 
be found is bounded by the isosurface. 

3.3   Cuberille Data Sets 

We illustrate the application of the tetrahedronal method to cuberille data with the 
Harvard brain data set mentioned above in the example of Figure 1. In Figure 6 we 
show the contour surface of the tumour which has been segmented from the brain data 
using both the alternating 5-split and the CFK split of a cube into tetrahedral. 

 

Fig. 5. Two different decomposition of a cube into tetrahedra and the resulting DMT surfaces 

4   Extension to Function Valued Data Sets 

The previous sections have dealt with the case where the grid points, NiPi ,,1, L=  of 

the tetrahedronal grid have the binary property of being marked or unmarked. Many 
applications result in tetrahedronal grids where there is a dependent function iF  value 

associated with each vertex iV . That is, the grid is viewed as a decomposition of the 

domain of a trivariate function and the dependent values iF are samples of an under-

lying trivariate function defined over the tetrahedronal grid domain volume. Given a 
threshold value, F , we can classify whether or not the grid points iP  are marked or 

unmarked based upon whether or not FFi ≥  thus allowing the level sets of the  
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sampled function to be viewed by the tetrahedronal method. Here we have a richer 
context where the dependent sample values can be used to determine the location of 
the vertices of the approximating separating surface. A large variety of choices are 
possible. We describe two possibilities here. The first is based upon the idea that if 
there is a sign change on an edge then the plane passing through these points is also 
close to sign changes in the interior of the tetrahedra. This plane will be determined 
by three or four points.  The vertex point is selected as a point on this plane that inter-
sects the line joining the centroid of a face and the opposing grid vertex or the line 
joining the midpoints of two opposing edges.  We call this method: Intersection 
between Centroids, IbC, and it is further illustrated in Figure 6. 

 

          

Fig. 6. The computation of the vertex dcbaV ,,, in Case 1 and 2 of the Intersection between 
Centroids, IbC method 

The second method is based upon the idea that surface intersection points can be 
computed by linear interpolation on all edges where function values at the end points 
encompass the threshold value.  The vertex point, dcbaV ,,, , is taken to be the centroid 

of these points. We refer to this method as the Centroid of Intersections, CoI. 
Detailed computational formulas for both of these two methods are given below, 

where we assume that that the points have been labelled so that the following 
holds: dcba FFFF ≤≤≤ .  The values ijV  represent the intersection of linear interpo-

lation along an edge ije . 

Method: Intersection between Centroids, IbC 
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 (2) 
 
 
 
 
 
 

 
Typical results of the application of the tetrahedronal method with dependent func-

tional values are shown in Figure 7. The left example is from a FEM (finite element 
method) combustion simulation. The tetrahedronal has 47025 grid points and 215040 
tetrahedra. Here we have used the Centroid of Intersection, CoI, method of deter-
mining the isosurface vertices. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. On the left is shown the results of a Finite Element Method (FEM) combustion simula-
tion.  The isosurface is displayed along with the edges of the tetrahedronal.  The CoI method of 
computing isosurface vertices is used. On the right, the Delta Wing data is displayed at isolevel 
0.22977 which yields a surface with some interesting topology. The tetrahedronal has 211,680 
grid points and 1,005,657 tetrahedra. The IbC method of computing vertex locations is used. 

An example which utilizes the “Delta Wing at 40o Attack” data set available from 
NASA Ames is shown in the right image of Figure 7.  This data in its original form 
consists of a curvilinear grid of size 56x54x70.  Here, each of the hexahedral cells has 
been decomposed into 5 tetrahedra using the decomposition of Figure 5.   

In Figure 9, we show an example which uses the well known “Blunt Fin” data set. 
Here, the IbC method of computing vertex positions is used. In addition, we include 
the isosurface produced by the Marching Tetrahedra (MT) method. See [1], [10], [14] 
and [15]. We use the variation that produces a quadrilateral (rather than two triangles) 
in the case where function values at two grid vertices are above the threshold and two 
are below. With this version, the surfaces produced by the MT method and the present 
tetrahedronal method are formal mathematical dual polygon mesh surfaces of each 
other. Each vertex of one, uniquely associates with a face of the other. This is illus-
trated in the blow-up shown at the bottom, right of Figure 8 where the (white) edges 
of the tetrahedronal method are displayed along with the (black) edges of the surface 
produced by the MT method.  
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Fig. 8. The grid of the “Blunt Fin” data set is shown in upper left.  The upper right is the DMT 
using the IbC method of vertex selection and the lower left is the MT.  The lower right illus-
trates the duality of the MT and the DMT. 

5   Remarks 

1. Since a tetrahedronal can be formed from an arbitrary scattered point cloud (by 
computing the Delaunay tetrahedralization of the convex hull, see [16]), the methods 
described here have very widespread application; including datasets with binary 
and/or function dependent grid values. The method is very easily implemented par-
ticularly in the case of function dependent grid values where the formulas of the Inter-
section between Centroids (IbC) and the Centroid of Intersections (CoI) are available 
(Equations (1) and (2)).  

2. While both the IbC and CoI methods of computing vertex positions are both 
simple and effective (and these are the main reasons we chose to report only on these 
methods here), there are many possibilities we have yet to fully test. One particularly 
intriguing possibility which we hope to report upon in the near future is to combine 
the marching diamond method of [1] with our CoI method. 

3. Even for rectilinear grid data applications, the implementation of the DMT 
method presented here is considerably easier and less tedious than the standard 
marching cubes (MC)  (see [17]) or dual marching cubes (DMC) (see [18]) due to the 
differences in complexity of the algorithm.  There are 256 cases leading to 23 distinct 
configurations for both the MC and the DMC while the DMT method has only 16 
cases and 3 distinct configurations. 

4. While the present method is designed for tetrahedronal application, it applies 
immediately to rectilinear data also by means of the decompositions of Figure 5. It 
has been noted in the past, that when  the marching tetrahedra (MT) method is applied 
to rectilinear data, empirical evidence suggests that typically the number of vertices 
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and/or triangles only increases by a factor of approximately 2.5. This suggests that the 
main deterrent to the general adoption of the MT for rectilinear data is not the in-
crease in the complexity of the isosurface, but rather the over all poor triangle quality 
of the resulting mesh surfaces. The present method eliminates this deterrent as evi-
denced by the examples presented here. We plan to report on an analysis and empiri-
cal study on this issue in the near future as these results become available. 
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