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Abstract

New algorithms for the classical problem of fairing cubic spline curves and bicubic spline surfaces are presented. To fair a cubic spline
curve or a bicubic spline surface with abnormal portions, the algorithms (automatically or interactively) identify the *bad’ data points and
replace them with new points produced by minimizing the strain energy of the new curve or surface. The proposed algorithms are more
general than the existing algorithms in that the new algorithms can adjust more than one ‘bad’ data point in each modification step and they
include the existing algorithms [Computer-Aided Design 15(5) (1983) 286-293; 28 (1996) 59-66] as special cases. Test results of the new
algorithms are included. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fairing tefers to the process of detecting and removing
irregularities of a curve or surface. This is an important part
of shape design. The current process relies heavily on the
designers to visually identify regions with curvature irregu-
larities and to fix them manually by, for instance, correcting
the control points of the curve or surface. This is often an
experience-based, trial-and-error, and time-consuming
process. Thus, computer-assisted detecting and removal of
local curve/surface curvature anomalies are in high demand
from the design community.

Interactive fairing techniques for cubic spline curves have
been proposed by Kjellander [9] and Farin et al. [5]. The
designer identifies the data point to be faired, the curve is
then faired by making a small adjustment to that point and
fitting a new curve. This process can be iteratively repeated
until a satisfactory curve is obtained. The idea from Ref. [9]
has been extended to cover bicubic spline surfaces [10].
Limitations of these methods are discussed in Ref. [12].
One shortcoming of Kjellander’s approach is that it is suita-
ble for uniformly parametrized cubic spline curves and
surfaces only.

An automatic fairing algorithm for B-spline curves is first
proposed by Sapidis and Farin [18]. The data point with the
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biggest jump in curvature variation is identified and the
curve is faired by changing the position of that point. An
automatic fairing algorithm for cubic spline curves is
recently presented by Poliakoff [13,16], which is an exten-
sion of Kjellander’s method [9] for non-uniformly parame-
trized cubic spline curves. These methods fair a single data
point in each modification step. In some cases, unfortu-
nately, fairing a single point alone in each step cannot
lead to a desired result. An example is given in Section 5.

In the design of [ree-form surfaces, curvatures are
frequently used in analyzing the shape of a surface.
However, isophotes [14], reflection lines [8,11], and high-
light lines {1,2] have heen proven to be more effective in
assessing the quality of a surface. Several methods [8,11,20]
for removing abnormal portions of a surface have been
developed based on these models. These methods are effec-
tive in handling certain surface fairing problems.

This paper addresses the problem of fairing cubic spline
curves and bicubic spline surfaces. Algorithms are
presented for both the interactive and automatic fairing
environments. To fair a cubic spline curve or a bicubic
spline surface, the algorithms (automatically or interac-
tively) identify the *bad’ points (using curvature plot for a
curve and highlight line model for a surface) and replace
them with points generated by minimizing the strain energy
of the new spline curve/surface. This approach makes much
sense since it is in line with the spline method. The proposed
algorithms are more general than the existing algorithms in
that the new algorithms can adjust more than one ‘bad’ point
in one modification step and they include the existing algo-
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rithms [10,15] as special cases. The presented algorithms
can also be used to fair B-spline curves/surfaces. The
abnormal portions of a cubic B-spline curve or a bicubic
B-spline surface is removed by fairing the interpolant to its
control points.

The remaining part of the paper is arranged as follows.
The basic idea in developing the algorithms is described in
Section 2. The algorithms for fairing cubic spline curves are
described in Section 3. The algorithms for fairing bicubic
spline surfaces are described in Section 4. Two examples
showing the iterative modification process of the new algo-
rithms are discussed in Section 5. Concluding remarks are
given in Section 6.

2. Basic idea

Let C(1) be a cubic spline curve that interpolates a set of
data points P, al knot ¢, i =0, 1,...,n. Let M, denote the
derivative of C(f) at t; and Ci(f) denote the segment of C(7)
on the interval [z, t;+,]. C(r) is defined by

Ci(t) = @o()P; + @ (WM + (M + ()P, (1)
where

o) =(s— 1*Q2s+ 1),  @s)=(s— 1)s,

Pi(s)=s(s = 1)

are cubic Hermite basis functions and s = (¢ — 1;)/h; with
hi =ty — 1 ) X

M;‘s can be determined from the condition that C(¢) is C~-
continuous. This gives the conditions that, for i=
1,2,...,n— 1,

Po(s) = 5°(—2s + 3),

361"

aiMiy + 2M; + biM, = T
i1

3b;
P+ + “}T(Piﬂ, (2)

where

a; = hf(hi_| + hy),
by =h;_/(h;_| + h),

c; = 3la/hi—; — bilh;).

Hence, with two end point conditions, C(¢) can be uniquely
determined by Eq. (2). In this paper, the free-end conditions
[4] will be used and the constructed C(r) is called a natural
spline curve.

However, following the minimum curvature property [7],
if the following form is used as the strain energy of C(1)

ty 5

E= J ") dr, 3)
Iy

then the conditions in Eq. (2) can also be derived from

minimizing the strain energy at M;'s

oE =10, i=1,2,..

a—ﬂ/!‘.— ,n_l. (4)

The basic idea of our algorithms is based on the minimum
curvaiure property and may be described as follows. If a
cubic spline curve C(r) has abnormal portions near the inter-
polation points P; , P, ..., P; (for simplicity, these points
are assumed to be consecutive), we remove the abnormal
portions of the curve by fairing these ‘bad’ points. The new
locations of the ‘bad” points after the fairing process
are denoted P;,P,,...P;, and the corresponding new
curve segments are denoted C(|-~|(f)-ci, (), ... C (1)
P;,P;,....,P; can be determined in many different ways.
However. with C(r) being produced by minimizing the
strain energy _[;; C"(t* dr, a natural and logical choice in
determining P; , P, ..., P; would be to minimize the strain
energy of the new curve at these points, 1.

JaE

22 =, i=1,2,...,r. (5
7. j r )

Replacing P;,P,,....P;, with P, P, .. P, respec-
tively, in the related curve segments of C(z) would result
in a curve that has smaller energy than C(f) but is not C -
c~0ntinu0us at the knots 7900 PR Such a curve, called
C(t), certainly can not be thought of as fairer than the origi-
nal curve C(r). However, if we construct a new cubic spline
curve C(1) to interpolate the faired data points, since the
energies of C(t) related segments of C(¢) are smaller than
the energies of corresponding segments of C(t) due to the
minimum curvature property, and energies of these
segments of C(1) are smaller than the energies of corre-
sponding segments of C(r), we have a C’-continuous
curve C(¢) that has smaller strain energy than C(7). Conse-
quently, C() is fairer than C(7) and we have the following
theorem.

Theorem 1. Let C(t) dencte the original cubic spline
curve and C(t) denote the spline curve that interpolates
the faired data points. We have

fy R fy
J CMy de sj "t de

o i

if knots of C(1) are the same of those of C(t).

Details of the fairing process for cubic spline curves and
bicubic spline surfaces will be shown in Sections 3 and 4,
respectively.

3. Fairing cubic spline cuarves

The setting of Eq. (5) allows several consecutive points to
be faired in a single step. However, fairing more than two
consecutive points in a single step could result in curve
segments quite different from the original ones. This
would violate the shape preserving requirement of the fair-
ing process. Hence, we shall consider the problem of fairing
one or two points in each step only.
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3.1. Fairing one point

Let P; be a ‘bad’ point that needs to be replaced with a
new point ;. SinceP; isinvolved in €, ;(r)and C;(r) only, P,
can be determined by minimizing the strain energy of
Ci—1(t) and C,(1) at P, i.e. setting the derivative of E(P,)
with respect to P; to zero

JEP)
apP, ©
where
B 1 B Tiv1 _
E(P) = I Cl o (n*dr + I ey dr. (7)
li) 1
By solving Eq. (6) one gets
P‘_AP1]+IJ‘1P1+}+ hl ]/\M,|
(8)
+ (i N = M = L hipM;
where

=R AR =R+ k]

PoliakofT [15] reached the same formula by requiring that
CH:‘ l(t ) C’:-”(Il‘)

in extending Kjellander’s method [9]. Eq. (6) seems to be a
more reasonable approach.

Following the idea presented in Sectlon 2, a new cubic

spline curve is then constructed to interpolate P j=
0,1,...,n (with P; replaced with P,). The followmg theo-
rem shows that this process can be iteratively repeated
until P; can not be improved any further, i.e. when P, =
p.
Theorem 2.  For any given points P; and derivatives M; ar
the knot t;, j =i — 1,00 + 1, let Q,(t) be the cubic Hermite
interpolant to the points and derivatives at t,_, and 1, ,
QJ(I) the cubic Hermite interpolant to the points and deri-
vatives at tyand tiy, j = i — 1,1, then

I QY dr<j o) dx+J'”Q§’(r)2 . (9)

Proof. It is sufficient to show that if P; and M, in C; (1)
and C,(r) are defined by

dE(P)) GE(P))
2 = (and aM;
where E(F) is defined in Eq. (7), then C,_ (1) = C,(1).
Straightforward computation shows that Eq. (10) is equiva-
lent to C’”](r) C!(1)) and C_ (1) = C!(1). Hence,

=0 (10)

Eg. (8) can be used to fair P; repeatedly until a desired
result is obtained. Theorem 2 shows that if Eq. (8) is repeat-

edly used to fair P;, P; will eventually satisfy the following
condition

P; = Q1) (11)

where Qi(t) is a cubic Hermite interpolant to the positions
and the derivatives of the cubic spline curve C(r) at 1, ; and
fj+1. This final result can be obtained simply by constructing
a cubic spline curve that interpolates the points
Py, Py, Pic P s Pisan o Py

Note that if h; . = h;, (8) and (11) both reduces to Kjel-
lander’s algorithm [9]. Kjellander’s algorithm constructs the
final curve by solving a system of linear equations in n
unknowns. But the coefficient matrix of the system is not
tri-diagonal. Based on the above discussion, the final curve
can be produced by constructing a cubic spline curve that
interpolates the points Py, Py, ...,P,_ 1, Py, Pria.... P,
This is a process of solving a system of n — 2 tri-diagonal
equations in 7 — 2 unknowns.

Poliakoff claims in Ref. [15] that if only one data point is
faired in a modification step, then no matter how many times
the curve is faired, the resulting curve can never be a straight
line. However, from Theorems 1 and 2 and the above
discussion, it is easy to see that this is not true.

3.2. Fairing two points

Let P;and P, be two consecutive ‘bad’ points that need
to be replaced with new points P; and P, ,, respectively.
Since P, and P, are involved in C,_,(1), C;(1) and C,. (1)
only, they can be determined by minimizing the strain
energy of C,_ (1), C(t) and €, 1(1) at P, and P, |, i.c.

AE(P:, Pi.y)
L
aP;
where
_ - i+ 1 Loy R
E(P;, P, = Z J Ci(1)” dr. (12)
j=i—1 Y

By solving these equations one gets

Pi= 10 = Xk My + (1= Ahi—y — MM,
— Ny + By OMiey = Ay Moy o) (13)
(1= APy + AP,
Py = Hmhio M+ piChiy + h)M,
il = (1 = pdh= DMy = (1 = pdhi M, ]
Py (1= )P,

where

ANo=h Mg+ hy + hyy),

i = Ry [y + b+ By ).
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A new cubic spline curve is then constructed to interpo-
late the faired data points. This process can be iteratively
repeated until a desired result is obtained. If the modifica-
tion process is repeated sufficiently many times, one shall
reach a stage that none of P; and P,.; can be improved any
further. The following theorem shows how to reach that
stage in one modification step. The theorem follows directly
from Theorems 1 and 2.

Theorem 3. If C(r) is a cubic spline curve interpolating
data peints P; at knot #;, i = 0. 1,..., n, and having end point
conditions Mj and M, then

1y N Iy 1
J C'iry dt = J Q" (1)" di, (14)
Iy Iy

for any cubic spline interpolant Q(t) to Py and M, ar 1, and
P, and M, at t,.

Theorem 3 shows that if the conditions in Eq. (13) are
repeatedly used to fair P; and P\, P, and P, | will even-
tually satisfy the following conditions:

]3[ = Ql-(_l‘j) and PHI - Qi(tiJrI) (15)

where Q(/) is the cubic Hermite interpolant to the positions
and derivatives of the cubic spline curve C(¢) att,_, and 7,.-.
Thus the final curve is a cubic spline curve interpolating the
data points Py, Py, ..., P, Pria Pigs. .., Py Consequently,
one can obtain the final result in one modification step
simply by constructing a cubic spline curve that interpolates
the data points Py, Py, ..., P . Piio, Pigss oo, Py

Theorem 3 also shows that modifying more than two
consecutive points in one fairing step will result in a curve
quite different {rom the original one.

3.3. Algerithm for fairing cubic curves

To identify the ‘bad’ points on a curve, a fairness criterion
1s needed. The local fairness indicator of a curve is defined
by Sapidis [17]

dk dx
= (n+)— ‘a;(fi“) (16)

where d«/ds is the derivative of the curvature with respect o
the arc length s = s(¢) of the curve. This fairness indicator
has been recommended for interactive fairing in
Refs. [13,15,18]. In our algorithm, the following fairness
indicator [5]

7 =1C"(+) = "), (17)

will be used in an interactive or automatic fairing
process. The reason for choosing this fairness indicator
is that if the point P; is replaced with a new point P;
formed by Eq. (11) on a cubic spline curve interpolating
Py.P\....,P,_|,P;|.Piys..... P,. then the new curve C(r)
satisfies the condition

z=C"(t+) = C"e, =) = 0.

Hence, a point where the third derivative of C(¢) has a big
jump should be considered a ‘bad’ one.

A curvature plot is a highly sensitive indicator of the
shape of a curve. A curve with a ‘pleasant’ curvature plot
is very likely to be considered acceptable. Inour method, we
use curvature plot to identify ‘bad’ points in interactive
curve fairing.

In some cases, such as digitized data points, it might be
necessary to fair all the data points. Based on the above
discussion, this could lead to the situation that the final
curve being a straight line. To overcome this problem, a
region R; is defined for each interior data point FP; to
restrain it from moving too far from its original location.
This region R, called the restraining region for F;, is a
circle centered at P; with radius defined by the distance
from P; to P;. P; is computed using Eq. (11). The algo-
rithms for interactive and automaltic fairing are described
below.

L. Interactive faring algorithm

1.1. Identify ‘bad’ data points based on curvature plot
of the curve.

1.2. For the identified points, compute their z;'s using
Eq. (17), and sort them into descending order:
7 =g, =

1.3.1f |i; — iy > 1, modify point P; using expression
Eg. (11). Otherwise, modify P; and P_ using
expressions Eq. (13).

1.4. Construct a new spline curve to interpolate the
data points P, i=0,1,...,n.

1.5. Plot the curvature of the new curve. If the curvature
plot is satisfactory, stop. Otherwise, goto step 2.

2. Automatic faring algorithm

2.1. Fori=1,2,...,n — |, compute the restraining region
R,‘ for Pj.

2.2. For each P, i=1,2,....,n—
Eqg. (17).

2.3. Letgz; bethe maximum of z;'s. Construct a cubic spline
curve to interpolate Py, Py, Py -1 Py ca-n Py,
and compute P; using Eq. (I1). If £; is within the
restraining region R, , replace P; with ;. Otherwise,
replace #; with the intersection point of R; and the
line segment from the center of R; to P; .

2.4. Construct a new spline curve to interpolate the data

points P, i =0,1,...,n.

. Compute the strain energy of the new curve. If the
new energy is the same as or within a specified
range of the old energy. stop. Otherwise, goto
step 2.

i

I, compute z; using

[}
n

Note. The reason that in automatic [airing only one point
is allowed to be faired in a modification step is for simpli-
city — fairing two poinls in one modification will make
the normalization process (putting the new point in the
restraining region) not so easy to handle.
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4. Fairing cubic spline surface

Let S(.v) be a bicubic spline surface interpolating a set of
data points P, i=01,..,m j=0,1,...,n. The knots
corresponding to P;; are (u;,v,). The first derivatives of
S(u,v) with respect to u and v at (u;,v) are denoted M},
and M;;, respectively. The patch of S(u,v) corresponding
to the parametric region [u;, u; ] % [v;,v;;] is denoted
S, (uv). The surface is constructed by generating natural
cubic spline curves in u and v directions first (see
Section 2), and then generating a bicubic spline surface to
interpolate the network of curves [6]. Each patch of S(u,v) is
determined by four data points, partial derivatives with
respect to i and v, and twist vectors, at these points. The
twist vectors are computed [rom natural cubic spline curves
in u direction that interpolate the partial derivative of S(u,v)
with respect to v at the data points. For a survey and more
techniques in this direction, see Ref. [19].

In the following, we will consider removing an abnormal
portion of a spline surface by modifving one, two. or four
‘bad’ points in each modification step.

4.1. Fairing one point

Let P;; be a ‘bad’ data point to be faired. P;; is
involved in two spline curves: one interpolates data
points P4, k=10,1,...,n and one interpolates data points
Py, I'=0,1,...,m. By extending the idea of Section 3.1,
one can determine the new position P;; of P, ; by mini-
mizing the following objective function with respect to
P

1

) R RS ’
EPp= 3 f [ e )}

I=i—1 <%

J 9’ S,A :
+ Z [w [ s (u,\v}:l dv (18)

k=j—1

where Sg‘f(u,v_,-) is a cubic Hermite interpolant obtained
by substituting P,; for P, ; in §y;(,v)), and S, v) is a
cubic Hermite mterpolant obtained by substituting P for
P S (u,v), ie. solving the following ﬁq'l.ldtl(]n for
P

Ly

dE(P B

dP =0. (19)

The solution is

5 3 .3 _3 3 ;
Py=CU Py Y Py 0 Py 0P 0)

+ay; + BTy (20)

where
=2 MY =Y =2 MY — -ZMu
Q= i Moy~ (a7 — a- MG — ai My,
T e
Biy = VM — (% = WM~ M

3 2303 =3
T = 2V i v )

with &; = 1/u; and ¥; = Vv,

Replacing P, ; wnth P in related patches of S(u.v) will
result in a surface with smal]er strain energy on its network
curves but not C*-continuous at (i, v;). Following the same
idea presented in Section 2, a new bicubic spline surface that
interpolates the modified data points is then constructed.
The above construction process of an interpolating bicubic
spline surface shows that S{u,») and the new spline surface
have different first partial derivatives only at the knots
(wpv), I=12...om—1,and (u,v), k=12,..n—1
Hence, to construct the new spline surface, one only needs
1o reca]culate the first partial derivatives M}, [=
L.2,.om=1, and M{;, k=1,2,..,n — 1. However, all
the twist vectors need to be calculated again.

Following this approach, Eq. (20) can be used to fair P,
repeatedly until a desired result is obtained. If the modifica-
tion process is repeated sufficiently many times, one shall
reach a stage that P; ; can not be faired any further, i.e. any
application of Eq. (20) will simply result in a Pu- that is the
same as P ;. This follows from the fact that the fairing
process converges (due to the fact that the energies of the
network curves of the new surfaces generated in the iterative
process form a decreasing sequence). Such a point can be
obtained simply by solving the following system of equa-
tons:

G(MY ;M5 .. . 1,.P,J) (20)
G(Mi!:]" i!:?""- l!:li' lva,]),
dE(P,
__(712 = (),

dP('_J,
where G(M}; M5, .. My_ . P) is a system of m — 1
equations, Slmﬂdl' to  Eq. (2) with  m  unknowns

(MY; M55 My Pt GMY M5, M, P)is a
system of n — 1 equatlons, similar to Eq. (2), with »
unknowns {M,,M},,....M{,_|.P,;}, and E(P,)) is defined
by Eq. (18). Totally, Eq. (21} is a system of m +n — 1
equations with m + n — 1 unknowns. The first system of
equations  G(MY, M3, ..My . P;) is needed in
constructing the cub1c sphne curve that interpolates the
points Py, [ = 0 I.....m, and the second system of equa-
tions G(M},, M, . M}:,,,I,P;-,,-_) is needed in constructing
the cubic spline curve that interpolates the points P, k& =
O,1,....n. Eq. (21} is the general version of Eq. (13) in
Ref. [10] for the non-uniform case.
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4.2, Fairing two points

Let P;; and P;.); be two ‘bad’ points to be faired. By
extending the idea of Section 4.1 one can compute the
new locations P and PmJ of P, and P;1\; by minimizing
the following Ob_]CCtIVB function at P and Py

L it oewo [ g%s, 2
E(P Py )= Z J .I:E;;i(u,V-)] du

(=i—1 <

Tl

j—1

(u,g, V) ] dv, (22)

i.e. solving the following equations for P,; and Py
IEP,;, Pivy))

. -0  I=ii+1
ap,, b

The above equations induce the following equations:

ciiPij+ciaPiy=cia (23)

P+ 0P =ca3

where

Cri = Tijs

Clp=0y =20

€13 =2 Pimy, + oy Prjoy + T Pijiy) ooyt Bijs
C12 = Tit1s

Y] 3 3
Cas = 2l Piooy TV Piojmt T VP jr) oy

+ Biviy

with it;, V;, ¢, B;; and 7;; being defined by Eq. (20).

S1rru1ar to the one point case, once P;; and P, are
replaced with P;; and Py, , respectively, a new spline
surface is constructed to interpolate the modified data
points. S(x.v) and the new spline surface have different
first partial derivatives only at the knots (uy,v)),
1,2.....m— 1, and (u;, v) and (u; 0, vp), K= 1,2,...,n —
I. Hence, to reconstruct the new spline surface, one only
needs to calculate the new first partial derivatives M/}, [ =
1,2,..om—l,and M, and M, ., k=1,2,...,n— |, and
all the twist vectors. Eq. (23) can be used to falr P and
P,y repeatedly until a desired result is obtained.

4.3. Fairing four points

There are occasions that an abnormal portion of a bicubic
spline surface is caused by several ‘bad’ points. In such a
case, the abnormal portion will be faired by modifying two
*bad’ points a time, starting with the ‘worst’ two points. If
the two ‘bad’ points are diagonal points of a 2 X 2 block, we
{air the entire block, as follows. The reason for taking such a

strategy is that (1) it simplifies the process of selecting ‘bad’
points from the bad point list; (2) it allows handling of
several different cases with a single formula.

Let P;j, Piv1j, P4y and Py ;. be four ‘bad’ points of
S{u.v). The objective function in this case 18

E(Piul'~13i—l,;'ep£‘jfl~PE+IJ+1)

Jtloi+l | a S 2
= Z Z J [ (u VA)] dut
k u; au

= I=i—1

PE1 Gl 25
sy
=i k=j—1 Y

k (1, v)] dv. (24)
v

The new locations P,J, P,HJ, P,] L and Py ;*l are deter-

rpmed by Eoivmg the following equations for P;;, P,HJ
Pijopand Piogjog e
aE(Pi,j’ Pi+]J’F6J+I’Pi~HJ+I) =Q
AP, ’
I=ii+1, k=jj+1.
These equations induce the following equations:
ciaPijteiaPiy e3P = ¢, (25)

C')]P +C73P!+1J+C-}4P‘+U+]—Cai,
Pt e3P TP = s,

CanPiviy T easPijer T egaPirijor = s,

where

Cr1 = Tij

S _ _3

Clo =€y = C34 = €43 = —20;,
_ _ _ _ 3

Cl3 = €31 = Cag = Cy4p = — 2V,

_3
€15 = 20| P + 2»1,,|P,h, y Fag B

1y
Ca2 = Tiv1 o

€5 = ZutﬂPl‘qJ + 2v; _|P1_Hr1 oyt Biviys
C33 = Tij+l-

35 = Zﬂ?—lp,'—uﬂ + 2‘7j?+1Pa.j+2 +oa it B
Caa = Tit1+1s

a3 3
Cs5 = 20; Pioajin 2000 Py jun ey T Bivijin

with @;, v, a; ;, B;;and 7;; being defined by Eq. (20).
Similar to the above cases, once Pi ;. Pipyjo Pije and

ij!
Piyyj+ are replaced with P, Pyt P,JH and Py,

[NE
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respectively, a new bicubic spline surface is constructed to
interpolate the modified data points. S(u,v) and the new
spline surface have different first partial derivatives only
at the knots (z¢,v;) and (w5, v;y), I=1,2,...,m — 1, and
(mzvy) and (u;pq,vp), k= 1,2,....,n — 1. Hence, to construct
the new spline surface, one only needs to calculate the new
first partial derivatives M} and M}, 1= 1,2,....m — I,
M, and M, k=1,2,...,n — 1, and all the twist vectors.
Eq. (25) can be used to fair P; j, Py, Py and Pioyje
repeatedly until a desired result is obtained.

4.4. Algorithm for fairing bicubic surfaces

For interactive fairing of bicubic surfaces, we use a high-
light line model [1,2] to identify ‘bad’ data points. These are
data points on and near unpleasant portions of the highlight
lines. A highlight line model is a family of highlight lines on
a surface created by an array of parallel linear light sources.
A highlight line model is sensitive to the change of normal
directions and, hence, can be used to detect surface normal
(curvature) irregularities. In an interactive environment, a
user can assess the quality of a surface by moving or rotating
an array of parallel linear light sources and examining the
quality of the corresponding highlight lines. Figs. 1-8 are
all highlight line modes of some surfaces.

The following extension of Eq. (17) will be used as a
fairness indicator for automatic and_ interactive fairing of
bicubic surfaces:

2y = PG+, v) = P = v + [P (v +)
. P”’(Hh"j—‘ﬂ’ (26)

For automatic fairing of a bicubic surface, similar to the
curve case, a restraining region R; ;is needed for each inter-
ior data point P; ; to prevent it from moving too far from its
original location (so that the resulting surface would not be
much different from the original one). The restraining
region R; ; of P, ; is a sphere centered at P, ; with radius of
the distance from P; ; to P;;. P;; is determined by Eq. (21).

Unlike the curve case where the z; value of a faired ‘bad’
point P; is always zero, the z; ; value of a faired ‘bad’ point
P; , in the surface case may still be a maximum. Hence, in
each fairing step, the ‘bad’ points will all be faired, in the
order from the one with the biggest z; ; value to the one with
the smallest z;; value. The algorithms are described as
follows:

¢ Interactive fairing algorithm
1.1. Identify ‘bad” data points based on examining high-
light lines of the surface.
1.2. For the identified points, compute their z; ;s and sort

the z; ;s into descending order z =...=

.=
W T Mg T -
iy i )
1.3. Set k = 1. Repeat the following work until k > K :
If i = 31| + [fx = Jjis1| = 1.fair points P; ; and
P k =k + 2;elseifiy — iyyy| = land|j; —

Ti=1 i1 ?

Fig. 1. Highlight line model of a bicubic spline surface with irregular
portions.

Fig. 2. Highlight line models of the surface after four iterations of (a)
Kjellander’s method and (b) the new method.

Jis1l =1, fair the four points that have P, and
P .., as their diagonal points, k =k + 2;
elsefair P s k =k + 1.

1.4, Construct a new bicubic spline surface to interpolate
the faired data points P, i=0,1,..m, j=
0,1.....n.

1.5. Create a highlight line model of the new spline surface.
If the highlight line model is satisfactory or if the
difference between the new strain energy and the old
strain energy is less than a given tolerance, stop. Other-
wise, goto Step 2.
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Fig. 3. Highlight line models of the surface after eight iterations of (a)
Kjellander’s method and (b) the new method.

Fig. 4. Highlight line models of the surface after (a) 50 iterations and (b)
100 1terations of Kjellander's method.

Fig. 5. Highlight line model of a bicubic NURBS surface with irregular

portions.

Fig. 6. Highlight line models of the surface after 13 iterations of (a) Kjel-
lander’s method and (b) the new method.

e Automatic fairing algorithm

2.1

22,

2.3.

2.4,

2.5.

Fair data points on the boundary curves of the surface
using curve fairing algorithm.

Compute a restraining region R, ; for each interior P
i=1,2,...m—=1,j=12,...,n— 1,

Compute z, ; for each interior Pi= 12 ,m—1,
J=1.2,...,n — 1, andsortz, ;'s into descending order

ijr

Tijy T Ty, =00 = ligdgs _

Fork =1,2,....K, compute Py IfpP;,;, is locatc_ad in
the restraining region R, ; , P, ; isreplaced with P, ; .
Otherwise, P, ; is replaced with the intersection point
of the sphere R; ; with the line segment between the
centerof R; ; and P, ; .

Construct a new bicubic spline surface to interpolate
the faired data points £, i=0,1,....m, j=
O, 1,....n

ijv
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Fig. 7. Highlight line models of the surface after 30 iterations of (a) Kjel-
lander’s method and (b) the new method.

Fig. 8. Highlight line models of the surface after 45 iterations of (a) Kjel-
lander's method and (b) the new method.

2.6. Compute strain energy of the new spline surface. If the
difference between the new energy and the old energy
is smaller than a specified tolerance, stop. Otherwise,
goto Step 3.

4.5. Remarks

The objective functions used in Sections 4.1-4.3 are
strain energies of iso-parametric cubic spline curves that
pass through the data points to be faired. It is possible to
define objective functions using strain energies of surface
patches that interpolate the points to be faired. For instance,
based on the thin plate model, one can fair one point P, ;,
two points Py jand Py, ;, or four points P; ;, Py, P~ and

Pi.y;+) by minimizing the following energy functions,
respectively,

Ep=3 3 [° N [%]

(=i 1 k=j 1

+2I: d_}_){'k(.M‘ ) ] +[ 0 Pl_'k(auﬁ ) ] due dv,
di dv dv=

i+1 i Mo (Ve ()‘EP“(M, V) ’
E(P;UHPI|i]) Z Z J _[ [T

P=i= 1 k=j=1 M Vi

ol 2 2 2
8P (v PP (u, v
+2[ 'u\(’u,\)il +[ ]._L(";'J 1):| du dv.
du ov av”

(28)

(27)

E(P1J5P5+1i,ia]3(,j+lv]3i+]j"'I)

{i.l it J J [dP,k(uv):l
l=i—1k=j—1 (29)

2 2 . 2
- PP () n PP {-kg“’ D .
du v av

Our test results, however, show that these objective
functions (27)—(29) do not provide better results than objec-
tive functions (18), (22) and (24), except making the algo-
rithms more complicated and the computation process more
expensive.

1t should be pointed out that the above algorithms can
be used to fair B-spline curves and surfaces as well. This
is done by fairing the spline curve/surface that interpolates
the control points of the B-spline curve/surface to be faired.
This is based on the following observation. If the control
points of a B-spline surface are properly taken from a
surface, then the B-spline surface would be a good approx-
imation of the surface. Thus if the surface is fair, its approx-
imation B-spline surface is fair too.

5. Implementation

In this section, we compare the new method with
Kjellander's method on two surfaces provided by the
automobile industry. Highlight line models [1.2] of the
surfaces corresponding to 20 linear light sources will be
shown both before and after the fairing process. A highlight
line model can detect very small surface normal (curvature}
irregularities and, hence, is a good indicator of the smooth-
ness of a surface. This sometimes is not possible with wire-
frame drawings or shaded pictures [2,20].

The first case, a door panel with three irregular portions,
is a bicubic spline surface defined by 13 X 13 data points.
The original surface is shown in Fig. 1. The ‘bad’ data
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points of the surface, identified interactively, are faired
by both the Kjellander method and the interactive
fairing algorithm described in Section 4.4 repeatedly until
the highlight line model of the surface remain unchanged
visually. The Kjellander method adjusts only one point
in each fairing step. The results after four fairing steps
and eight fairing steps are shown in Figs. 2 and 3,
respectively.

The top surface is the result produced by Kjellander’s
method and the bottom surface is the result produced by
the new method. Fig. 4 is the results of the Kjellander
method after 50 modification steps (top surface) and 100
modification steps (bottom surface). The new method gener-
ates a satisfactory result after only eight fairing steps (see
Fig. 3), while the Kjellander method can not get a satisfac-
tory result even after 100 fairing steps (see highlight line no.
7 from the right in Fig. 4).

The second case, a body part underneath the right
head light of a car model, is a bicubic NURBS surface
(actually, a B-spline surface since all the values of the
weights are one), defined by 26 X9 control points. This
surface is frequently used to test if a fairing method is
effective because the twisted nature of the surface makes
it implicitly difficult to be faired. Highlight line model of the
NURBS surface is shown in Fig. 5. The NURBS surface is
faired by fairing the bicubic spline surface (called the
control point surface) that interpolates the control points
of the NURBS surface. The fairing process is performed
as follows. First the ‘bad’ control points are identified by
examining the abnormal portions of the bicubic NURBS
surface. Then the ‘bad” control points are faired by fairing
the control point surface using both the Kjellander method
and the interactive fairing algorithm described in Section
4.4 repeatedly until the highlight line model of the
NURBS surface does not change any more visually. Results
of the fairing process of both methods after fifteen, thirty
and forty five iterations are shown in Figs. 6—8, respec-
tively, with the left surface being the result of Kjellander’s
method and the right one being the result of the new method.
The results show that for this case both methods can produce
satisfactory result, but Kjellander's method requires more
fairing steps.

6. Conclusions

Algorithms for interactive and automatic fairing of
cubic spline curves and bicubic spline surfaces are
presented. The ‘bad’ points of a cubic spline curve or bi-
cubic spline surface are replaced with new ones generated
by minimizing the strain energy of the corresponding
segments or patches. The presented algorithms can also be
used to fair cubic B-spline curves and bicubic B-spline
surfaces. The abnormal portions of a B-spline curve/surface
are removed by fairing the interpolant to its control points.
In general, interactive methods are suitable for curve/
surface construction, while the automatic methods are

suitable for smoothing noised data points. Our test results
show that the presented algorithms work quite effectively in
removing the abnormal portions of cubic spline curves and
bicubic spline surfaces.

Both the thin plate energy model and the thin strip
energy model have been used to construct the objective
functions for the fairing of bicubic spline and B-spline
surfaces. Our test results show that these approaches have
no advantages over each other in producing fair surfaces,
except that the thin plate energy based method is more
expensive in developing code and in computation.

The spline method is built on the assumption that the
curvature of a spline curve can be approximated by its
second derivative (subject to a constant factor). Our method
is based on the same assumption and, hence, has the same
limitation as the spline method. Our next work is to study
the possibility of developing exact strain energy based
spline curve/surface fairing techniques.
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