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Preface

Subdivision surfaces are powerful shape representation scheme for applications in
graphical modeling, animation and CAD/CAM because they can model/represent
complex shape of arbitrary topology with only one surface. However, subdivision
surfaces did not receive much attention from the CAD/CAM industries for almost
20 years because of two reasons. First, it was not known until 1998 that subdivi-
sion surfaces can be parametrized [24]. Without a parametric representation, it is
essentially impossible for a CAD/CAM system to include subdivision surfaces as a
free-form surface modeling tool because of problems with standard operations such
as picking, rendering and texture mapping [24]. The second problem is with hard-
ware. Subdivision surfaces are typically generated through recursive meshing. The
complexity of the meshing process grows exponentially with respect to the recursive
subdivision level. This made generation and rendering of subdivision surfaces on an
ordinary workstation impossible in the 80s and early 90s because of lacking enough
memory for the recursive mesh refining process.

Things have changed over the past few years. With the parametrization technique
of subdivision surfaces becoming available [24] and with the fact that non-uniform B-
spline and NURBS surfaces are special cases of subdivision surfaces becoming known
[22], we now know that subdivision surfaces cover both parametric forms and discrete
forms. Since parametric forms are good for design and representation and discrete
forms are good for machining and tessellation (including FE mesh generation) [34],
we finally have a representation scheme good for all graphics and CAD/CAM applica-
tions. With powerful PCs that carry almost unlimited memory available everywhere,
computation and rendering of subdivision surfaces are no longer a problem either.
The era of subdivision surfaces is finally here. Actually, subdivision surfaces have al-
ready been used as primitives in several commercial systems such as Alias|Wavefront’s
Maya, Pixar’s Renderman, Nichiman’s Mirai, and Microspace’ Lightwave 3D [7].

The objective of this book is to present general properties of subdivision surfaces
and related geometric algorithms and modeling techniques. These algorithms and
technologies are important because they are the building blocks of many subdivision
surface based modeling operations and, hence, are needed by any of the CAD/CAM
systems that intends to include subdivision surfaces as the next generation surface



representation for CAD/CAM applications.
The arrangement of the book is as follows. In the first chapter, we will ... IN the

second chapter, ...

Fuhua (Frank) Cheng
Lexington, Kentucky

December 15, 2008



Chapter 1

Introduction

1.1 Motivation

Imagine we have a one-piece representation scheme, i.e., we can represent any object
with only one surface, no matter how complicated the object’s topology or shape
(see Figure 1.3(d) for an example). What does this mean? This means modeling,
data storage, rendering, and animation of objects will all become easier and more
efficient. For example, to build a representation of a complicated object, it is no
longer necessary to painfully decompose the object into simpler components. We can
go directly for a representation of the object instead of building representations of the
components first and then combining these representations through union operation
or a constructive solid geometry (CSG) structure to get a representation of the object.
Hence, the number of parts in the final representation is always the minimum: one.

Traditional surface representation schemes, such as B-spline surfaces or non-
uniform rational B-spline (NURBS) surfaces, can not achieve the goal of one-piece
representation. This is because the topology of the parameter space of such a surface
is rectangular. It is not even possible to use such a surface to represent a closed
object. Actually, any surface representation scheme whose parameter space has a
fixed topological sturcture can not represent a closed object with only one surface.
To make one-piece representation possible, one must have a surface scheme whose pa-
rameter space can have an arbitrary topological structure. This was the background
the concept of Catmull-Clark subdivision surface was developed.

Catmull and Clark noticed that the subdivision process of a uniform bicubic B-
spline surface can be generalized [1]. The generalized subdivision process works for
control mesh of any topology. By iteratively repeating this subdivision scheme, one
can get a limit surface of any shape. The topological structure of the limit surface’s
parameter space is the same as the topology of the control mesh. One thus gets a
surface scheme whose parameter space can have an arbotrary topology. In the follow-
ing, we will first review subdivision scheme of uniform bicubic B-spline surfaces and
then show generalization of this subivision scheme to get Catmull-Clark subidivison
scheme.

1



1.2 Subdivision of Bicubic B-Spline Patch

Given a set of sixteen control points Pi,j, 1 ≤ i, j ≤ 4, a bicubic B-spline patch is
define by

S(u, v) = UCGCtV t, 0 ≤ u, v ≤ 1,

where

C =
1

6









1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1









is the B-spline coefficient matrix for cubics,

G =









P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44









is the control point matrix, and

U = [1, u, u2, u3] and V = [1, v, v2, v3]

are the primitive basis vectors.
If a mid-point subdivision is performed on the above patch, one gets four sub-

patches, corresponding to the four quadrants of the unit square, respectively. Con-
sider the subpatch defined on the quadrant [0, 1

2
] × [0, 1

2
]:

S(u/2, v/2) = UDCGCtDtV t, 0 ≤ u, v ≤ 1, (1.1)

where

D =









1 0 0 0
0 1/2 0 0
0 0 1/4 0
0 0 0 1/8









.

This subpatch, as a uniform bicubic B-spline patch by itself, can also be expressed as

S(u, v) = UCG1C
tV t, 0 ≤ u, v ≤ 1, (1.2)

with G1 being its control point matrix
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Figure 1.1: Relationship between old control points (circles) and new control points
(solid circles) for a bicubic B-Spline patch after a midpoint subdivision.

(see Figure 1.1 for the relationship between Pij and P1
ij). Eq. (1.1) and eq. (1.2)

represent the same subpatch. They equal to each other for arbitrary u and v if and
only if

DCGCtDt = CG1C
t .

Hence, control points of the subpatch are related to the original control points by the
expression

G1 = [C−1DC]G[CtDtC−t] = HGH t (1.3)

where

C−1 =
1

3









3 −3 2 0
3 0 −1 0
3 3 2 0
3 6 11 18









.

By carrying out the matrix multiplications, we have



H =
1

8









4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1









.

H is called the splitting matrix [1]. The new control points are classifed into three
categories by Catmull and Clark: face points, edge points, and vertex points, according
to their locations with respect to the original control mesh. A new control point is
called a face point if it is located at the center of an original mesh face, such as P1

11

or P1
13. A new control point is called an edge point if it is located near the midpoint

of an original mesh edge, such as P1
12 or P1

23. A new control point is called a vertex
point if it is located near a vertex of the original mesh, such as P1

22 or P1
24. There are

four face points, four vertex points and eight edge points in the control mesh of the
subpatch. There is an edge between a face point and each of its adjacent edge points,
and an edge between a vertex point and each of its adjacent edge points as well.

Carrying out the algebra of (1.3) gives us expressions of these points. A face point
is the average of the vertices of the face that it associates with [1]. For example, P1

11

is given by

P1

11 =
P11 + P12 + P21 + P22

4
. (1.4)

An edge point is the average of the midpoint of the edge that it associates with and
the average of the new face points of the faces sharing the edge [1]. For example, P1

12

is given by

P1

12 =
P12+P22

2
+

P
1

11
+P

1

13

2

2
(1.5)

where P1
11 and P1

13 are face points of the faces that share the edge P12P22. A vertex
point is a linear combination of adjacent face points, midpoints of adjacent edges and
the associated vertex [1]. For examples, P1

22 is given by

P1

22 =
F

4
+

2E

4
+

P22

4
(1.6)

where F is the average of adjacent face points

F =
P1

11 + P1
13 + P1

31 + P1
33

4

and E is the average of midpoints of adjacent edges

E =

[

P12 + P22

2
+

P21 + P22

2
+

P23 + P22

2
+

P32 + P22

2

]

/4 .



Each of the remaining points in G1 satisfies an expression similar to one of (1.4), (1.5)
or (1.6).

Note that the subdivision process does not generate edge points for boundary
edges, and no vertex points for boundary vertices either.

1.3 Catmull-Clark Subdivision Surfaces

Once we know that new control points should be classified into three categories and
there is a specific expression for each category, then generalizing the above subdivision
process to control meshes of arbitrary topologies becomes straightforward. Given a
control mesh with arbitrary topology, new vertices are generated according to the
following rules:

• New face points - a face point is generated for each face of the given mesh; the
new face point is the average of the vertices of the face.

• New edge points - an edge point is generated for each interior edge of the given
mesh; the new edge point is the average of the midpoint of the edge with the
average of the two new face points of the faces sharing the edge.

• New vertex points - a vertex point is generated for each interior vertex of the
given mesh; the new vertex point is a linear combination of adjacent face points,
midpoints of adjacent edges and the vertex, as follows:

V̄ =
F

n
+

2E

n
+

(n − 3)V

n
(1.7)

where V̄ is the new vertex point, V is the old vertex, n is the number of adjacent
edges of V, F is the average of the n adjacent new face points, and E is the
average of the midpoints of the n adjacent edges of V.

After all the new vertices have been generated, new edges are formed as follows:

• Each new face point is connected to each of its adjacent new edge points.

• Each new vertex point is connected to each of its adjacent new edge points.

New faces are then defined as those enclosed by new edges. This subdivision scheme
was developed by Catmull and Clark [1] and is called the Catmull-Clark subdivision
scheme or Catmull-Clark subdivision.

The results of applying the Catmull-Clark subdivision one time and two times to
a simple non-rectangular topology (Figure 1.2(a)) are shown in Figures 1.2(b) and
1.2(c), respectively.

By iteratively repeating the Catmull-Clark subdivision process on a given control
mesh, one gets an infinite sequence of refined control meshes. These control meshes
converges to a limit surface. That surface is called a Catmull-Clark subdivision sur-
face. An example of such a surface is shown in Figure 1.3(d). The given control mesh
is shown in Figure 1.3(a). Control meshes after one subdivision and two subdivisions
are shown in Figures 1.3(b) and 1.3(c), respectively.



(a) Given topology (b) After one subdivision

*
*

*

*
**

*
*

*

*

(c) After two subdivisions

Figure 1.2: Results of applying Catmull-Clark subdivision to a simple non-rectangular
topology.

1.4 General Properties

Catmull-Clark subdivision process has several important properties. First, note that
for an open mesh, one does not get an edge point for a boundary edge, nor a vertex
point for a boundary vertex. Hence, one does not get a limit surface patch for a
boundary face. One gets a limit surface patch only for each interior face. Boundary
faces merely assist in defining the slope and curvature of the limit surface patches of
adjacent interior faces.

Second, since each new face is formed by a face point, a vertex point and two
edge points, each new face is always four-sided. But a similar situation does not hold
for new vertices. Each new edge point has four adjacent edges, but the number of
adjacent edges of a new vertex point depends on the number of adjacent edges of
the old vertex, and the number of adjacent edges of a new face point depends on the
number of edges of the old face. Following Catmull and Clark’s terminology [1], we
call an interior mesh vertex an extra-ordinary point if the number of adjacent edges
is not four. The number of adjacent edges of an extra-ordinary point is also called
the valence of the point. An example of an extra-ordinary point V of valence six is
shown in Figure 1.4. If the number of extra-ordinary points of a given mesh is m
and the number of non-four-sided interior faces is n, then after one Catmull-Clark
subdivision, the number of new extra-ordinary points will be m + n. The number of
extra-ordinary points remains constant after that point no matter how many times
of Catmull-Clark subdivision are performed subsequently. This follows from the fact
that after one Catmull-Clark subdivision all faces are four-sided, hence all new vertices
created subsequently will have four adjacent edges except those correspond to the old
extra-ordinary points. All of these properties can also be visually verified with the
results shown in Figures 1.2(b) and 1.2(c).

Now look at Figure 1.2(c). Ten faces are marked with a ’*’. Each of these faces
has associated with it a set of 16 points that lie on a rectangular grid, as with the
standard bicubic B-spline patches. Since the Catmull-Clark subdivision process is a
generalization of the subdivision of uniform bicubic B-spline surface, we will get a
standard bicubic B-spline patch for each of these faces. Therefore, ten portions of the



(a) Control mesh (b) After one subdivision

(c) After two subdivisions (d) Limit surface

Figure 1.3: A ventilation control component represented by a single Catmull-Clark
subdivision surface.

final limit surface are defined. If we perform more iterations of the Catmull-Clark
subdivision more portions of the final limit surface will be defined. Like standard
bicubic B-spline surfaces, those portions of the limit surface have continuous first and
second derivatives. Eventually, every point of the limit surface is a bicubic B-spline
surface point except vertices corresponding to the extra-ordinary points. Hence, the
limit surface is everywhere C2-continuous except at vertices corresponding to the
extra-ordinary points.

If the adjacent vertices of an extra-ordinary point V are labeled as in Figure 1.4
then, according to eq. (1.7), new location of the extra-ordinary point is

V̄ =

(

1 − 7

4n

)

V +
3

2n

(

1

n

n
∑

i=1

Ei

)

+
1

4n

(

1

n

n
∑

i+1

Fi

)

(1.8)

where n is the valence of V. Since the sum of the coefficients on the right side equals
one, this leads to a more general definition of the new extra-ordinaty point:

V̄ = αnV + βn

(

1

n

n
∑

i=1

Ei

)

+ γn

(

1

n

n
∑

i+1

Fi

)

(1.9)

where αn, βn and γn are non-negative numbers whose sum equals one [5].
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Figure 1.4: Adjacent vertices (solid circles) of an extra-ordinary point V and their
labels. Hollow circles represent new face points generated for the adjacent faces of V.



Chapter 2

Background

2.1 A Brief History

The concept of generating a surface through mesh refinement has its root in a curve
generation technique developed by Chaikin [?]. In his approach, a curve is generated
by recursively cutting off corners of a given polygon. Each recursive cutting cycle
generates two new points on each leg of the polygon. If there are n + 1 vertices Pj

i ,
i = 0, 1, ..., n, after the jth recursive cutting cycle, then the two new points generated
on the polygon leg Pj

iP
j

i+1 are defined as follows:

Pj+1

2i =
3

4
Pj

i +
1

4
Pj

i+1; Pj+1

2i+1 =
1

4
Pj

i +
3

4
Pj

i+1.

This process generates a uniform, quadratic B-spline curve as this corner-cutting
process is nothing but the quadratic B-spine subdivision process. The concept of
B-spline subdivision is actually a generalization of Chaikin’s algorithm (see [?] for
the corresponding refinement equation).

Following Chaikin’s work, a variety of subdivision schemes for curves and surfaces
have been proposed during the past two decades. For instance, a 4-point subdivision
scheme proposed by Dyn, Levin and Gregory [?] can generate a subdivision curve to
interpolate given data points. New points for each leg of the refined control polygon
are defined by

Pj+1

2i = Pj

i ; Pj+1

2i+1 =
8 + ω

16
(Pj

i + Pj

i+1) −
ω

16
(Pj

i−1 + Pj

i+2)

where 0 < ω < 2(
√

5 − 1), to ensure convergence of the refined mesh. The standard
value is ω = 1 which has an order three precision.

Refining (subdivision) schemes for subdivision surfaces can be classified into two
categories: (1) approximating techniques, and (2) interpolating techniques. Two typ-
ical subdivision schemes in the first category are Doo and Sabin’s scheme [?] and
Catmull and Clark’s scheme [1]. Doo and Sabin’s scheme generates a surface by
recursively cutting off corners and edges of a given rectangular mesh as follows:

1. For every vertex Vi of the current mesh P , a new vertex V ′

i , called an image, is
generated on each face adjacent to Vi.

9



2. For each face Fi of P , a new face, called an F-face, is constructed by connecting
the image vertices V ′

i s generated in Step 1.

3. For each edge Ei common to two faces Fi and F ′

i , a new 4-sided face, called an
E-face, is constructed by connecting the images of the end vertices of Ei on the
faces Fi and F ′

i .

4. For each vertex Vi, where n faces meet, a new face, called a V-face, is constructed
by connecting the images of Vi on the faces meeting at Vi.

This subdivision scheme generates a uniform biquadratic B-spline surface. Catmull
and Clark’s scheme [1] is similar to the Doo-Sabin scheme, but is based on tensor
product bicubic B-spline. The surface generated by this scheme is C2 continuous
everywhere except at some extraordinary points where it is C1 continuous. Catmull
and Clark’s scheme can work on meshes of arbitrary topology. Loop [3] has pre-
sented a similar subdivision scheme based on generalization of quartic three-direction
Box-splines for triangular meshes. Peters and Reif [?] and Habib and Warren [?] in-
dependently introduced schemes that generalize quadratic 4-direction Box Splines on
irregualr meshes. Subdivision schemes that can generate surfaces with sharp features
[14] or fractionally sharp features [?] have also been proposed. Recently, it is even
possible to generate features such as cusps, creases, and darts through the introduc-
tion of non-uniform subdivision surfaces [22]. A new subdivision scheme that can
produce triangular meshes with small number of vertices is proposed by Kobbelt [?].

The first interpolating scheme for subdivision surfaces was presented by Dyn,
Levin and Gregory [?]. The technique, called a butterfly scheme, requires a topologi-
cally regular setting of the initial (control) mesh to produce a C1 limit surface. Zorin
et al [?] and Kobbelt [?] have both developed improved interpolating schemes recently.
Kobbelt’s scheme is a simple extension of the 4-point interpolating subdivision [?].
Zorin et al’s scheme retains the simplicity of the butterfly scheme and results in much
smoother surfaces even from irregular initial meshes. These interpolating subdivision
schemes also find applications in wavelets on manifolds, multiresolution decomposi-
tion of polyhedral surfaces, and multiresolution editing.

Some of the mathematical properties of subdivision surfaces have been studied
before. For instance, Doo and Sabin have studied the smoothness behavior of their
subdivision surfaces through Fourier transformations and eigen-value analysis of the
subdivision matrix [15]. Ball and Storry [5][6] and Reif [18] extended Doo and Sabin’
work by deriving various necessary and sufficient smoothness conditions for different
subdivision schemes. Specific subdivision schemes have also been analyzed by several
other people [?][?][?][?][?]. Nevertheless, most of the geometric algorithms and mod-
eling technologies required in subdivision surface based modeling operations are not
well studied yet. Four of these areas are especially critical to the design community.

2.2 Surface Tessellation

Given a surface, a major concern in both finite element analysis (FEM) and surface
rendering is the generation of an approximating mesh of the given surface (within a
given error tolerance) with as few nodes as possible. The approximating mesh is used
to analyze the physical performance of the surface or in the scan conversion process



of the surface. Smaller number of nodes in the approximating mesh is preferred
because it makes the analysis process and the rendering process both more efficient.
This process of generating an approximating mesh for a given surface, called surface
tessellation, has been extensively studied for parametric surfaces [?][?]. It has not
been well studied for subdivision surfaces yet.

To generate a good approximating mesh for a subdivision surface, one needs to
be able to (1) estimate the error between the control mesh (or, an approximating
mesh) and the limit (subdivision) surface, (2) determine the level (depth) of recursive
subdivision needed to reach a required precision, and (3) adaptively tessellate the
faces of the initial control mesh so that an approximating mesh that is just good
enough for the specified precision and yet satisfying the crack-free requirement can be
constructed. Existing subdivision schemes can not be used directly in the tessellation
process because they lack the so-called adaptive capability; they would subdivide all
the faces of a mesh even if only one of them does not satisfy the precision requirement
and, consequently, would generate approximating meshes with too many nodes (see
Figure 2.1(c) for excessively generated nodes in flat regions of a rocker arm with only
two levels of subdivision).

The first adaptive scheme for subdivision surfaces is proposed by Kobbelt [?] for
Catmull-Clark subdivision surfaces. The method is performed on a trial-and-error
basis and only works for the so-called balanced nets which, in addition, have to satisfy
some other constraints such as even critical edges. A few more general schemes ap-
peared recently for interpolatory

√
3-subdivision surfaces [?],

√
3-subdivision surfaces

[?], and modified butterfly subdivision surfaces [?]. But they work for triangular con-
trol meshes only. Another problem with all the above adaptive schemes is that none
of them use the error criterion most commonly used in mechanical part design, i.e.,
the error between the approximating mesh and the limit surface.

We have worked in all these three areas: error estimation [?], subdivision level
(depth) computation [?], and adaptive mesh generation [?][?]. However, the tech-
niques developed for B-spline and NURBS surfaces can not be used for subdivision
surface directly because the parameter space of a subdivision surface in general is
not rectangular or triangular; it can be of any shape. New techniques have to be
developed for each of these areas.

(a) Control mesh (b) Limit surface (c) Approximating mesh

Figure 2.1: An example of uniform subdivision of the control mesh of rocker arm.



2.3 Automatic Fairing

Automatic fairing refers to the process of detecting and removing local irregularities
of a surface automatically. Curvature plots have been frequently used to analyze the
quality of a surface. Commonly used curvature measures include Gaussian, mean, and
principal curvatures as well as normal curvatures along given directions. Isophotes
[?], reflection lines [?, ?] and, more recently, highlight lines [?, ?] have also been used
in assessing the quality of a surface. These techniques prove to be more effective and
are becoming more popular recently, especially in automotive body surface design,
because they are more intuitive to understand and easier to compute. The smoothness
of a surface is measured using indicators such as parametric or geometric continuity.

Several papers analyzing parametric and geometric continuity of subdivision sur-
faces have been published (see, e.g., [?, 5, 18]). They all concentrate on analyzing
the subdivision scheme, instead of the layout of the control points, of the subdivision
surface. The latter is actually more important because a well-designed control point
net is likely to bring out a higher order of continuity.

Using diffusion and curvature flow, Desbrun, Meyer, Schröder and Barr [?] have
presented a method for removing undesirable noises and uneven edges from irregularly
triangulated data. A problem with this approach is that while removing vertices and
edges, one might also remove important data “underneath” the “noises”. For instance,
the “noises” could be introduced by numerical error in the input phase but are within
the tolerance level, therefore, the information carried underneath the noises should
still be acceptable. A better approach would be to perturb the points or edges to
achieve the goal of shape fairing, instead of removing points or edges. However,
no paper has been published on constructing a new limit (subdivision) surface with
higher parametric or geometric smoothness but with minimum distance from the
original limit (subdivision) surface.

Fairing techniques based on modifying reflection or highlight lines have also been
proposed [?][?][?][?]. They all heavily rely on the designers to visually identify the
irregular regions and to fix them manually by correcting the control points of the
surface. This is an experience-based, trial-and-error, and time-consuming process.
The complexity of the problem for subdivision surfaces would make the situation even
worse, likely to exceed what the human being can cope with, because the topology of a
subdivision space is usually much more complicated than that of a parametric surface.
One needs the capability of automatic detection and correction of local irregularities
for subdivision surfaces. One also needs an approach different from the highlight
line model because identifying surface normals that intersect the light source for a
subdivision surface is too costly a process for an interactive design environment. A
newly developed surface smoothness evaluation model by us, called the shadowgraph
line model, will be considered here. This model has an analytical representation for
each shadowgraph line. Therefore, there is no cost in getting a representation for a
shadowgraph line at all.



2.4 Shape design

The design of a subdivision surface involves (1) the design, and (2) fine tuning of
the control mesh. The only known technique in the first area is the work of Levin
[52] which uses a combined subdivision scheme to construct a subdivision surface to
interpolate a given net of curves. This is an important work because it points out a
better approach for subdivision surface shape design (a parallel work for parametric
surfaces can be found in [?]). However, properties of Levin’s surface are not known
yet and it is not a good idea to include too many new subdivision schemes in a
modeling system. It is preferred to have similar interpolation techniques using existing
subdivision schemes so that the trimming process can be handled with efficiency (see
next section for the justification).

The only known technique in the second area is the work by Miura, Wang and
Cheng [?] which provides the user with a tangent manipulation technique to fine
tune the shape of a subdivision surface. An example is shown in Figure ?? where a
set of Doo-Sabin surfaces are deformed using the tangent vector blending technique
and the resulting Doo-Sabin surfaces in non-uniform form are shown in (b). For
comparison purpose, the original Doo-Sabin surfaces in non-uniform form are shown
in (c). The advantage of this approach is that through the manipulation of the tangent
vectors, one can directly manipulate the curvature and variation of curvature of the
surface. The disadvantage is that it could be too laborious for subdivision surfaces
with complex topology. Note that while it is necessary to provide the user with the
capability of direct control point or tangent vector manipulation, it is essential that
the user can manipulate the shape of the surface directly (such as dragging a point
of the surface to a new location), leaving the time-consuming job of finding the new
locations of the control points to the system, so that the fine tuning process of shape
design can be carried out more efficiently.

(a) Corresponding control mesh (b) fine tuned Doo-Sabin sur-
faces in non-uniform form

(c) original Doo-Sabin sur-
faces in non-uniform form

Figure 2.2: An example of fine tuning of the control mesh.



2.5 Surface Trimming

NURBS surface intersection, even up to today, is still considered the most difficult
problem and one of the weaker links in even high end commercial CAD systems [17][?].
The subdivision surface intersection problem would be even more difficult because of
the irregularity of the topology of a subdivision surface. The main difficulty is the
development of a reliable and efficient computation (marching) process.

An algorithm for calculating the trimming curves of two Loop’s subdivision sur-
faces is proposed by Litke, Levin and Schröeder [17] recently. The algorithm can
guarantee exact interpolation of the trimming curves. This is achieved by introduc-
ing a new type of surfaces, called combined surfaces, to approximate the trimmed
surfaces. A problem with this approach is that the inclusion of a new surface type
in a CAD system with m surface representation schemes requires m more functions
to implement the surface intersection problem. It is preferred to keep the number of
surface representation schemes low in a CAD system.

Biermann, Kristjansson and Zorin [8] have presented a new method to approxi-
mate Boolean operations on free-form solids. The result of a Boolean operation is
approximated by a multiresolution surface. The work pays more attention to efficiency
and robustness than to precision and, consequently, is more suitable for applications
where precision modeling is not required, such as animation. For applications in
CAD/CAM, however, one needs to pay more attention to precision and robustness
than to efficiency.
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[26] Peter Schröder, Denis Zorin, Subdivision for Modeling and Animation, SIG-
GRAPH’98 Course Notes, 1998.

[27] Zorin D, Kristjansson D, Evaluation of Piecewise Smooth Subdivision Surfaces,
The Visual Computer, 2002, 18(5/6):299-315.
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