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Abstract

Over the years, the stable-model semantics has gained a position of the correct (two-valued)
interpretation of default negation in programs. However, for programs with aggregates
(constraints), the stable-model semantics, in its broadly accepted generalization stemming
from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed
by Faber, Leone and Pfeifer, which seems to be essentially different. Our goal is to explain
the relationship between the two semantics. Pearce, Ferraris and Lifschitz’s extension of
the stable-model semantics is best viewed in the setting of arbitrary propositional theories.
We propose here an extension of the Faber-Leone-Pfeifer semantics, or FLP semantics, for
short, to the full propositional language, which reveals both common threads and differ-
ences between the FLP and stable-model semantics. We use our characterizations of FLP-
stable models to derive corresponding results on strong equivalence and on normal forms of
theories under the FLP semantics. We apply a similar approach to define supported models
for arbitrary propositional theories, and to study their properties.
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1 Introduction

The stable-model semantics introduced by Gelfond and Lifschitz (1988) is the
foundation of answer-set programming (Marek and Truszczyński, 1999; Niemelä,
1999; Gelfond and Leone, 2002), a paradigm for modeling and solving search prob-
lems. Answer-set programming is broadly accepted as an effective knowledge rep-
resentation tool for modeling intelligent agents and reasoning in complex domains
(Eiter, Faber, Leone, Pfeifer, and Polleres, 2003a,b; Baral, 2005). In the last decade,
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it has been successfully applied in several areas of artificial intelligence such as
product configuration (Soininen and Niemelä, 1998), planning (Tu, Son, and Baral,
2007; Son, Pontelli, and Sakama, 2009), reasoning about action (Giunchiglia, Lee,
Lifschitz, McCain, and Turner, 2004), and diagnosis (Nogueira, Balduccini, Gel-
fond, Watson, and Barry, 2001; Balduccini, Gelfond, and Nogueira, 2006), with
some of these applications concerning large-scale systems like the space shuttle
flight controller (Nogueira et al., 2001). Answer-set programming has also been ap-
plied beyond artificial intelligence for problems arising in bio-informatics (Baral,
Chancellor, Tran, Tran, Joy, and Berens, 2004; Schaub and Thiele, 2009), linguis-
tics (Brooks, Erdem, Minett, and Ringe, 2005) and automated music generation
(Boenn, Brain, Vos, and Fitch, 2009).
The success of answer-set programming as a knowledge representation formalism
and its applications in artificial intelligence and beyond make it essential that the-
oretical underpinnings of its semantics be established. Consequently, right from its
inception, the stable-model semantics, has received much attention. The present pa-
per contributes to this general line of research by extending the theoretical frame-
work for the stable-model semantics based of the results and ideas proposed and
developed by Pearce (1997) and Ferraris (2005) to two other closely related seman-
tics that also play a major role in answer-set programming, the Faber-Leone-Pfeifer
stable-model semantics (Faber, Leone, and Pfeifer, 2004) and the supported-model
semantics (Clark, 1978; Apt, 1990; Marek and Subrahmanian, 1992).
A far-reaching contribution by Pearce (1997) explained the stable-model seman-
tics in terms of models of theories in the logic of here-and-there (HT, for short),
introduced by Heyting (1930). It had two important consequences. First, it resulted
in a generalization of the stable-model semantics, originally limited to a restricted
syntax of program rules, to arbitrary theories in the language of propositional logic
(we discuss the role of this development in more detail later). Second, it brought
about the notion of strong equivalence of programs, fundamental to modular pro-
gram development (Lifschitz, Pearce, and Valverde, 2001). Strong equivalence has
been extensively studied in the past decade. That research resulted in extensions
and refinements of the original concept, in characterizations, and in complexity re-
sults (Lifschitz, Pearce, and Valverde, 2001; Lin, 2002; Turner, 2003; Eiter, Fink,
and Woltran, 2007; Woltran, 2008; Truszczyński and Woltran, 2008).
The original definition of stable models (Gelfond and Lifschitz, 1988) was based
on the reduct of a program with respect to a set of atoms. The characterization
in terms of the logic HT makes no reference to reducts but employs a form of
model minimization. Ferraris (2005) extended the notion of reduct to propositional
theories, and developed the reduct-based definition of stable models equivalent to
that provided by the logic HT (an exposition of the idea can also be found in the
paper by Ferraris and Lifschitz (2005)).
The papers by Pearce and Ferraris resulted in an elegant comprehensive treatment
of the stable model semantics. They also raise the question whether there are other
generalizations of the stable-model semantics to the case of arbitrary logic theories.
An indication that it might be so comes from the work by Faber et al. (2004) on pro-
grams with aggregates. Aggregates, in the form of weight atoms, were introduced to
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answer-set programming by Niemelä and Simons (2000), who extended the stable-
model semantics to that class of programs. Ferraris (2005) cast that generalization
in terms of stable models of propositional theories. Stable models of programs with
aggregates are no longer guaranteed to be minimal models. From the perspective
of the Ferraris’ result, it is not surprising. Stable models of propositional theories
in general do not have the minimal-model property.
However, as minimization is an important knowledge-representation principle,
Faber et al. (2004) sought an alternative semantics for programs with constraints,
one that would have the minimal-model property. Naturally, they also wanted it
to coincide with the original semantics on the class of programs without aggre-
gates. They came up with a solution that satisfied both requirements by modi-
fying the concept of the reduct! In the setting with aggregates, the Faber-Leone-
Pfeifer stable-model semantics, or FLP semantics, is different than the extension of
the original stable-model semantics based on the logic HT (throughout the paper,
whenever we speak about the stable-model semantics, we have the original seman-
tics in mind). Thus, the question of alternative generalizations is relevant. The FLP
semantics is steadily gaining on importance. It is now not only used as the ba-
sis for interpreting aggregates in the dlv system (Faber, Pfeifer, Leone, Dell’Armi,
and Ielpa, 2008), but also in approaches aiming to integrate answer-set program-
ming with other declarative programing paradigms (Eiter, Brewka, Dao-Tran, Fink,
Ianni, and Krennwallner, 2009).
A related question concerns a possibility of generalizing other semantics relevant
to answer-set programming to the full propositional logic language. The one we
consider here is the supported-model semantics. Its importance stems from two
properties. First, the supported-model semantics is the key component of a charac-
terization of stable models in terms of loop formulas (Lin and Zhao, 2002), which
gave rise to fast algorithms for computing stable models of programs (Lin and Zhao,
2002; Lierler and Maratea, 2004; Lierler, 2008). Second, for a class of modal theo-
ries of some restricted syntax, it is a precise counterpart to the semantics of expan-
sions of the autoepistemic logic (Moore, 1985; Marek and Subrahmanian, 1992),
an important nonmonotonic logic for modeling belief sets of an agent with perfect
introspection capabilities.
Given the applications of the Faber-Leone-Pfeifer stable-model semantics as an al-
ternative to the standard Gelfond-Lifschitz one, and the role of the supported-model
semantics in answer-set programming and nonmonotonic logics, our objective here
is to investigate these semantics and show that they also can be studied by the
means stemming from those developed by Pearce and Ferraris for the stable-model
semantics. Specifically, we have the following goals:
(1) To extend the semantics of Faber et al. (2004) to the language of propositional
logic. We do so in two equivalent ways: by means of a generalization of the reduct
introduced by Faber et al., as well as in terms of a certain satisfiability relation simi-
lar to the one that defines the logic HT. We show that the FLP semantics generalizes
several properties of the stable-model semantics of logic programs and so, it can be
regarded as its legitimate extension, alongside with the extension based on the logic
HT. We derive several additional properties of the FLP semantics, including a char-
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acterization of strong equivalence under that semantics, and a normal-form result.
(2) To relate the FLP and stable-model semantics of propositional theories. We
show that each can be expressed in each other in the sense that there are modular
translations that do not use any auxiliary atoms and such that FLP-stable models of
a theory are stable models of its image under the translation (and vice versa).
(3) To apply a similar two-pronged approach, exploiting both some notion of reduct
and some satisfiability relation, to the supported model semantics. We show that
also supported models can be defined for arbitrary propositional theories. We gen-
eralize to propositional language some well-known properties of supported models,
as well as the results connecting stable and supported models of programs.
While most implemented answer-set programming systems (Denecker, Vennekens,
Bond, Gebser, and Truszczynski, 2009) used in applications support only theories
consisting of rules (we formally define rules in the next section), a generalization
of answer-set programming to the full language of propositional logic is important.
From the theoretical standpoint, it eliminates possible artifacts of syntactic restric-
tions and allows us to identify key principles behind the semantics of answer-set
programming. In particular, considering answer set programming in the full lan-
guage pinpoints the basic role of implication as a non-classical connective, with
the non-classical behavior of the negation being a consequence of the fact that the
negation can be expressed by means of the implication with the false consequent.
The key role of implication is emphasized by the recursive definitions of the reducts
— it is the only case that is treated in a non-standard way. Moreover, it leads to the
semantics of HT-interpretations, which paves the way to generalizations of answer-
set programming and its semantics to the case of first-order logic theories (Lee,
Lifschitz, and Palla, 2008; Pearce and Valverde, 2008). From the practical stand-
point, generalizations of the syntax of answer-set programming to the full language
makes answer-set programming more flexible as a modeling formalism, and pro-
vides a basis for further extensions of the language, for instance, with aggregates
(Ferraris and Lifschitz, 2004).
Our paper demonstrates that the ideas originated by Pearce and Ferraris extend to
two other semantics of logic programs: the FLP semantics and the supported-model
semantics. The results concerning the FLP semantics have several potential impli-
cations and applications. They provide a certain normal-form result (cf. Section 4),
which points to a possible extension of the syntax of disjunctive logic program rules
currently supported by disjunctive logic programming systems such as dlv. The re-
sults on strong equivalence (cf. Section 3.5) lay the necessary foundation for the de-
velopment of techniques and methods for modular program design under the FLP
semantics. Finally, the extension of the FLP semantics to arbitrary rules demon-
strates the feasibility of extending the present implementation of the dlv system to
a richer input language not restricted to rules. Our results on the supported-model
semantics are also of interest. As we observed above, logic programming with the
supported-model semantics captures in a direct way a fragment of autoepistemic
logic Marek and Subrahmanian (1992). By extending the supported-model seman-
tics to the entire language of propositional logic, we provide a way to expand the
scope of this direct connection.

4



Our paper is organized as follows. In the next section, we recall two definitions
of stable models of propositional theories. The first one is in terms of a reduct
introduced by Ferraris (2005). It extends the original approach of Gelfond and Lif-
schitz. The second definition is in terms of HT-interpretations and is due to Pearce
(1997). In Section 3, we discuss the approach by Faber et al. (2004), extend it
to arbitrary propositional theories, and study the properties of the resulting con-
cepts. In particular, we characterize the general FLP-stable model semantics in
terms of the appropriately modified concept of the reduct, and in terms of a cer-
tain entailment relation based on HT-interpretations. We also discuss the question
of the minimality of FLP-stable models, the complexity of reasoning with FLP-
stable models, and the concept of strong equivalence with respect to FLP-stable
models. Finally, we present a normal form theorem for that semantics. In Section
5, we show that techniques used in our paper can be applied to the supported-model
semantics. Specifically, we define supported models for arbitrary propositional the-
ories by modifying the notion of a reduct, and by introducing yet another entail-
ment relation based on HT-interpretations. We derive several results for the gener-
alized supported-model semantics and, in particular, we study the concept of strong
equivalence for supported-model semantics, and the relationship of that semantics
to those based on stable models and FLP-stable models.

2 Preliminaries

In this section we introduce basic terminology and describe the general definitions
of the stable-model semantics in terms of the here-and-there models (Pearce, 1997),
and in terms of the Ferraris reduct, or F-reduct, for short (Ferraris, 2005), that
generalizes the original Gelfond-Lifschitz reduct.
We consider the language of propositional logic determined by an infinite countable
set At of atoms, and boolean connectives ⊥, ∧, ∨, and →. A Backus-Naur Form
expression ϕ ::= ⊥ |A | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ), where A ∈ At , provides
a concise definition of a formula. The parentheses are used only to disambiguate
the order of binary operations. Whenever possible, we omit them. Generalizing the
concept of the head of a program rule, we say that an occurrence of an atom is a
head occurrence if it does not occur in the antecedent of any implication. Finally,
when writing formulas, we often use the following shorthands:

> = ⊥ → ⊥ and ¬F = F → ⊥.
A set of formulas is a theory. In the case of all semantics we discuss here, there
is no essential difference between finite theories and formulas. The former can be
represented as the conjunctions of their elements. We often distinguish between
formulas and theories as we want to address the case of infinite theories, too.
In the paper, we consider several special types of formulas and theories. A rule is a
formula

A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn → C1 ∨ . . . ∨ Cs ∨ ¬D1 ∨ . . . ∨ ¬Dt, (1)

where Ai’s, Bi’s, Ci’s and Di’s are atoms. If we use r to denote the rule (1), we say
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that the formulas A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn and C1 ∨ . . . ∨ Cs ∨ ¬D1 ∨
. . .∨¬Dt are the body and the head of r, and denote them by body(r) and head(r),
respectively. If m = n = 0, we represent the rule by its head. If s = t = 0, we
write ⊥ for the head of the rule. A program is a set of rules. We emphasize that the
phrases “a head occurrence in a formula”, discussed two paragraphs above, and “an
element of the head of a rule” have a different meaning. In particular, each literal
¬Di is an element of the head of the rule (1), but the corresponding occurrence of
Di in the rule is not a head occurrence.
For consistency with the standard logic programming terminology, when referring
to rules (1) with no negated atoms in the heads, we use the term disjunctive program
rule or, simply, disjunctive rule. Further, we call disjunctive rules with at most one
atom in the head normal program rules or, simply normal rules. By the convention
above, disjunctive rules have no negated atoms in the head and so, this terminology
agrees with the standard one.
Originally, the stable-model semantics was defined by Gelfond and Lifschitz (1988)
for normal programs (collections of normal rules). The definition was later ex-
tended to disjunctive programs, that is, collections of disjunctive rules also by Gel-
fond and Lifschitz (1991), then to programs as understood here (collections of rules
(1)) by Lifschitz and Woo (1992), and to a superclass of programs, programs with
nested expressions by Lifschitz et al. (1999). Finally, the case of arbitrary theories
was addressed by Pearce (1997) and, later and in a different way, by Ferraris (2005).
These last two approaches are equivalent. We will now discuss them, starting with
the latter one.
For a formula F and a set of atoms Y , we define the Ferraris reduct (F-reduct) of
F with respect to Y , written as F Y , by induction:

R1. ⊥Y = ⊥

R2. If A is an atom: AY =

A if Y |= A

⊥ otherwise

R3. For ◦ = ∧ and ∨: (G◦H)Y =

GY ◦HY if Y |= G ◦H

⊥ otherwise

R4. For→: (G→ H)Y =

GY → HY if Y |= G→ H

⊥ otherwise.

We could have folded case (R4) into the case (R3). However, all concepts of reduct
we consider later in the paper differ only in the way the implication is handled and
so, we show this case separately.
For a theory F , we define the F-reduct FY by setting FY = {F Y |F ∈ F}. Next,
we define Y ⊆ At to be a stable model of F if Y is a minimal model of the theory
FY . One can show that stable models are models (hence, the term stable model is
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justified).
We will now illustrate the notions we just introduced. We will use the theories
discussed below throughout the paper.
Example 1 Let E1 = {¬¬A → A}. To compute the reduct E∅1 , we note that ∅ |=
¬¬A → A (as the formula is a classical tautology). Thus, E∅1 = (¬¬A)∅ → A∅.
Since ∅ 6|= A, A∅ = ⊥. Moreover, ¬¬A stands for (A → ⊥) → ⊥. Since ∅ 6|=
(A→ ⊥)→ ⊥, (¬¬A)∅ = ((A→ ⊥)→ ⊥)∅ = ⊥. It follows that E∅1 = ⊥ → ⊥.
Clearly, ∅ |= E∅1 and, trivially, there is no proper subset X of ∅ such that X |= E∅1 .
Thus, ∅ is a stable model of E1.
Similarly, as {A} |= ¬¬A → A, E{A}1 = (¬¬A){A} → A{A}. The definition
implies that A{A} = A. Moreover, as {A} |= (A → ⊥) → ⊥ (the expanded form
of ¬¬A), ((A → ⊥) → ⊥){A} = (A → ⊥){A} → ⊥{A}. Since A 6|= A → ⊥,
(A → ⊥){A} = ⊥. Also, by the definition, ⊥{A} = ⊥. Thus, E{A}1 = (⊥ →
⊥) → A. Clearly, {A} |= E{A}1 . As there is no proper subset X of {A} such that
X |= E{A}1 , also {A} is a stable model of E1. 2

Example 2 Let E2 = {(A ∨ ¬A) → A}. To compute the reduct E∅2 , we note that
∅ 6|= (A ∨ ¬A) → A. Thus, E∅2 = ⊥. It follows, in particular, that ∅ is not a stable
model of E2.
Next, we observe that A |= (A ∨ ¬A)→ A. Thus, E{A}2 = (A ∨ ¬A){A} → A{A}.
Since (¬A){A} = (A → ⊥){A} = ⊥, E{A}2 = (A ∨ ⊥) → A. Clearly, we have
∅ |= E{A}2 . Thus, {A} is not a stable model of E2, either, and so, E2 has no stable
models (as in the case of normal programs, we can restrict the search for stable
models to subsets of the set of atoms that occur in the theory). 2

This notion of a stable model generalizes all earlier ones. It also coincides with the
one proposed by Pearce (1997). The approach by Pearce is based on the logic HT
(Heyting, 1930), a logic located strictly between the intuitionistic and the proposi-
tional logics. Stable models are defined in terms of the satisfiability relation |=ht in
the logic HT. A pair 〈X, Y 〉, where X, Y ⊆ At , is an HT-interpretation if X ⊆ Y .
The relation |=ht, between HT-interpretations and formulas, is defined inductively
as follows:
(1) 〈X, Y 〉 6|=ht ⊥
(2) 〈X, Y 〉 |=ht A if X |= A (applies only if A ∈ At)
(3) 〈X, Y 〉 |=ht G ∧H if 〈X, Y 〉 |=ht G and 〈X, Y 〉 |=ht H
(4) 〈X, Y 〉 |=ht G ∨H if 〈X, Y 〉 |=ht G or 〈X, Y 〉 |=ht H
(5) 〈X, Y 〉 |=ht G→ H if Y |= G→ H; and 〈X, Y 〉 6|=ht G, or 〈X, Y 〉 |=ht H .

The relation extends in a standard way to theories. If for a theoryF , 〈X, Y 〉 |=ht F ,
then 〈X, Y 〉 is an HT-model of F . Some important properties of the relation |=ht

are gathered below (cf. Ferraris and Lifschitz (2005)).
Theorem 1 For every formula F and every X ⊆ Y ⊆ At:
(1) 〈X, Y 〉 |=ht F implies Y |= F
(2) 〈X, Y 〉 |=ht ¬F if and only if Y |= ¬F
(3) 〈Y, Y 〉 |=ht F if and only if Y |= F .

Pearce (1997) defined Y to be a stable model of a theory F if and only if
〈Y, Y 〉 |=ht F and for every X ⊆ Y if 〈X, Y 〉 |=ht F , then X = Y (a form
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of minimality). Ferraris and Lifschitz (2005) proved that the two approaches are
equivalent by showing the following two key results.
Theorem 2 Let F be a theory.
(1) For every Y ⊆ At , Y |= F if and only if Y |= FY

(2) For every X ⊆ Y ⊆ At , X |= FY if and only if 〈X, Y 〉 |=ht F .
Example 3 Let us consider the theory E1 = {¬¬A→ A} from Example 1 and let
Y = ∅. Since Y 6|= (A → ⊥) → ⊥, 〈Y, Y 〉 6|=ht (A → ⊥) → ⊥ and Y |= ((A →
⊥) → ⊥) → A. Thus, 〈Y, Y 〉 |=ht ((A → ⊥) → ⊥) → A or, in other words,
〈Y, Y 〉 |=ht E1. Trivially, there is no proper subset X of Y such that 〈X, Y 〉 |=ht E1.
Thus, Y = ∅ is a stable model of E1, according to the definition by Pearce.
Next, let Z = {A}. Then Z |= ((A → ⊥) → ⊥) → A and 〈Z,Z〉 |=ht A. Thus,
〈Z,Z〉 |=ht ((A → ⊥) → ⊥) → A and, consequently, 〈Z,Z〉 |=ht E1. The only
proper subset of Z is X = ∅. Clearly, 〈X,Z〉 6|=ht A (as A /∈ X). Let us also
observe that Z |= (A → ⊥) → ⊥, and 〈X,Z〉 6|=ht A → ⊥ (as Z 6|= A → ⊥).
Thus, 〈X,Z〉 |=ht (A→ ⊥)→ ⊥. It follows that 〈X,Z〉 6|=ht ((A→ ⊥)→ ⊥)→
A. Thus, 〈X,Z〉 6|=ht E1, and so Z = {A} is a stable model of E1 according to the
definition by Pearce.
Similarly, one can check that the theory E2 from Example 2 has no stable models
according to the definition by Pearce.
Of course, these outcomes are only to be expected, given our discussion in Exam-
ples 1 and 2, and the equivalence of the definitions proposed by Ferraris and Pearce.

2

We conclude by noting that throughout the paper, we are only interested in the
satisfiability of reducts (the one discussed in this section and two other types we
introduce later) with respect to the standard propositional logic semantics. Thus,
whenever we compute the reduct, we can simplify it by using propositional tautolo-
gies. Such simplifications have no effect on the concept of stability. For instance,
we could simplify the reduct EA1 = (⊥ → ⊥)→ A to A.

3 FLP semantics

Faber et al. (2004) based their work on a notion of reduct that differs from the one
proposed by Gelfond and Lifschitz. Using our notation, it can be defined as follows.
Let R be a disjunctive rule (that is, there are no negated atoms in the head)

A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn → C1 ∨ . . . ∨ Cs,

where Ai, Bi and Ci are atoms, and let Y be a set of atoms. The FLP-reduct RY

(the notation we use is meant to distinguish between the FLP- and the F-reduct)
is either R, if Y |= A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn, or >, otherwise. Given
a disjunctive program P , PY is obtained by replacing each rule R ∈ P with RY .
Finally, Y is a stable model of P in the sense of Faber et al., if Y is a minimal
model of PY . Faber et al. (2004) proved that “their” stable models of disjunctive
programs coincide with standard stable models. They also observed that the FLP-
reduct does not depend on the syntactic form of the body of a rule. All that matters
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is whether the body is satisfied by Y . Thus, they extended the definition to more
general formulas that are of the form

F → C1 ∨ . . . ∨ Cs, (2)

where Ci are atoms and F is a propositional formula. 1 That allowed them to extend
the concept of a stable model to the class of theories that consist of such “general-
ized” disjunctive rules. Importantly, they proved that stable models, in their sense,
of such theories are minimal models, while the stable-model semantics does not
have that property. For instance, the program (theory) E1 = {¬¬A→ A} has only
one FLP-stable model, ∅, but two stable models, ∅ and {A} (cf. Example 1 and
Example 3, below).

3.1 General FLP semantics

To extend that approach to arbitrary propositional theories, we first generalize the
notion of the FLP-reduct. To this end, we follow the inductive pattern of the defi-
nition of the F-reduct. There is no change for F = ⊥, F = A, where A ∈ At , and
F = G ◦H , where ◦ = ∨ and ∧. Indeed, there does not seem to be any other way,
in which these cases could be handled. Thus, the only case that requires a discus-
sion is that of F = G → H . Once that case is settled, we will define Y to be an
FLP-stable model of a theory F if Y is a minimal model of the FLP-reduct FY .
So, let us discuss the case of the implication. A literal reading of the FLP-reduct
for rules suggests the following inductive definition for the case F = G→ H:

(G→ H)Y = G→ H, if Y |= G; otherwise, (G→ H)Y = >.

However, under that choice, all occurrences of→ (and so, also all occurrences of ¬)
in the consequent of another implication would be interpreted in the classical way.
While not a problem for formulas that do not have any implications occurring in the
consequent of any “top-level” implication (and so, working correctly for the class
of formulas considered by Faber et al.), in general it leads to some counterintuitive
behavior.
For instance, let F = {¬¬A} and G = {¬B → ¬¬A}, where A and B are
atoms. As B does not appear in the head of the rule of G, it must be false in every
reasonable generalization of the stable-model semantics. Consequently, F and G
should have the same stable models. However, under the proposed definition it
would not be so. Let Y = {A}. Since ¬¬A = (A → ⊥) → ⊥ and Y 6|= A → ⊥,
we would have FY = {>}. Consequently, Y would not be a minimal model of
FY = {>} (as ∅ is a model, too) and so, Y would not be a “stable” model of F .
On the other hand, as Y |= ¬B, GY = {¬B → ¬¬A}. Thus, clearly, Y would
be a minimal model of GY and, consequently, a “stable” model of G. A problem in

1 Faber et al. used conjunctions of literals and aggregate atoms as F , but that detail is
immaterial here.
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itself, it also leads to another one. In G, A has no head occurrence (informally, there
is no “defining clause” for A in G), yet G would have {A} as a “stable” model.
Thus, we need to handle the case of → differently, but in such a way that under
the restriction to theories consisting of formulas (2) we obtain the same concept of
a stable model as the one proposed by Faber et al. In particular, we must ensure
that all occurrences of→ in the consequent of another occurrence of→ are treated
consistently in the same non-classical way. In the remainder of this section we will
argue that it can be accomplished by the following definition:

FLP4. (G→ H)Y =


G→ HY if Y |= G and Y |= H

> if Y 6|= G

⊥ otherwise (that is, when Y 6|= G→ H).

While it looks different than the original definition (Faber et al., 2004), it preserves
its basic idea. Specifically, in the first case, when the implication is “strongly” satis-
fied (both its antecedent and consequent are satisfied by Y ), we keep the antecedent
unchanged, following the spirit of the original definition of Faber et al., but replace
the consequent recursively with its reduct, to make sure the implications occurring
in the antecedent are treated in a consistent way. The case when Y “weakly” sat-
isfies the implication, that is, does not satisfy its antecedent, is dealt with as in the
previous naive attempt (and as in the definition by Faber et al.). Namely, reflecting
the principle that if the antecedent of an implication is false (informally, the im-
plication “does not fire”), the implication is immaterial and can be replaced by >
(effectively “removed”). In the case when the implication is not satisfied by Y , it
can be replaced by ⊥. Faber et al. do not distinguish this case and, in fact, proceed
differently. They keep the rule in the program. However, they could have replaced
it with ⊥, as we propose (following the pattern for F-reduct), without affecting the
resulting concept of a stable model. Indeed, if Y does not satisfy a rule in a pro-
gram, Y cannot be a stable model of that program. Replacing a rule violated by Y
with ⊥ just makes that explicit.
To summarize, we define the FLP-reduct of the formula F with respect to Y , F Y ,
recursively, by using the clauses (R1) - (R3) of the definition of the F-reduct (ad-
justed to the notation F Y ), as well as the clause (FLP4) for the implication→. We
extend the definition to theories in the standard way. With this definition in hand,
we define next the notion of an FLP-stable model of a propositional theory (as
announced above).
Definition 1 Let F be a theory. A set of atoms Y is an FLP-stable model of F if Y
is a minimal model of F Y .
Example 4 We consider again the theory E1 = {¬¬A → A} from Example 1. To
compute the reduct E∅1 , we note that ∅ 6|= ¬¬A. Thus, E∅1 = >. Clearly, ∅ |= E∅1
and, trivially, there is no proper subset X of ∅ such that X |= E∅1 . Thus, ∅ is an
FLP-stable model of E1.
On the other hand, we have {A} |= ¬¬A and {A} |= A. Thus, E{A}1 = ¬¬A →
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A{A}. The definition implies that A{A} = A. Thus, E{A}1 = ¬¬A → A. Clearly,
{A} |= E{A}1 . However, we also have that ∅ |= E{A}1 . Thus, {A} is not an FLP-stable
model of E1. 2

Example 5 Next, we reconsider the theory E2 = {(A∨¬A)→ A} from Example
2. To compute the reduct E∅2 , we note that ∅ 6|= (A ∨ ¬A) → A. Thus, E∅2 = ⊥. It
follows, as in Example 2, that ∅ is not an FLP-stable model of E2.
On the other hand, we observe that {A} |= (A∨¬A) and {A} |= A. Thus, E{A}2 =

(A ∨ ¬A) → A{A}. Since A{A} = A, it follows that E{A}2 = (A ∨ ¬A) → A.

Clearly, we have {A} |= E{A}2 and ∅ 6|= E{A}2 . Thus, {A} is an FLP-stable model of
E2. 2

Examples 1, 2, 4 and 5 show that stable models need not be FLP-stable models and
vice versa. Later, we provide a detailed comparison between the two semantics.

3.2 Basic properties

We start with a generalization of the well-known property of the standard F-reduct
of disjunctive programs (cf. Theorem 2).
Proposition 1 For every theory F and for every set of atoms Y , Y |= F if and
only if Y |= FY .
Proof It is enough to prove that for every formula F , we have Y |= F if and only
if Y |= F Y . We proceed by induction. The base cases of F = ⊥ and F = A, where
A ∈ At , are evident. Let F = G∧H . If Y 6|= F , then F Y = ⊥. Thus, both sides of
the equivalence are false, and the equivalence follows. If Y |= F or Y |= F Y , then
F Y = GY ∧HY . Since
(1) Y |= F if and only if Y |= G and Y |= H , and
(2) Y |= F Y if and only if Y |= GY and Y |= HY ,

the equivalence of Y |= F and Y |= F Y follows by the induction hypothesis. The
argument for ∨ is similar. Thus, let F = G → H . If Y 6|= F , then F Y = ⊥ and
the equivalence in the assertion holds. Similarly, if Y 6|= G, then F Y = >, and
both Y |= F and Y |= F Y hold. Finally, let Y |= G and Y |= H . In this case,
F Y = G → HY . By the inductive hypothesis, Y |= HY and so, Y |= G → HY .
Thus, also in that case, both Y |= F and Y |= F Y hold. 2

It follows that FLP-stable models are indeed models of formulas and theories.
Corollary 1 Let F be a theory and Y a set of atoms. If Y is an FLP-stable model
of F , then Y is a model of F .
This result allows us to prove that on theories consisting of formulas of the form (2)
FLP-stable models defined here and stable models of Faber et al. (2004) coincide.
Thus, our approach is a generalization of the one by Faber et al.
Theorem 3 Let P be a theory consisting of formulas of type (2). Then Y is a stable
model of P according to the definition by Faber et al. (2004) if and only if Y is the
FLP-stable model, according to Definition 1.
Proof Let P be a theory consisting of formulas (2), and let Y be a set of atoms.
For a formula R = F → C1∨ . . .∨Cs from P , we denote by R′ and R′′ the reducts
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of R with respect to Y according to Faber et al., and according to our definition,
respectively. Further, we write P ′ and P ′′ for the reducts of a program P with
respect to Y according to Faber et al., and according to our definition, respectively.
Reasoning in either direction we can assume that Y is a model ofP (it is known that
stable models according to Faber et al. (2004) are models; for FLP-stable models, it
follows from Corollary 1). Thus, P ′ consists of those rules R = F → C1∨ . . .∨Cs,
for which Y |= F . In addition, it might possibly contain >. The reduct P ′′ differs
only in that each formula R = F → C1 ∨ . . . ∨ Cs from P that is retained in
P ′, contributes to P ′′ its reduct R′′ = F → C ′1 ∨ . . . ∨ C ′t, where C ′1, . . . C

′
t are

precisely those elements in {C1, . . . , Cs} that hold in Y . In addition, as P ′, P ′′ may
also contain >. It is evident, that for every Z ⊆ Y , Z |= P ′ if and only if Z |= P ′′.
Thus, Y is a minimal model of P ′ if and only if Y is a minimal model of P ′′, and
so, the result follows. 2

One of the problematic properties of the literal attempt to generalize the approach
by Faber et al. was that stable models of some theories contained atoms without
head occurrences. We will now show that our our generalization behaves properly
in this respect.
Proposition 2 Let F be a theory and Y an FLP-stable model of F . Then every
atom in Y has a head occurrence in F .
Proof First, we prove by induction that for every set S of atoms containing all
atoms with head occurrences in a formula F , and for every Z ⊆ At , if Z |= F
then Z ∩ S |= FZ . It is a stronger property than what we need below, but it is the
one for which the inductive argument can be made to work. If F = ⊥, the claim is
trivially true. If F = A, then A ∈ S. Let Z be any subset of At such that Z |= F .
Then, it follows that A ∈ Z and FZ = A. Thus, Z ∩ S |= FZ holds, as claimed.
If F = G ∧H or G ∨H , then atoms with head occurrences in G (H , respectively)
are contained in S. Thus, the induction hypothesis applies to G and H (G or H ,
respectively), and the claim follows.
Finally, let F = G → H . Since Z |= F , FZ = >, or Z |= G, Z |= H and
FZ = G → HZ . In the first case, the assertion is evident. In the latter case, we
have Z |= H . By the induction hypothesis (it can be used as all atoms with head
occurrences in H have head occurrences in F , and so they belong to S), Z ∩ S |=
HZ . Thus, Z ∩ S |= FZ in that case, too.
Next, we prove the result. Let S be the set of atoms with head occurrences in F .
Since Y is an FLP-stable model of F , Y |= FY . By Proposition 1, Y |= F . By
the claim we proved above, Y ∩ S |= FY . Since Y is a minimal model of F Y and
Y ∩ S ⊆ Y , Y ∩ S = Y and, consequently, Y ⊆ S. 2

Finally, we state and prove two properties that we use later in the paper.
Proposition 3 For every formulas F and G, and for every set of atoms Y :
(1) F Y ≡ ⊥ if and only if Y 6|= F
(2) (F ◦G)Y ≡ F Y ◦GY , where ◦ = ∧ or ∨.

Proof (1) We proceed by induction. The cases F = ⊥ and F = A, where A ∈ At ,
are straightforward. Thus, let us assume that F = G ∧ H . First, we consider the
case when Y 6|= F . In that case, F Y = ⊥ and the “if” part of the assertion follows.
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Conversely, let Y |= F . Then, Y |= G and Y |= H . By Proposition 1, Y |= GY

and Y |= HY . Thus, Y |= GY ∧HY . Since in such case F Y = GY ∧HY , it follows
that Y |= F Y and so, F Y 6≡ ⊥. Thus, the “only if” part of the equivalence holds,
too. The case of ∨ is essentially the same.
It remains to consider the case F = G→ H . For the “if” part, as before, it suffices
to notice that if Y 6|= F , then F Y = ⊥. Conversely, let Y |= F .
Case 1. Y 6|= G. Then, F Y = > and so, F Y 6≡ ⊥.
Case 2. Y |= G. Since Y |= F , Y |= H follows. Consequently, F Y = G → HY .
In addition, by Proposition 1, Y |= HY . Thus, Y |= F Y and F Y 6≡ ⊥.

(2) We consider the case ◦ = ∧ only. The case ◦ = ∨ is similar. If Y |= F ∧G then
(F ∧G)Y and F Y ∧GY are equal! Thus, let us assume that Y 6|= F ∧G. It follows
that (F ∧ G)Y = ⊥. Moreover, we have Y 6|= F or Y 6|= G. By (1), F Y ≡ ⊥ or
GY ≡ ⊥. Thus, F Y ∧GY ≡ ⊥, and the claim follows. 2

3.3 Minimal-model property

The main objective of Faber et al. (2004) was to generalize the stable-model seman-
tics to the class of theories consisting of rules of the form (2) so that stable models
would be minimal models. Faber et al. proved that their generalization indeed has
that property.
The extended FLP semantics has the minimal-model property for a broad class of
theories, including those consisting of rules (2), but not in general.
Example 6 Let F = ¬A ∨ A and Y = ∅. Since Y |= A → ⊥ and Y 6|= A,
(¬A)Y = (A → ⊥)Y = >. Moreover, AY = ⊥. Thus, F Y ≡ (¬A)Y ∨ AY ≡ >.
Clearly, Y is a minimal model of F Y and so, an FLP-stable model of F . Next, let
us consider Z = {A}. We now have (¬A)Z = (A→ ⊥)Z = ⊥ and AZ = A. Thus,
FZ ≡ (¬A)Z∨AZ ≡ A. Again, Z is a minimal model of FZ and so, an FLP-stable
model of F . Thus, FLP-stable models of F do not form an antichain and Z is not a
minimal model of F . 2

To describe a broad class of theories for which FLP-stable models are minimal
models, we introduce monotone and disjunctive-monotone formulas.
Definition 2 A formula F is monotone if for every X ⊆ Y ⊆ At , X |= F im-
plies Y |= F . A formula F is disjunctive-monotone if every occurrence of ∨ in F
operates on monotone formulas.
We note that a disjunctive-monotone formula does not have to be monotone. For
instance, A∧¬C is disjunctive-monotone (as it contains no occurrence of ∨) but not
monotone. Similarly, a monotone formula is not necessarily disjunctive-monotone.
For instance, > ∨ ¬A is monotone but not disjunctive monotone.
Proposition 4 For every disjunctive-monotone formula F and every sets of atoms
X and Y such that X ⊆ Y , if X |= F and Y |= F then X |= F Y .
Proof We proceed by induction. The case of F = ⊥ is vacuously true. If F = A,
where A is an atom, then F Y = A = F (it follows from the assumption that
Y |= A). Thus, X |= F Y (as X |= F ). For the inductive step, there are three cases
to consider.
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Case 1. F = G ∧ H . Since F is disjunctive-monotone, G and H are disjunctive-
monotone, too, and we also have X |= G, X |= H , Y |= G and Y |= H . By the
induction hypothesis, X |= GY and X |= HY . Consequently, X |= GY ∧ HY =
(G ∧H)Y = F Y .
Case 2. F = G∨H . Since X |= F , X |= G or X |= H . Without loss of generality,
we may assume that X |= G. Since F is disjunctive-monotone, G is disjunctive-
monotone. Moreover, G is monotone. Thus, Y |= G. By the induction hypothesis,
X |= GY . Since F Y = GY ∨HY , X |= F Y .
Case 3. F = G → H . Since Y |= F , F Y 6= ⊥. If F Y = > then X |= F Y = >.
If, on the other hand, Y |= G, Y |= H and F Y = G → HY , then there are two
cases to consider. If X 6|= G, then X |= F Y . If X |= G, then X |= H . Since
H is disjunctive-monotone (as F is), by induction it holds that X |= HY . Thus,
X |= F Y in that case, too. 2

Corollary 2 Let F be a theory such that every formula in F is of the form H or
G→ H , where H is disjunctive-monotone. For every X ⊆ Y ⊆ At , if X |= F and
Y |= F , then X |= FY .
Proof To prove the result, it suffices to prove it for each formula F in F . If F is
disjunctive-monotone, then the result follows from Proposition 4. If F = G→ H ,
where H is disjunctive-monotone, we reason as follows. Since Y |= F , we have
F Y = >; or Y |= G, Y |= H and F Y = G → HY . In the first case, X |= F Y

is evident. In the second case, if X 6|= G, the assertion follows. Otherwise, since
X |= F , X |= H . By Proposition 4, X |= HY follows. Consequently, X |= F Y

follows, as well. 2

Proposition 4 and Corollary 2 imply that for the class of theories of the type con-
sidered in Corollary 2, FLP-stable models are minimal.
Corollary 3 Let F be a theory such that every formula in F is of the form H or
G→ H , where H is disjunctive-monotone. If Y is an FLP-stable model of F then
Y is a minimal model of F .
Proof Since Y is a model of FY , Y is a model of F (Proposition 1). Let us assume
that X |= F and X ⊆ Y . By Corollary 2, X |= FY . Since Y is a minimal model
of FY , X = Y . Thus, Y is a minimal model of F . 2

Corollary 3 extends the result by Faber et al., as it applies in particular to theories
consisting of formulas of type (2). It can be generalized further to the case, where
each formula in a theory is of the form Hk → (Hk−1 → (. . . → (H1 → H0) . . .)),
where k ≥ 0 and H0 is disjunctive monotone. The argument is essentially the same.

3.4 Computational complexity for FLP semantics

It is well known that the truth value of a formula in an interpretation can be found
in polynomial time. It follows that given a formula and a set of atoms Y , one can
compute F Y in polynomial time by means of a simple recursive algorithm that
directly follows the definition of the reduct. Further, we have that the problem to
decide whether a model of a formula is a minimal model is in the class coNP (in
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fact, one can show it is coNP-complete). Indeed, the complementary problem, to
decide whether a given model of a formula is not a minimal one is in NP (a model
properly contained in the given one serves as a witness). Thus, the problem to
decide whether a formula has an FLP-stable model is in the class ΣP

2 . The com-
pleteness of the problem for the class ΣP

2 follows from the fact that on disjunctive
programs FLP-stable models coincide with stable models (Faber et al., 2004), and
the existence problem for stable models is ΣP

2 -complete (Eiter and Gottlob, 1995).
Consequently, deciding the existence of an FLP-stable model is ΣP

2 -complete, too.
We state that result below, together with two other related results that can be proved
by similar arguments.
Theorem 4 The problem of the existence of an FLP-stable model is ΣP

2 -complete.
Skeptical reasoning with FLP-stable models (is a given atom a member of every
FLP-stable model) is ΠP

2 -complete. Brave reasoning with FLP-stable models (is a
given atom a member of some FLP-stable model) is ΣP

2 -complete.

3.5 HT-interpretations and FLP semantics — strong equivalence

We now describe FLP-stable models in terms of HT-interpretations, and apply that
result to characterize strong equivalence with respect to the FLP semantics. First,
we define a certain satisfiability relation |=flp between HT-interpretations and for-
mulas. The definition is inductive and follows the same pattern as that for |=ht. The
cases 〈X, Y 〉 |=flp F for F = ⊥, F = A, where A ∈ At , F = G ∧H and G ∨H ,
are handled as in the case of |=ht. For the implication we have the following clause:

5′. 〈X, Y 〉 |=flp G → H if Y |= G → H; and Y 6|= G, or X 6|= G, or
〈X, Y 〉 |=flp H .

The relation |=flp extends in a standard way to HT-interpretations and sets of for-
mulas. If F is a theory and 〈X, Y 〉 |=flp F , we say that 〈X, Y 〉 is an FLP-model of
F (not to be confused with an FLP-stable model).
We have the following simple property of |=flp , mirroring a similar one for |=ht (cf.
Theorem 1).
Theorem 5 For every formula F and every sets X ⊆ Y ⊆ At:
(1) 〈X, Y 〉 |=flp F implies Y |= F
(2) 〈X, Y 〉 |=flp ¬F if and only if Y 6|= F
(3) 〈Y, Y 〉 |=flp F if and only if Y |= F .

Proof (1) The case F = ⊥ is evident. If F = A, where A ∈ At , and 〈X, Y 〉 |=flp

F , then A ∈ X . Thus, A ∈ Y and Y |= F . The inductive step for F = G ∧ H
and F = G ∨H is standard. If F = G → H and 〈X, Y 〉 |= F then, in particular,
Y |= F (by the definition of |=flp for the case of implication). Thus, the claim
follows.

(2) By the definition, 〈X, Y 〉 |=flp ¬F if and only if Y |= ¬F , and Y 6|= F or
X 6|= F or 〈X, Y 〉 |=flp ⊥. Thus, 〈X, Y 〉 |=flp ¬F if and only if Y |= ¬F and the
claim follows.

(3) We show only the argument in the inductive step for the case F = G→ H (the
basis and all other cases are straightforward). First, by the definition, if 〈Y, Y 〉 |=flp
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F then Y |= F . Conversely, if Y |= F , then Y 6|= G or Y |= H . By the induction
hypothesis, Y |= H is equivalent to 〈Y, Y 〉 |=flp H . Thus, 〈Y, Y 〉 |=flp F . 2

Similarly as the relation |=ht and the F-reduct, the |=flp relation and the FLP-reduct
are closely connected (cf. Theorem 2).
Theorem 6 For every formula F and for every two sets of atoms X ⊆ Y , X |= F Y

if and only if 〈X, Y 〉 |=flp F .
Proof We proceed by induction. The case when F = ⊥ is straightforward. Let
F = A, where A ∈ At . If X |= AY , then AY 6= ⊥. Thus, AY = A. It follows
that X |= A and so, 〈X, Y 〉 |= A. Conversely, if 〈X, Y 〉 |= A, then X |= A. Since
X ⊆ Y , Y |= A. Thus, AY = A and X |= AY as required.
Next, let F = G∧H . If X |= (G∧H)Y , then (G∧H)Y = GY ∧HY . Thus, X |= GY

and X |= HY . By the inductive hypothesis, 〈X, Y 〉 |= G and 〈X, Y 〉 |= H . Thus,
〈X, Y 〉 |= G ∧H , as needed. Conversely, let 〈X, Y 〉 |= G ∧H . Then 〈X, Y 〉 |= G
and 〈X, Y 〉 |= H and, by the inductive hypothesis, X |= GY and X |= HY . Thus,
X |= GY ∧HY . By Proposition 3, GY ∧HY ≡ (G∧H)Y . Thus, X |= (G∧H)Y .
The argument for the case F = G ∨ H is similar. Thus, we move on to the case
F = G→ H . We have the following equivalences:
(1) X |= (G→ H)Y

(2) Y 6|= G; or Y |= G and Y |= H , and X |= G→ HY

(3) Y 6|= G; or Y |= H and X |= G→ HY

(4) Y 6|= G or Y |= H; and Y 6|= G or X |= G→ HY

(5) Y |= G→ H; and Y 6|= G or X 6|= G, or X |= HY

(6) Y |= G→ H; and Y 6|= G or X 6|= G, or 〈X, Y 〉 |=flp H .
The last statement is equivalent to 〈X, Y 〉 |=flp F and the result follows. 2

Theorem 6 is the key to a characterization of FLP-stable models in terms of the
relation |=flp .
Corollary 4 Let F be a theory and Y a set of atoms. Then Y is an FLP-stable
model of F if and only if 〈Y, Y 〉 |=flp F and for every X ⊂ Y , 〈X, Y 〉 6|=flp F .
Proof By the definition, Y is an FLP-stable model of F if and only if Y |= FY

and, for every X ⊂ Y , X 6|= FY . We apply Theorem 6. The former condition is
equivalent to 〈Y, Y 〉 |=flp F . The latter one can be stated equivalently as: for every
X ⊂ Y , 〈X, Y 〉 6|=flp F . Thus, the assertion follows. 2

Example 7 Let us consider the theory E2 = {(A ∨ ¬A) → A} from Example 2.
Let Y = ∅. Then Y 6|= (A∨¬A)→ A, and so, 〈Y, Y 〉 6|=flp E2. Thus, in agreement
with our results, Y = ∅ is not an FLP-stable model of E2.
For Z = {A}, the situation is different, First, we note that now Z |= (A ∨ ¬A)→
A and 〈Z,Z〉 |=flp A (as A ∈ Z). Thus, 〈Z,Z〉 |=flp (A ∨ ¬A) → A and so,
〈Z,Z〉 |=flp E2. Clearly, X = ∅ is the only proper subset of Z and 〈X,Z〉 6|=flp

(A ∨ ¬A)→ A (indeed, we have Z |= A ∨ ¬A, X |= A ∨ ¬A and 〈X,Z〉 6|=flp A
(as A /∈ X). According to Corollary 4, {A} is an FLP-stable model of E2 (as we
already established by means of the reduct-based definition in Example 2. 2

We conclude this section with a discussion of the notion of strong FLP-equivalence.
Theories F and G are strongly FLP-equivalent if for every theory H, the theories
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F ∪H and G ∪ H have the same FLP-stable models. This is a literal adaptation of
the standard definition of strong equivalence (Lifschitz et al., 2001) to the case of
FLP-stable models.
Theorem 7 Let F and G be two formulas. Then, F and G are strongly FLP-
equivalent if and only if F and G have the same FLP-models.
Proof (⇐) For every theory H, 〈X, Y 〉 |=flp F ∪ H if and only if 〈X, Y 〉 |=flp

G ∪ H. By Corollary 4, F ∪H and G ∪ H have the same FLP-stable models.
(⇒) Let us assume that there are X ⊆ Y ⊆ At such that 〈X, Y 〉 satisfies one of F
and G but not the other. Without loss of generality, we may assume that 〈X, Y 〉 |=flp

F and 〈X, Y 〉 6|=flp G. By Theorem 6, it follows that X |= FY and X 6|= GY . The
first property implies that FY 6≡ ⊥. Consequently, by Proposition 3, Y |= F . By
Proposition 1, Y |= FY .

Case 1. Y 6|= GY . It follows that 〈Y, Y 〉 6|=flp G. Thus, Y 6|= G and for every H,
Y 6|= G∪H. Thus, Y is not an FLP-stable model of G∪H. Let us now defineH = Y .
We have (F∪H)Y ≡ FY ∪HY . Moreover,HY = H. Thus, (F∪H)Y ≡ FY ∪H. It
follows that (a) Y |= (F∪H)Y , and (b) there is no X ⊂ Y such that X |= (F∪H)Y .
Thus, Y is an FLP-stable model of F ∪ H. As we noted, Y is not an FLP-stable
model of G ∪ H. Thus, F and G are not strongly FLP-equivalent, a contradiction.

Case 2. Y |= GY . We recall that X 6|= GY . Thus, X ⊂ Y . We define

H = X ∪ {A→ B |A,B ∈ Y \X}.

We have (F ∪H)Y ≡ FY ∪HY , Moreover, it is easy to check thatHY = H. Thus,
(F ∪ H)Y ≡ FY ∪ H. We recall that X |= FY . We also have X |= H. Thus,
X |= (F ∪ H)Y and so, Y is not an FLP-model of F ∪ H. Since (G ∪ H)Y ≡
GY ∪ H, Y |= GY , and Y |= H, we have Y |= (G ∪ H)Y . Let Z ⊂ Y be such that
Z |= GY ∪H. Since Z |= H, Z = X . However, X 6|= GY , a contradiction. Thus, Y
is a minimal model of (G ∪ H)Y and so a stable model of G ∪ H. This contradicts
our assumption that F and G are FLP-equivalent. Consequently, F and G have the
same FLP-models. 2

4 Normal forms and a comparison with stable-model semantics

The following result was obtained by Cabalar and Ferraris (2007). It concerns rep-
resenting theories by programs — theories consisting of rules (formulas of the form
(1)).
Theorem 8 For every theory F there is a program G (in the same language) such
that F and G have the same HT-models (are equivalent in the logic HT).
In other words, every theory F is strongly equivalent to some program G. A similar
result holds for the FLP-models and, in fact, it can be obtained by means of a
very similar argument to that used by Cabalar and Ferraris (2007). In what follows
we write ¬Y for {¬y | y ∈ Y }. We first state and prove three auxiliary results
(analogous to results proved by Cabalar and Ferraris (2007) for HT-countermodels).
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Proposition 5 Let X ⊂ Y ⊆ Z be finite. Then 〈U, V 〉, where U ⊆ V ⊆ Z, is an
FLP-countermodel of

∧
X ∧∧¬Y → ∨

X ∨∨¬Y (where the set complements X
and Y are defined with respect to Z) if and only if U = X and V = Y .
Proof Let us denote

∧
X ∧ ∧¬Y → ∨

X ∨ ∨¬Y by F . Since Y \X 6= ∅, there
is a ∈ Y \X . It follows that a ∨ ¬a is a subformula of

∨
X ∨ ∨¬Y . Thus, F is a

propositional tautology.
Let us consider a pair 〈U, V 〉, where U ⊆ V . Due to the observation above, 〈U, V 〉
is an FLP-countermodel of F if and only if

V |=
∧

X ∧
∧
¬Y , U |=

∧
X ∧

∧
¬Y , and 〈U, V 〉 6|=flp

∨
X ∨

∨
¬Y.

Moreover, from the definition, one can check that 〈U, V 〉 6|=flp
∨
X ∨ ∨¬Y if and

only if U 6|= ∨
X and V 6|= ∨¬Y .

Now, since U |= ∧
X and U 6|= ∨

X , X ⊆ U and U ∩X = ∅. Thus, U = X . Since
V |= ∧¬Y and V 6|= ∨¬Y , V ⊆ Y and Y ⊆ V . Thus, V = Y .
Conversely, if U = X and V = Y then V |= ∧

X ∧ ∧¬Y , U |= ∧
X ∧ ∧¬Y ,

U 6|= ∨
X and V 6|= ∨¬Y . Thus, 〈U, V 〉 is an FLP-countermodel of F . 2

Proposition 6 Let Y ⊆ Z be finite. Then 〈U, V 〉, where U ⊆ V ⊆ Z, is an FLP-
countermodel to

∧
Y ∧ ∧¬Y → ⊥ (where the set complement Y is defined with

respect to Z) if and only if V = Y .
Proof By the definition, 〈U, V 〉 is an FLP-countermodel to Y ∧ ∧¬Y → ⊥ if and
only if (1) V |= Y ∧∧¬Y , or (2) V |= Y ∧∧¬Y and U |= Y ∧∧¬Y . The condition
(1) is equivalent to V = Y . The condition (2) is equivalent to U = V = Y . Thus
the disjunction of the two conditions is equivalent to V = Y , as required. 2

Proposition 7 Let F be a formula. If 〈Y, Y 〉 is an FLP-countermodel of F , then
for every X ⊆ Y , 〈X, Y 〉 is an FLP-countermodel of F .
Proof If 〈Y, Y 〉 is an FLP-countermodel of F , then Y 6|= F Y (Theorem 6) and
so, Y 6|= F (Proposition 1). Consequently, by Theorem 5, 〈X, Y 〉 is an FLP-
countermodel of F . 2

Theorem 9 Let F be a theory. There exists a program G such that F and G have
the same FLP-models.
Proof For F ∈ F , we consider FLP-countermodels 〈X, Y 〉 of F such that Y ⊆
At(F ). For each FLP-countermodel 〈X, Y 〉 with X 6= Y , we take the formula
defined in Proposition 5 (with Z = At(F )). For each countermodel 〈X, Y 〉 such
that X = Y , we take the formula from Proposition 6. We take for G the set of all
rules constructed in that way from countermodels of formulas in F . By Proposition
7, F and G have the same FLP-countermodels consisting of atoms in At(F) and
so, the same FLP-models consisting of atoms in At(F). Thus, they have the same
FLP-models. 2

We saw (Examples 1-2 and 4-5) that the semantics of stable and FLP-stable mod-
els are different and neither is stronger than the other one. However, each can be
expressed in terms of the other one. To see that, we first observe that HT- and FLP-
models of rules coincide.
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Proposition 8 Let R be a rule. Then, R has the same HT- and FLP-models.
Proof Let R =

∧
A∧∧¬B → ∨

C∨∨¬D. Directly from the definition, it follows
that 〈X, Y 〉 |=ht R if and only if Y |= R; and X ∩ A = ∅ or B ⊆ Y or C ⊆ X or
Y ∩D = ∅.
Similarly, 〈X, Y 〉 |=flp R if and only if Y |= R; and X ∩ A = ∅ or B ⊆ X or
Y ∩ A = ∅ or B ⊆ Y or C ⊆ X or Y ∩D = ∅. Since X ∩ A = ∅ or Y ∩ A = ∅
if and only if X ∩ A = ∅, and B ⊆ X or B ⊆ Y if and only if B ⊆ Y , the result
follows. 2

Theorems 8 and 9 yield now the following two corollaries relating the two seman-
tics.
Corollary 5 For every theory F there are programs Fht and Fflp such that
(1) 〈X, Y 〉 is an HT-model of F if and only if 〈X, Y 〉 is an FLP-model of Fht

(2) 〈X, Y 〉 is an FLP-model of F if and only if 〈X, Y 〉 is an HT-model of Fflp

Proof It is enough to take for Fht and Fflp programs guaranteed by Theorems 8
and 9, respectively. 2

Thus the meaning of any theory F under HT-models is captured by FLP-models of
the normal form Fht of F that is assured by Theorem 8. Similarly, the meaning of
any theory F under FLP-models is captured by HT-models of the normal form Fflp

of F given by Theorem 9. As another corollary we state a result relating stable and
FLP-stable models of F , Fht and Fflp.
Corollary 6 For every theory F:
(1) Y is a stable model of F if and only if Y is an FLP-stable model of Fht

(2) Y is an FLP-stable model of F if and only if Y is a stable model of Fflp

We mention that recently Lee and Meng (2009) obtained a result related to Corol-
lary 6(2) but restricted to formulas that are programs with aggregates. Namely, they
showed that a program, say F , as considered by Faber et al. (2004) (and so, pos-
sibly with aggregates in the bodies of rules), can be compiled into propositional
formula FLP (F) so that FLP-stable answer sets of P correspond to stable models
of FLP (F).
We close by pointing out a drawback of the FLP semantics. Namely, the operator
of ↔ does not function, in general, as the operator of explicit definition. 2 For
instance, if we introduce a new atom B, then the theory E ′1 = {¬B → A,¬A↔ B}
(we obtain it from E1 by replacing¬A with B and adding the “definition”¬A↔ B)
has two FLP-stable models, {B} and {A}, while the original theory E1 has only one
FLP-stable model, {A} (and, in particular, no counterpart to the stable model {B}).

5 Supported models

The approach that yielded generalizations of stable and FLP-stable model seman-
tics for arbitrary propositional theories can also be applied to the supported-model
semantics.

2 This aspect of the FLP semantics was pointed out by one of the reviewers.
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5.1 The reduct for the supported-model semantics

For a formula F and a set of atoms X , we define the SPP-reduct of F with respect
to Y , written as F Y , by adapting to the new notation the inductive clauses (R1) -
(R3), and using the following definition for the implication:

SPP4.
(G→ H)Y =


HY if Y |= G and Y |= H

> if Y 6|= G

⊥ otherwise.

This notion of reduct is motivated by the definition of supported models in the
case of programs with disjunctive rules (Brass and Dix, 1997; Inoue and Sakama,
1998). We recall that definition. Let P be a disjunctive program. The supp-reduct
of P with respect to a set of atoms Y , P (Y ), is the set of the heads of those rules
in P whose body is satisfied by Y . A set of atoms Y is a supported model of P if
Y is a minimal model of P (Y ).
The basic idea behind P (Y ) is to drop the antecedent of a rule if the antecedent is
satisfied by Y . We adopt that idea in the definition of the SPP-reduct. However, in
the first case of the definition, we set the reduct (G → H)Y to be HY rather than
H due to the same reasons we discussed when generalizing the FLP-reduct. With
the definition of the reduct in hand, the definition of a supported model is standard.
Definition 3 Let F be a theory. A set of atoms Y is a supported model of F if Y is
a minimal model of FY .
Example 8 We will one more time consider theories E1 = {¬¬A → A} and
E2 = {(A ∨ ¬A) → A} from Examples 1 and 2, respectively. First, let Y = ∅.
Clearly, we have Y 6|= ¬¬A. Thus, EY1 = >. It follows that Y |= E1 and, as Y = ∅,
Y is a supported model of E1 being trivially a minimal model of EY1 . On the other
hand, Y 6|= (A ∨ ¬A)→ A. Thus, EY2 = ⊥ and Y is not a supported model of E2.
Next, let Z = {A}. Then, Z |= ¬¬A and Z |= A. Thus, EZ1 = (¬¬A → A)Z =
AZ = A. It follows that Z is a supported model of E1. Similarly, Z |= (A ∨ ¬A)

and Z |= A. Thus, EZ2 = ((A ∨ ¬A) → A)Z = AZ = A, and Z is a supported
model of E2, too. 2

The results and the proofs that worked in the case of stable and FLP semantics
work, with only minor changes (and with one exception) in the case of supported
models, too. We start by gathering in one result several basic properties of the SPP-
reduct and supported models.
Proposition 9 For every theory F and every set of atoms Y :
(1) Y |= F if and only if Y |= FY

(2) Y |= F if and only if FY 6≡ ⊥
(3) If Y is a supported model of F , then Y is a model of F
(4) If Y is a supported model of F , then every atom in Y has a head occurrence

in F .
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Proof (1) It is enough to consider the case when F consists of a single formula
F . We proceed by structural induction. The base cases of F = ⊥ and F = A,
where A ∈ At , are straightforward. Let us consider F = G ∧ H . If Y 6|= F , then
F Y = ⊥. Thus, both sides of the equivalence are false, and the equivalence follows.
If Y |= F , then F Y = GY ∧ HY . By the definition and the inductive hypothesis,
the following statements are equivalent:

Y |= F
Y |= G ∧H
Y |= G and Y |= H
Y |= GY and Y |= HY

Y |= GY ∧HY

Y |= F Y .
Thus, again the required equivalence holds. The argument for ∨ is similar. Let then
F = G→ H . If Y 6|= F , then F Y = ⊥ and the equivalence in the assertion holds.
Similarly, if Y 6|= G, then F Y = >, and both Y |= F and Y |= F Y hold. Finally,
let us assume that Y |= G and Y |= H . In this case, F Y = HY . By the inductive
hypothesis, Y |= HY and so, Y |= F Y . Thus, also in that case, both Y |= F and
Y |= F Y hold.

(2) As before, it is enough to consider the case when F consists of a single formula
F . If Y |= F then (1) implies that F Y 6≡ ⊥. We prove the converse implication by
induction. If F = ⊥, then the implication is trivially true. If F = A, where A is
an atom, then F Y = A (as the assumption excludes the only other possibility that
F Y 6= ⊥). It follows that A ∈ Y and so, Y |= F . Next, let F = G ∧ H . Since
F Y 6≡ ⊥, F Y = GY ∧ HY . Moreover, GY 6≡ ⊥ and HY 6≡ ⊥. By the induction
hypothesis, Y |= G and Y |= H . Thus, Y |= F . The case F = G ∨ H is similar.
Finally, if F = G → H , we have that either Y 6|= G, or Y |= G, Y |= H and
F Y = HY . In either case, Y |= F .

(3) Follows from (1) and from the definition of a supported model.

(4) We first show that for every formula F and every set of atoms S containing all
atoms with head occurrences in F , if Y ⊆ At and Y |= F then Y ∩ S |= F Y . We
proceed by induction. If F = ⊥, the claim is trivially true. If F = A, then A ∈ S.
If Y |= F , then A ∈ Y and F Y = A. Thus, the claim follows. If F = G ∧ H
or G ∨ H , then Y |= G and (or, respectively) Y |= H . Moreover, atoms with
head occurrences in G are contained in S and the same holds for H . Thus, the
induction hypothesis applies to G and H . Consequently, we have Y ∩ S |= G and
(or, respectively) Y ∩ S |= H , and the claim follows.
Finally, let F = G → H . Since Y |= F , F Y = >, or Y |= G, Y |= H and F Y =
HY . In the first case, the assertion is evident. In the latter case, we have Y |= H . By
the induction hypothesis (it applies, as every atom with a head occurrence in H has
a head occurrence in F and so, it belongs to S), Y ∩ S |= HY . Thus, Y ∩ S |= F Y

in that case, too.
We are ready to prove the assertion (4). Let S be the set of atoms with head occur-
rences in F . Since Y is a supported model of F , Y |= F Y . By (1), Y |= F . Thus,
by the property proved above, Y ∩ S |= FY . Since Y is a minimal model of F Y ,
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and Y ∩ S ⊆ Y , Y ∩ S = Y . Consequently, Y ⊆ S. 2

We now observe that our concept of a supported model indeed generalizes that of a
disjunctive program (Brass and Dix, 1997).
Theorem 10 Let P be a disjunctive program. Then, Y ⊆ At is a supported model
of P according to our definition if and only if Y is a supported model according to
the original definition of supported models of disjunctive logic programs.
Proof If Y is a supported model according to either definition, Y is a model of
P . Using this observation, as well as the definitions of the corresponding reducts,
one can show that H1 ∨ . . . ∨ Hk ∈ P Y if and only if k ≥ 1 and there are atoms
Hk+1, . . . , Hm such that Hi /∈ Y , k + 1 ≤ i ≤ m, and H1 ∨ . . . ∨ Hk ∨ Hk+1 ∨
. . . ∨ Hm ∈ P (Y ). Let us assume that Y is a supported model of P according
to the original definition. It follows that Y is a minimal model of P (Y ). By the
observation above, Y is a model of P Y . If Z ⊆ Y is a model of P Y , then Z is
a model of P (Y ) (again, by the observation above, we have that P Y classically
entails P (Y )). Thus, Z = Y and Y is a minimal model of P Y . Consequently, Y is
a supported model of P according to our definition.
Conversely, let Y be a supported model of P according to our definition. Then, Y is
a minimal model of P Y . Since P Y classically entails P (Y ), Y is a model of P (Y ).
Let Z ⊆ Y be a model of P (Y ). Let H1 ∨ . . . ∨ Hk ∈ P Y . By the observation
above, there are atoms Hk+1, . . . , Hm such that Hi /∈ Y , k + 1 ≤ i ≤ m, and
H1 ∨ . . .∨Hk ∨Hk+1 ∨ . . .∨Hm ∈ P (Y ). It follows that Hi /∈ Z, k + 1 ≤ i ≤ m.
Since Z is a model of P (Y ), it follows that Z is a model of H1 ∨ . . .∨Hk. Thus, Z
is a model of P Y and, consequently, Z = Y . Thus, Y is a minimal model of P (Y )
and so, a supported model of P according to the original definition. 2

5.2 HT-interpretations and supported models

Next, we characterize supported models in terms of a certain satisfiability relation
that connects HT-interpretations and formulas. It follows closely the definitions of
|=ht and |=flp but is modified for the case of the implication.

5′′. 〈X, Y 〉 |=spp G→ H if Y |= G→ H , and Y 6|= G or 〈X, Y 〉 |=spp H .
If 〈X, Y 〉 |=spp F , we say that 〈X, Y 〉 is an SPP-model of F .

Our next result gathers together some simple properties of the relation |=spp that
mirror those of |=ht and |=flp .
Theorem 11 For every formula F and every sets X ⊆ Y ⊆ At:
(1) 〈X, Y 〉 |=spp F implies Y |= F
(2) 〈X, Y 〉 |=spp ¬F if and only if Y 6|= F
(3) 〈Y, Y 〉 |=spp F if and only if Y |= F .

Proof (1) We proceed by induction. The claim is evident for F = ⊥. If F = A,
where A is an atom, 〈X, Y 〉 |=spp F implies that A ∈ X . Thus, A ∈ Y and Y |= F .
If F = G∧H , then 〈X, Y 〉 |=spp F implies 〈X, Y 〉 |=spp G and 〈X, Y 〉 |=spp H . By
the induction hypothesis, Y |= G and Y |= H . Thus, Y |= G∧H and, consequently,
Y |= F . The case F = G∨H is similar. Finally, let F = G→ H . By the definition,
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if 〈X, Y 〉 |=spp F then Y |= F . Thus, the result follows.

(2) By the definition, 〈X, Y 〉 |=spp ¬F if and only if Y |= ¬F and Y 6|= F . Thus,
the claim follows.

(3) The argument is similar. The inductive step for the case F = G → H (the
basis and all other cases are straightforward) is as follows. First, by the definition,
if 〈Y, Y 〉 |=spp F then Y |= F . Conversely, if Y |= F , then Y 6|= G or Y |= H . By
the induction hypothesis, Y 6|= G or 〈Y, Y 〉 |=spp H . Since Y |= F (= G → H),
〈Y, Y 〉 |=spp F follows. 2

The following result is analogous to similar results for |=ht and |=flp , and ties the
SPP-reduct and the relation |=spp (cf. Theorems 2 and 6).
Theorem 12 For every theoryF and for every two sets of atoms X ⊆ Y , X |= FY

if and only if 〈X, Y 〉 |=spp F .
Proof It is enough to prove the result for a single formula F . We proceed by in-
duction. The case when F = ⊥ is straightforward. Let F = A, where A ∈ At .
If X |= AY , then AY 6= ⊥. Thus, AY = A. It follows that X |= A and so,
〈X, Y 〉 |=spp A. Conversely, if 〈X, Y 〉 |=spp A, then X |= A. Since X ⊆ Y ,
Y |= A. Thus, AY = A and X |= AY as required.
Next, let F = G∧H . If X |= (G∧H)Y , then (G∧H)Y = GY ∧HX . Thus, X |= GY

and X |= HY . By the inductive hypothesis, 〈X, Y 〉 |=spp G and 〈X, Y 〉 |=spp H .
Thus, 〈X, Y 〉 |=spp G ∧ H , as needed. Conversely, let 〈X, Y 〉 |=spp G ∧ H . Then
〈X, Y 〉 |=spp G and 〈X, Y 〉 |=spp H . By the inductive hypothesis, we have X |=
GY and X |= HY . Thus, X |= GY ∧ HY . Clearly, GY 6≡ ⊥ and HY 6≡ ⊥. By
Proposition 9(2), Y |= G and Y |= H . Thus, Y |= G ∧ H and so, (G ∧ H)Y =
GY ∧HY . Hence, X |= (F ∧G)Y .
The argument for the case F = G∨H is similar. And so, let us move on to the case
F = G→ H . We have the following equivalences:

X |= (G→ H)Y

Y 6|= G; or Y |= G and Y |= H , and X |= HY

Y 6|= G; or Y |= H and X |= HY

Y 6|= G or Y |= H; and Y 6|= G or X |= HY

Y |= G→ H; and Y 6|= G or 〈X, Y 〉 |=spp H
〈X, Y 〉 |=spp F .

Thus, the result follows. 2

The main consequence of Theorem 12 is a characterization of supported models in
terms of the relation |=spp.
Corollary 7 Let F be a theory and Y a set of atoms. Then Y is a supported model
of F if and only if 〈Y, Y 〉 |=spp F and for every X ⊂ Y , 〈X, Y 〉 6|=spp F .
Proof By the definition, Y is a supported model of F if and only if Y |= F Y , and
for every X ⊂ Y , X 6|= F Y . We now apply Theorem 12. The former condition is
equivalent to 〈Y, Y 〉 |=spp F . The latter one is equivalent to the property that for
every X ⊂ Y , 〈X, Y 〉 6|=spp F . Thus, the assertion follows. 2
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5.3 Strong equivalence with respect to supported models

We will now study the strong equivalence of theories with respect to the supported-
model semantics. Two theories F and G are strongly SPP-equivalent if for every
theory H, F ∪ H and G ∪ H have the same supported models. Corollary 7 im-
plies that if F and G have the the same SPP-models then they are strongly SPP-
equivalent. Unlike in the case of stable or FLP-stable semantics, though, that condi-
tion is not necessary. A weaker condition provides a characterization of strong SPP-
equivalence. An SPP-model is essential if it is of the form 〈Y, Y 〉 or 〈Y \ {A}, Y 〉,
where A ∈ At . Having the same essential SPP-models is sufficient and necessary
for F and G to be strongly SPP-equivalent. To prove it, we need a simple auxiliary
property.
Proposition 10 For every formula F and for every interpretation Y , F Y is mono-
tone.
Proof Clearly, if F = ⊥, F Y is trivially monotone. If F = A, where A ∈ At and
X |= F Y , then F Y = A and A ∈ X . Thus, for every Z, if X ⊆ Z, Z |= F Y .
Let us assume that F = G ∧ H and that X |= F Y . Since F Y = GY ∧ HY (we
note that F Y 6= ⊥), X |= GY and X |= HY . Let Z be an interpretation such that
X ⊆ Z. By the induction hypothesis, Z |= GY and Z |= HY . Thus, Z |= GY ∧HY

and so, Z |= F Y . The case of F = G ∨H is similar.
Finally, let us assume that F = G→ H and that X |= F Y . It follows that F Y = >
or F Y = HY . Clearly, if F Y = > then for every interpretation Z such that X ⊆ Z,
Z |= F Y . If F Y = HY , then X |= HY and, by the induction hypothesis, for every
interpretation Z such that X ⊆ Z, Z |= HY . Thus, in either case, if X ⊆ Z, then
Z |= F Y . 2

We now have the following characterization of strong SPP-equivalence. Unlike the
one developed for programs (Truszczyński and Woltran, 2008), where the general
case is established through a certain reduction to normal programs, the present
characterization is direct.
Theorem 13 Let F and G be two theories. Then, F and G are strongly SPP-
equivalent if and only if F and G have the same essential SPP-models.
Proof (⇒) Let 〈Y, Y 〉 be an essential SPP-model of F . It follows that Y |=
FY ∪ Y = (F ∪ Y )Y . Moreover, Y is a minimal model of FY ∪ Y = (F ∪ Y )Y .
Consequently, Y is a supported model of F ∪ Y . By the assumption, Y is a sup-
ported model of G ∪Y . Thus, Y is a model of G and so, by Proposition 9, Y |= GY .
By Theorem 12, it follows that 〈Y, Y 〉 is an SPP-model of G.
Next, let 〈Y \{a}, Y 〉 be an essential SPP-model ofF . It follows that Y \{a} |= FY .
By Proposition 10, Y |= FY . Thus, 〈Y, Y 〉 is an SPP-model of F . By the argument
given above, 〈Y, Y 〉 is an SPP-model of G. By Proposition 9, Y |= GY . Thus, Y |=
GY ∪ (Y \{a}) = (G ∪ (Y \{a}))Y . Let us assume that 〈Y \{a}, Y 〉 is not an SPP-
model of G. Then, Y \ {a} 6|= GY . Since every model of (G ∪ (Y \ {a}))Y = GY ∪
(Y \{a}) contains Y \{a}, and Y \{a} 6|= GY , it follows that Y is a minimal model
of (G ∪ (Y \{a}))Y . Thus, Y is a supported model of G ∪ (Y \{a}). Consequently,
it is a supported model of F ∪ (Y \ {a}). But Y \ {a} |= (F ∪ (Y \ {a}))Y , a
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contradiction. Thus, 〈Y \ {a}, Y 〉 is an SPP-model of G. By symmetry, it follows
that essential SPP-models of F and G coincide.
(⇐) LetH be any theory and let Y be a supported model of F ∪H. It follows that
〈Y, Y 〉 is an SPP-model of F and ofH. By the assumption, 〈Y, Y 〉 is an SPP-model
of G and ofH. Thus, 〈Y, Y 〉 |=spp G ∪H. Let X ⊂ Y be such that X |= (G ∪H)Y .
It follows that X |= GY and X |= HY . Let a ∈ Y \ X (such an a exists). Then,
by Proposition 10, Y \ {a} |= GY and Y \ {a} |= HY . Thus, 〈Y \ {a}, Y 〉 is an
SPP-model of G and so, of F . It follows that Y \{a} |= FY and, consequently, that
Y \{a} |= FY ∪HY ≡ (F∧H)Y . This is a contradiction with Y being a supported
model of F ∪H. Thus, Y is a minimal model of (G ∪H)Y and so, Y is a supported
model of G ∪H. By symmetry, F ∪H and G ∪H have the same supported models.
Thus, they are strongly SPP-equivalent. 2

5.4 Complexity of reasoning with supported models

It turns out that, as in the case of disjunctive logic programs, reasoning with sup-
ported models is easier (assuming the polynomial hierarchy does not collapse) than
reasoning with stable or FLP-stable models. Namely, we have the following result.
Theorem 14 The problem of the existence of a supported model is NP -complete.
Skeptical reasoning with supported models is coNP -complete. Brave reasoning
with supported models is NP -complete.
Proof Given a theory F and a set of atoms Y , Y is a minimal model of F Y if
and only if Y |= F Y and for every a ∈ Y , Y \ {a} 6|= F Y (by the monotonic-
ity of F Y , cf. Proposition 10). Since F Y can be computed in polynomial time, it
follows that the problem of the existence of a supported model of a theory F is in
the class NP. The membership of the other two problems in their respective classes
can also be established as a consequence of the observation that the problem of
checking whether a set of atoms Y is a supported model of a theory F is in the
class P. The hardness part follows in each case from the well-known hardness of
the corresponding problems under the restriction to normal programs. For the sake
of completeness, we will outline here a proof that the problem of the existence of
a supported model of a normal program is NP-hard. To this end, we note that by
the Fages Lemma (Fages, 1994), for normal programs without positive atoms in
the bodies of rules, stable and supported models coincide. The problem of the ex-
istence of a stable model for such programs is NP-complete (the construction used
by Marek and Truszczyński (1991), demonstrates that). Thus, the problem of the
existence of a supported model for such programs is NP-complete, too and, conse-
quently, the NP-hardness of the problem for arbitrary normal programs follows.
2

5.5 Normal form result for the supported-model semantics

As in the other two cases, also for the supported-model semantics every theory has
a normal form. However, now it is given by even simpler formulas — conjunctions
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of normal rules. We start by stating several simple properties concerning the equiv-
alence of formulas with respect to SPP-models. We say that two formulas F and G
are SPP-equivalent, denoted F ≡spp G, if they have the same SPP-models.
Proposition 11 For every formulas F , G and H:
(1) F → G ≡spp ¬F ∨G
(2) ¬(F ∨G) ≡spp ¬F ∧ ¬G
(3) ¬(F ∧G) ≡spp ¬F ∨ ¬G
(4) F ∧ (G ∨H) ≡spp (F ∧G) ∨ (F ∧H)
(5) F ∨ (G ∧H) ≡spp (F ∨G) ∧ (F ∨H)
(6) ¬¬¬F ≡spp ¬F .
(7) ¬> ≡spp ⊥ and ¬⊥ ≡spp >
(8) F ∧ ⊥ ≡spp ⊥ and F ∨ ⊥ ≡spp F
(9) F ∧ > ≡spp F and F ∨ > ≡spp >

(10) F ◦ F ≡spp F , for ◦ = ∧ and ∨
Proof (1) If 〈X, Y 〉 |=spp F → G then Y 6|= F or 〈X, Y 〉 |=spp G. We recall that
〈X, Y 〉 |=spp ¬F if and only if Y 6|= F (Theorem 11(2)). Thus, 〈X, Y 〉 |=spp ¬F or
〈X, Y 〉 |=spp G and so, 〈X, Y 〉 |=spp ¬F ∨G. Conversely, if 〈X, Y 〉 |=spp ¬F ∨G
then Y |= ¬F ∨ G (Theorem 11(1)) and, consequently, Y |= F → G. Moreover,
〈X, Y 〉 |=spp ¬F or 〈X, Y 〉 |=spp G. Thus, Y 6|= F or 〈X, Y 〉 |=spp G (again by
Theorem 11(2)), and the claim follows.

The properties (2) and (3) follow by Theorem 11(2) and the corresponding prop-
erties of equivalence in propositional logic. For instance, 〈X, Y 〉 |=spp ¬(F ∨ G)
if and only if Y 6|= F ∨ G (Theorem 11(2)). The latter condition is equivalent to
Y 6|= F and Y 6|= G. This conjunction, in turn, is equivalent to 〈X, Y 〉 |=spp ¬F
and 〈X, Y 〉 |=spp ¬G (Theorem 11(2), again). Thus, 〈X, Y 〉 |=spp ¬(F ∨G) if and
only if 〈X, Y 〉 |=spp ¬F ∧ ¬G, which implies (2).
The properties (4) and (5) follow from the inductive definition of |=spp for the
connectives ∧ and ∨. For instance, 〈X, Y 〉 |=spp F ∧ (G ∨ H) if and only if
〈X, Y 〉 |=spp F and 〈X, Y 〉 |=spp G ∨ H . The latter condition can be equiva-
lently restated as 〈X, Y 〉 |=spp F , and 〈X, Y 〉 |=spp G or 〈X, Y 〉 |=spp H , or as
〈X, Y 〉 |=spp F and 〈X, Y 〉 |=spp G, or 〈X, Y 〉 |=spp F and 〈X, Y 〉 |=spp H .
Using the inductive definition of |=spp for the connectives ∧ and ∨, we get that
〈X, Y 〉 |=spp F ∧ (G ∨ H) if and only if 〈X, Y 〉 |=spp (F ∧ G) ∨ (F ∧ H), thus
proving (4).
The property (6) follows from Theorem 11(2), and the property (7) from the defi-
nitions of the shorthands > and ¬, and from the definition of |=spp. The remaining
three properties follow from the inductive definition of |=spp for the connectives ∧
and ∨ and the facts that ⊥ has no SPP-models and > is satisfied by every SPP-
model. 2

The normal form result is now a consequence of Proposition 11 and Theorem 13.
Theorem 15 Let F be a theory. Then there is a program G consisting of normal
rules such that F and G have the same essential SPP-models (and so, are strongly
SPP-equivalent and have the same supported models).
Proof It is enough to prove that for every formula F there is a program consisting
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of normal rules that has the same essential SPP-models as F . Let us consider the
following transformation of F . First, we replace in F every subformula G → H
with ¬G ∨H (Proposition 11(1). Then, we proceed as in the case of propositional
logic when constructing a CNF representation of the formula, using De Morgan
Laws (Proposition 11(2) and (3)) to move negation in, then using the “triple nega-
tion” law (Proposition 11(4)), distributivity properties (Proposition 11(5) and (6)),
and simplification rules (Proposition 11(7)-(10)). When that process ends, we split
the resulting conjunction into the set of its conjuncts — disjunctions that are of the
form

C1 ∨ . . . ∨ Ck ∨ ¬A1 ∨ . . . ∨ ¬Am ∨ ¬¬B1 ∨ . . . ∨ ¬¬Bn, (3)
where Ai, Bi, and Ci are atoms. By Proposition 11, the set of these formulas has
the same SPP-models as the original formula F . Thus, it is strongly SPP-equivalent
to F .
Next, we note that if k ≥ 2, then formulas

C1 ∨ . . . ∨ Ck ∨G

and
k∧

i=1

(Ci ∨ ¬¬C1 ∨ . . . ∨ ¬¬Ci−1 ∨ ¬¬Ci+1 ∨ . . . ∨ ¬¬Ck ∨G),

where Ci are atoms and G is a formula, have the same essential models and, conse-
quently, they are strongly SPP-equivalent. Thus, each disjunction (3) can be rewrit-
ten into a strongly SPP-equivalent set of disjunctions:

Ci ∨ ¬¬C1 ∨ . . . ∨ ¬¬Ci−1 ∨ ¬¬Ci+1 ∨ . . . ∨ ¬¬Ck∨
¬A1 ∨ . . . ∨ ¬Am ∨ ¬¬B1 ∨ . . . ∨ ¬¬Bn,

where 1 ≤ i ≤ k.
By Proposition 11(3) and (1), each such disjunction can be written as an SPP-
equivalent normal rule

A1∧ . . .∧Am∧¬B1∧ . . .∧¬Bn∧¬C1∧ . . .∧¬Ci−1∧¬Ci+1∧ . . .∧¬Ck → Ci,

1 ≤ i ≤ k. Thus, the assertion follows. 2

5.6 Relationships

Finally, we will study the relationship between the semantics given by relations |=ht

and |=flp , on the one hand, and |=spp, on the other. To this end, we observe first that
SPP-models are HT-models and FLP-models.
Proposition 12 For every formula F and every X ⊆ Y ⊆ At:
(1) 〈X, Y 〉 |=spp F implies 〈X, Y 〉 |=ht F
(2) 〈X, Y 〉 |=spp F implies 〈X, Y 〉 |=flp F .

Proof We proceed by induction. Both for (1) and (2), the base case and the induc-
tive step for F = G ◦H , where ◦ = ∨ and ∧, follow from the observation that the
corresponding conditions defining the relations |=spp, |=ht and |=flp are the same.
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Let us consider F = G→ H . Let us assume that 〈X, Y 〉 |=spp F . It follows that

Y |= G→ H; and Y 6|= G or 〈X, Y 〉 |=spp H. (4)

We know that Y 6|= G implies 〈X, Y 〉 6|=ht G (Ferraris and Lifschitz, 2005). Com-
bining that with the induction hypothesis, we obtain from (4) that Y |= G → H;
and 〈X, Y 〉 6|=ht G or 〈X, Y 〉 |=ht H . Thus, 〈X, Y 〉 |=ht G→ H follows.
It also follows from (4) that Y |= G → H; and Y 6|= G or 〈X, Y 〉 |=spp H
or X 6|= G (we have added one more disjunct to the second conjunct). By the
induction hypothesis, that new disjunction implies Y 6|= G or 〈X, Y 〉 |=flp H or
X 6|= G. Consequently, 〈X, Y 〉 |=flp G→ H follows. 2

As a corollary, we now obtain that, as in the case of disjunctive logic program-
ming, stable models (both under the standard and FLP generalizations) are sup-
ported models.
Theorem 16 For every theory F and every set of atoms Y , if Y is a stable model
of F or Y is an FLP-stable model of F , then Y is a supported model of F .
Proof The proof is the same in both cases. Thus, we show the argument in the first
case only. Let Y be a stable model of F . It follows that 〈Y, Y 〉 |=ht F . Conse-
quently, Y |= F (cf. Theorem 1) and so, 〈Y, Y 〉 |=spp F (by Theorem 11). Let us
assume that X ⊆ Y and 〈X, Y 〉 |=spp F . Then 〈X, Y 〉 |=ht F (Proposition 12).
Since Y is a stable model of F , X = Y . Thus, Y is a supported model of F . 2

In general, the implications in Proposition 12 cannot be reversed. However, in the
case of the relation |=ht, we can find a broad class of formulas for which the con-
verse implication holds, too. The key is the following result that exhibits a class of
formulas, for which the relation |=ht reduces to the standard propositional entail-
ment. Before we state it, we recall that an occurrence of an atom A in a formula is
directly under the scope of ¬, if it is the antecedent in the subformula A→ ⊥.
Proposition 13 Let F be a formula such that every occurrence of an atom in F is
directly under the scope of ¬. Then, for every X ⊆ Y ⊆ At , 〈X, Y 〉 |=ht F if and
only if Y |= F .
Proof The claim is evident if F = ⊥. Otherwise, F is of the form F = G ◦ H ,
where ◦ = ∨,∧ or→. First, let us assume that ◦ =→, G is an atom and H = ⊥.
Then, the claim follows from Theorem 1(2). Otherwise, the induction hypothesis
applies to G and H (every occurrence of an atom in G and H is directly under the
scope of ¬) and again, the inductive step is easy to verify. 2

This result has several consequences. First, we show that we can express the relation
|=spp in terms of the relation |=ht. Moreover, it does not require any extension of the
language. Given a formula F , we define F to be the formula obtained by replacing
every non-head occurrence of an atom A that is not directly negated with ¬¬A.
Proposition 14 For every formula F and every X ⊆ Y ⊆ At , 〈X, Y 〉 |=spp F if
and only if 〈X, Y 〉 |=ht F .
Proof The claim is evident if F = ⊥. If F = A, where A ∈ At , then F = A = F
and the result holds.
Since G ◦H = G ◦ H , for ◦ = ∧ and ∨, for these two connectives, the induction
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step is easy to verify. Thus, let F = G → H . Clearly, F = G′ → H , where G′

is obtained from G by replacing every occurrence of an atom A that is not directly
negated with ¬¬A. Proposition 13 applies to G′. Thus, 〈X, Y 〉 |=ht G

′ if and only
if Y |= G′. By the definitions of G′ and of the classical entailment relation |=,
Y |= G′ if and only if Y |= G. Thus, 〈X, Y 〉 |=ht G′ if and only if Y |= G.
Finally, by the induction hypothesis, 〈X, Y 〉 |=ht H if and only if 〈X, Y 〉 |=spp H .
Consequently, the following statements are equivalent:
(1) 〈X, Y 〉 |=spp G→ H
(2) Y |= G→ H; and Y 6|= G or 〈X, Y 〉 |=spp H
(3) Y |= G′ → H; and 〈X, Y 〉 6|=ht G

′ or 〈X, Y 〉 |=ht H
(4) 〈X, Y 〉 |=ht G

′ → H
(5) 〈X, Y 〉 |=ht F .

Thus, the claim for F = G→ H follows. 2

Corollary 8 For every formula F and every interpretation Y , Y is a supported
model of F if and only if it is a stable model of F (and if and only if it is a stable
model of F ).
Next, we observe that it is impossible to express |=ht in terms of |=spp. The follow-
ing corollary makes the meaning of that statement precise.
Corollary 9 Let A and B be atoms. There is no formula F such that 〈X, Y 〉 |=ht

A→ B ∨ ¬B ∨ ¬A if and only if 〈X, Y 〉 |=spp F .
Proof Let H = A→ B∨¬B∨¬A. It is easy to verify that 〈∅, {A,B}〉 |=ht H and
〈{A}, {A,B}〉 6|=ht H . Let us assume that there is a formula F such that for every
X ⊆ Y , 〈X, Y 〉 |=ht H if and only if 〈X, Y 〉 |=spp F . Then, 〈∅, {A,B}〉 |=ht F .
By Theorem 12, ∅ |= F

{A,B}
. By Proposition 10, F Y is monotone. Thus, {A} |=

F
{A,B}

or, equivalently, 〈{A}, {A,B}〉 |=ht F , a contradiction. 2

Given our result on the biexpressibility of stable and FLP-stable semantics, it fol-
lows that for every theory F there is a theory F ′ such that Y is a supported model
of F if and only if Y is an FLP-stable model of F ′. In other words, we can ex-
press supported models in terms of FLP-stable models without the need to expand
the language. On the other hand, there is a theory F such that for no theory F ′,
FLP-stable models of F are exactly supported models for F ′. Thus, FLP-stable
models cannot be (in general) expressed as supported models, unless we extend the
language.
As a corollary to Proposition 14 we obtain the promised result showing a class of
formulas, which have the same HT- and SPP-models.
Proposition 15 Let F be a formula such that every occurrence of an atom in F
is either a head occurrence or falls directly under the scope of ¬. For every X ⊆
Y ⊆ At , 〈X, Y 〉 |=ht F if and only if 〈X, Y 〉 |=spp F .
Proof Since under the assumptions about F , we have F = F , the claim follows
from Proposition 14. 2

In turn, this result implies the following generalization of the property that stable
and supported models of purely negative disjunctive programs coincide.
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Corollary 10 Let F be a theory such that every occurrence of an atom in F is
either a head occurrence or falls directly under the scope of ¬. Then Y is a stable
model of F if and only if it is a supported model of F .
There is an alternative argument that shows that the |=spp relation can be expressed
by means of the |=ht and |=flp relations. 3 It is based on the following simple obser-
vation that identifies a class of formulas on which all three semantics coincide.
Proposition 16 Let F be a formula in which every occurrence of→ has ⊥ in the
consequent (in other words, formulas that can be written by means of the connec-
tives ∧, ∨ and ¬). For every HT-interpretation 〈X, Y 〉, the following conditions are
equivalent:
(1) 〈X, Y 〉 |=ht F
(2) 〈X, Y 〉 |=flp F
(3) 〈X, Y 〉 |=spp F .

Proof The clauses defining each of the relations in the case when F = ⊥, F = A,
where A is an atom, F = G∧H and F = G∨H are the same. Moreover, for each
of the three satisfiability relations, 〈X, Y 〉 satisfies (in the corresponding sense) ¬G
if and only if Y 6|= G (and so, for such formulas, the three satisfiability relations
also coincide). Thus, the result follows by induction. 2

For every formula F , we denote by F the formula obtained from F by replacing
each subformula G → H , where H 6= ⊥, with (G → ⊥) ∨ H (or ¬G ∨ H , for
short).
Corollary 11 For every formula F , SPP-models of F coincide with HT-models of
F , with FLP-models of F and with SPP-models of F .
Proof By Proposition 11(1), F and F have the same SPP-models. Thus, the asser-
tion follows from Proposition 16. 2

The value of our first approach to show that the SPP semantics can be expressed in
terms of HT and FLP semantics, which uses F 7→ F transformation, is in that it
gives Corollary 10, a generalization of the property that in purely negative disjunc-
tive programs stable and supported models coincide. On the other hand, the value
of the approach based on the F 7→ F transformation lies in the fact that it shows a
class of formulas (theories), on which all three semantics coincide.

6 Discussion and Conclusions

In this paper, we developed generalizations of the FLP semantics and the supported-
model semantics to the full language of propositional logics using appropriate
variants of methods developed earlier by Pearce and Ferraris for the stable-model
semantics. In this way, all three semantics are cast in the same uniform frame-
work, which facilitates comparisons and offers insights into their properties. Our
results contribute to the theoretical foundations of answer-set programming, a ma-
jor knowledge representation formalism.

3 This argument is due to one of the anonymous reviewers.
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More specifically, Ferraris (2005) showed that the stable-model semantics can be
extended to the language of propositional logic by means of an appropriate gener-
alization of the notion of the F-reduct. We showed that the approach by Ferraris can
be adapted to two other semantics of programs: the FLP and supported-model se-
mantics. Moreover, the generalizations require only small changes in the definition
of the reduct that concern how the implication is handled in the case both its an-
tecedent and consequent are satisfied by the context. In the case of the FLP-reduct,
we keep the antecedent of the implication unchanged, in the case of the SPP-reduct,
we drop it.
Not only the definitions follow the same pattern. The theories of the three seman-
tics are quite similar, too, both in the way the results are stated as well as proved. In
particular, in each case, we have a corresponding characterization of the semantics
in terms of a satisfiability relation between HT-interpretations and formulas simi-
lar to the characterization of the stable-model semantics of arbitrary propositional
theory by Pearce (1997). As before, what differentiates between the relations is the
way the implication is handled.
The uniformity with which the three semantics can be defined and studied is strik-
ing. It suggests that considering the reduct-based approach in the general language
of logic, may reveal new insights into the phenomenon of nonmonotonicity. A re-
lated question is whether any other semantics can be defined in this way, that is,
whether there are any other notions of reduct that might lead to useful formalisms.
As there seem to be no simple ways to modify the reduct left, the uniform approach
presented here suggests that the realm of nonmonotonic semantics of programs and
theories may essentially boil down to the three ones discussed in the paper.
The uniformity notwithstanding, there are also differences. We saw that the rela-
tion |=spp is, in some sense, weaker than the other two. Further, the relation |=ht

that captures the stable-models semantics defines a logic, namely the logic HT. To
the contrary, the relation |=flp does not: the set of formulas F such that for ev-
ery 〈X, Y 〉, 〈X, Y 〉 |=flp F while closed under modus ponens, is not closed under
substitution. 4 Also, while stable and FLP semantics are closely related, supported-
model semantics is essentially different (cf. the characterization of strong SPP-
equivalence, and the normal-form theorem). A detailed comparison of the seman-
tics is beyond the scope of this paper. We leave it for future work.
We note here that our argument for the normal form result with respect to SPP-
models can be adjusted to show that the set of theorems with respect to |=spp is
closed under substitution and so, is a logic. The question of axiomatization of that
logic is for now open.

4 Indeed, for every HT-interpretation we have 〈X,Y 〉, 〈X,Y 〉 |=flp p → p, yet
〈{p}, {p, q}〉 6|=flp (p→ q)→ (p→ q). This behavior of the FLP semantics is a drawback.
In particular, it is responsible for the difficulty of using explicit definitions under the FLP
semantics, which we discussed at the end of Section 3.
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Marek, W., Truszczyński, M., 1991. Autoepistemic logic. Journal of the ACM
38 (3), 588–619.

Moore, R., 1985. Semantical considerations on nonmonotonic logic. Artificial In-
telligence 25 (1), 75–94.
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