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Abstract In this paper we develop an algebraic framework for studying semantics
of nonmonotonic logics. Our approach is formulated in the language
of lattices, bilattices, operators and fixpoints. The goal is to describe
fixpoints of an operator O defined on a lattice. The key intuition is
that of an approzimation, a pair (z,y) of lattice elements which can be
viewed as an approximation to each lattice element z such that z <
z < y. The key notion is that of an approzimating operator, a monotone
operator on the bilattice of approximations whose fixpoints approximate
the fixpoints of the operator O. The main contribution of the paper
is an algebraic construction which assigns a certain operator, called
the stable operator, to every approximating operator on a bilattice of
approximations. This construction leads to an abstract version of the
well-founded semantics. In the paper we show that our theory offers
a unified framework for semantic studies of logic programming, default
logic and autoepistemic logic.
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1. INTRODUCTION

We study algebraic foundations of semantics of nonmonotonic knowl-
edge representation formalisms. The algebraic framework we use is that
of lattices, operators and fixpoints. The key tool is the theorem of Tarski
and Knaster (Tarski, 1955) on fixpoints of monotone operators on com-
plete lattices. Our work is motivated by the fact that all major seman-
tics of knowledge representation formalisms such as logic programming,
default logic and modal nonmonotonic logics are defined by means of
fixpoints of suitably chosen operators on lattices of interpretations and
possible-world structures. We derive general algebraic principles that lie
behind these semantics.

Our work can be viewed as an extension of an abstract approach to
logic programming proposed by Fitting. In a series of papers culmi-
nating in (Fitting, 1999), Fitting demonstrated that stable, supported,
well-founded and Kripke-Kleene semantics of logic programs can be stud-
ied in abstract terms of fixpoints of two operators on a bilattice of
4-valued interpretations. One of these operators is the 4-valued van
Emden-Kowalski operator 7p that generalizes a 2-valued van Emden-
Kowalski operator Tp introduced in (van Emden and Kowalski, 1976).
Fixpoints of the operator Tp yield the partial supported model seman-
tics and Kripke-Kleene semantics for logic programs. The other opera-
tor is a 4-valued stable operator ¥’y introduced in (Przymusinski, 1990).
The operator ¥/, can be regarded as a multi-valued generalization of
the Gelfond-Lifschitz operator GLp (Gelfond and Lifschitz, 1988). Fix-
points of the operator ¥, determine the partial stable model semantics
and the well-founded semantics.

In (Denecker et al., 1998; Denecker et al., 2000) we observed that an
operator-based approach to logic programming put forth by Fitting can
be adapted to the case of two other nonmonotonic systems: autoepis-
temic logic (Moore, 1984; Moore, 1985) and default logic (Reiter, 1980).
In the case of autoepistemic logic, this abstract approach resulted in sev-
eral new semantics. First, it allowed us to introduce for autoepistemic
logic a counterpart to the semantics of extensions. Second, it led to
generalizations of Kripke-Kleene and well-founded semantics. Most im-
portantly, it exhibited the existence of a unifying framework behind all
major semantics for autoepistemic logic. In the case of default logic, the
operator-based approach led to a generalization of the Kripke-Kleene se-
mantics and resulted in a uniform semantic framework for default logic,
surprisingly similar to that discovered in the case of autoepistemic logic.
In fact, in (Denecker et al., 2000) we proved that both frameworks are
isomorphic and we argued that under the translation proposed in (Kono-
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lige, 1988), default logic can be viewed as a fragment of autoepistemic
logic.

In this paper we extract essential algebraic elements underlying uni-
fied semantic frameworks for logic programming, autoepistemic logic
and default logic developed in (Fitting, 1999; Denecker et al., 1998; De-
necker et al., 2000). In the abstract setting we develop, we consider
lattices, bilattices, operators on lattices and their approximations, that
is, operators on bilattices. Elements of lattices represent some “points
of interest”. Operators describe ways in which one “point of interest”
might be revised (updated) into another one. We are interested in fix-
points of operators on lattices as they are precisely those elements that
cannot be revised away.

With each lattice we associate a certain bilattice (the product of the
lattice by itself). The elements of such a bilattice can be interpreted as
approximations to elements of the underlying lattice. To study fixpoints
of an operator on a lattice, we introduce the concept of an approximat-
ing operator, defined on the associated bilattice. We demonstrate that
studying fixpoints of approximating operators can provide us with in-
sights into the structure and properties of fixpoints of operators they
approximate. In particular, by considering all fixpoints of an approxi-
mating operator we obtain an abstract version of the Kripke-Kleene se-
mantics. Adding some minimization requirements results in an abstract
version of the well-founded semantics.

In knowledge representation applications “points of interest” repre-
sented by elements of lattices might be interpretations or possible-world
structures describing truths (beliefs, knowledge) about a world specified
by a base theory. Operators are formal descriptions of constraints on
truth or belief sets used in revising one set of truths or beliefs into an-
other one. We argue that our abstract setting yields as special cases
semantic frameworks for logic programiming, autoepistemic logic and
default logic. We also show that all three systems exhibit an amaz-
ing similarity in the structure of the families of their semantics. By
far the most important contribution of the paper is a general algebraic
construction assigning to an arbitrary approximating operator its stable
version. For each of the knowledge representation formalisms discussed
here: logic programming, autoepistemic logic and autoepistemic logic,
this construction allows us to reduce the study of all major semantics to
the study of properties of a single operator.

Our work is concerned with abstract principles underlying nonmono-
tonic reasoning and with unified approaches to nonmonotonicity. In
this respect it is somewhat similar to the work by Bochman (Bochman,
1996; Bochman, 1998a; Bochman, 1998b), and by Brass and Dix (Brass
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and Dix, 1999). Bochman develops an abstract proof-theoretic approach
to nonmonotonicity based on the notion of a biconsequence relation.
Brass and Dix characterize semantics for nonmonotonic systems in terms
of general abstract postulates on their properties.

The paper is organized as follows. In Section 2. we briefly review key
concepts and definitions related to lattices, bilattices and operators on
them. In Section 3. we formally introduce the notion of an approximating
operator and establish a number of basic properties of these operators.
We also discuss there an abstract version of the Kripke-Kleene semantics.
Next, in Section 4. for every approximating operator we define its stable
operator and an abstract form of the well-founded semantics. We discuss
applications of our approach in knowledge representation in Section 5.
The last section contains conclusions, open problems and a discussion of
future work.

2. PRELIMINARIES FROM LATTICE
THEORY

A lattice is a partially ordered set (L, <) such that every two element
set {z,y} C L has a least upper bound, lub(x,y), and a greatest lower
bound, glb(z,y). A lattice (L, <) is complete if every subset of L has
both least upper and greatest lower bounds. Consequently, a complete
lattice has a least element (L) and a greatest element (T).

An operator on a lattice (L,<) is any function from L to L. An
operator O on L is monotone if for every pair of elements z,y € L,

z <y implies O(z) < O(y).

Similarly, an operator O on L is antimonotone if for every pair z,y of
elements from L,

z <y implies O(y) < O(z).
The composition of two antimonotone operators is monotone, as stated
in the following result.

Proposition 1 If the operators Oy : L — L, Oy : L — L are antimono-
tone, then the operator O o Oy is monotone.

Another straightforward observation asserts that operators that are
both monotone and antimonotone are constant.

Proposition 2 If an operator O : L — L is monotone and antimono-
tone then it is constant.

The basic tool to study fixpoints of operators on lattices is the cele-
brated theorem by Tarski and Knaster (Tarski, 1955).



Approximations, stable operators and the well-founded fizpoint 5

Theorem 3 Let O be a monotone operator on a complete lattice (L, <).
Then, O has a fizpoint and the set of all fizpoints of O is a complete
lattice. The least fixpoint of this lattice (that is, the least fixpoint of O)
can be obtained by iterating O over L. The greatest fixpoint of this lattice
(the greatest fixpoint of O) can be obtained by iterating O over T.

We denote the least and the greatest fixpoints of the operator O by
Ifp(O) and gfp(O), respectively.

In applications it is often useful, and sometimes necessary, to approxi-
mate elements of lattices. We say that an element z € L is approximated
by a pair (z,y) € L? if z < z < y. Approximations of the form (z,z)
are especially interesting. They provide a complete description of an
element they approximate and so, we refer to them as complete. There
is a straightforward one-to-one correspondence between L and the set of
complete elements of L?.

Since approximations are the key concept of our approach, in the
paper, we study the set L?, operators on L? and fixpoints of these oper-
ators.

The set L? can be endowed with two natural orderings. The first of
them is a generalization of an ordering < from L. We will refer to it as
the lattice ordering and use the same symbol < to denote it. Formally,
it is defined by

(ny) S (xbyl) 'Lf € S T and Yy S Y1-

The second ordering, called the information ordering, captures the intu-
ition of increased precision of the approximation. This ordering, denoted
<i, is defined by

(z,y) <i (z1,31) if © <z and yy <vy.

It is easy to see that L? with each of these two orderings induces a
complete lattice. In addition, it can be shown that the twelve distribu-
tivity laws involving the meets and joins with respect to both orderings
all hold. Such algebraic structures are known as bilattices (Ginsberg,
1988; Fitting, 1999). They were used by Fitting in his discussion of
semantics of logic programs with negation.

Not all pairs (z,y) € L? can be interpreted as approximations to ele-
ments of L. For that to be the case, it is necessary that < y. Thus, we
say that a pair (z,y) € L? is consistent if z < y. Otherwise, it is called
inconsistent. Clearly, consistent pairs can be viewed as descriptions of
our, in general, incomplete knowledge about elements from L that they
approximate. Inconsistent pairs can be viewed as describing the fact
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that our knowledge about some unknown elements from L is inconsis-
tent. The information ordering when applied to inconsistent pairs can
be regarded as an ordering measuring the “degree of inconsistency”.

Clearly, the collection of counsistent pairs does not form a sublattice
of L?. Indeed, each element of the form (z,z) is a maximal consistent
element of L?. Thus, no two different elements of the form (z,z) have a
consistent upper bound. By allowing inconsistent approximations into
our considerations we get an intuitive duality between consistent and
inconsistent pairs, and between the degree of precision and the degree of
inconsistency. We deal with a much richer algebraic structure and obtain
a more elegant theory. In the same time, all main constructions described
in the paper are, in fact, restricted to the consistent part of a bilattice of
approximations and both the Kripke-Kleene and well-founded fixpoints,
that we define later, are consistent (however, dual constructions for the
inconsistent part of the bilattice can also be considered).

The theorem by Tarski and Knaster talks about fixpoints of monotone
operators. It implies also some important properties of antimonotone
operators. A pair of elements x,y € L is an oscillating pair an operator
O on L if y = O(x) and = O(y). In other words, z and y form an
oscillating pair if and only if z is a fixpoint of 0> = O 0 O and y =
O(z). An oscillating pair (z,y) is an extreme oscillating pair for O if for
every oscillating pair (z',y') for O, (z,y) <; (¢/,y') and (z,vy) <; (v, 2")
(or equivalently, z < z’,y' < y). In particular, if (z,y) is an extreme
oscillating pair then z < y. It is also easy to see that if an extreme
oscillating pair exists, it is unique.

Theorem 4 Let O be an antimonotone operator on a complete lat-
tice (L,<). Then, O? has a least fizpoint and a greatest fizpoint and
(Ifp(0?), gfp(0?)) is the unique extreme oscillating pair of O.

In this paper, we study fixpoints of operators on lattices by considering
fixpoints of associated operators on bilattices. These operators often
satisfy some monotonicity properties. Thus, in the remainder of this
section, we present results on operators on L? that are monotone or
antimonotone with respect to the orderings < and <;. Before we present
our results, we need more terminology.

Let us consider an operator A on L?. Let us denote by A' and A? the
functions from L? to L such that

Alz,y) = (Al(z,y), 4(z,y)).

We say that A is symmetric if A'(z,y) = A%(y,z). Clearly, if an operator
A: L? — L? is symmetric then for every z € L, A'(z,z) = A%(z,z).
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In our discussion in the remainder of this paper we will restrict our
considerations to symmetric operators only. The motivation for this
restriction is twofold. First, all operators that appear in knowledge rep-
resentation applications (for instance, the 4-valued van Emden-Kowalski
operator Tp) are symmetric. Second, the assumption of symmetry re-
sults in a much more elegant theory. In particular, symmetric operators
are extending, an important property in our theory of approximations
(we introduce this notion in the next section). However, we stress that
the assumption of symmetry is not essential and all major concepts and
constructions described in the paper can be developed without it.

Proposition 5 A symmetric operator A : L?> — L? is <;-monotone if
and only if for every y € L, A(-,y) is monotone and for every x € L,
AY(z, ) is antimonotone (or equivalently, if and only if for every y € L,
A2(-,y) is antimonotone and for every x € L, A%(z,-) is monotone).

The next result provides a similar characterization of all symmetric
operators on L? that are monotone with respect to the ordering <.

Proposition 6 A symmetric operator A : L? — L? is <-monotone if
and only if for every z,y € L, A'(x,-) and A'(-,y) are monotone (or,
equivalently, if and only if for every z,y € L, A*(x,-) and A?(-,y) are
monotone).

Propositions 5 and 6, together with Proposition 2, imply a charac-
terization of symmetric operators that are both <;-monotone and <-
monotone.

Proposition 7 An operator A : L? — L? is symmetric and monotone
with respect to both <; and < if and only if there is a monotone operator
O : L — L such that for every x,y € L, A(z,y) = (O(z), O(y)).

Next, we present a description of symmetric operators on L? that are
<;-monotone and <-antimonotone.

Proposition 8 An operator A : L? — L? is symmetric, <;-monotone
and <-antimonotone if and only if there is an antimonotone operator
O : L — L such that for every x,y € L, A(z,y) = (O(y), O(z)).

Propositions 7 and 8 imply that there is a one-to-one correspondence
between monotone (antimonotone, respectively) operators on L and <;-
monotone and <-monotone (<;-monotone and <-antimonotone, respec-
tively) operators on LZ.

When L is a complete lattice, it follows by Knaster-Tarski Theorem
and by Theorem 4 that an <;-monotone and <-antimonotone operator
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A : L? — L? has <;-least and <;-greatest fixpoints and a <-extreme
oscillating pair. Let us denote the <;-least fixpoint of A by ¢4, and the
<;-greatest fixpoint of A by @ 4. Similarly, let us denote the <-extreme
oscillating pair for A by (ea, E4).

If A: L? — L? is, in addition, symmetric, by Proposition 8, there is an
antimonotone operator O : L — L such that A(z,y) = (O(y), O(x)). Let
us denote by ¢ the least fixpoint of O? and by Q the greatest fixpoint of
O? (Tarski-Knaster Theorem applies as O? is monotone). The following
theorem, due essentially to Fitting, summarizes the relations between
the fixpoints and extreme pairs defined above.

Theorem 9 Let L be a complete lattice. Let A : L? — L? be a symmet-
ric <;-monotone and <-antimonotone operator on L?. Then:

1. qa = (qa Q)7 QA = (Q7Q)7 €A = (Q7 Q)7 EA = (QaQ)
2. qa = glbgi(eA,EA) and Qa = lub<,(ea, Ex)
8. ea = glb(qa,Qa) and E4 = lub<(qa, Qa).

Proof: Let O : L — L be an antimonotone operator such that A(z,y) =
(O(y),O(x)) (Proposition 8) and let ¢ and () be the least and the greatest
fixpoints of O?, respectively. Then, (g,Q) is the extreme oscillating
pair of O (Theorem 4), O(q) = @ and O(Q) = ¢q. Thus, A(q,Q) =
(0(Q),0(q)) = (q,Q) or, equivalently, (¢,Q) is a fixpoint of A. Let
(z,y) be a fixpoint of A. Then, (z,y) = A(z,y) = (O(y),O(x)) and
z = 0(y) and y = O(x). Thus, (z,y) is an oscillating pair for O. Since
(q,Q) is the extreme oscillating pair for O, (¢,Q) <; (z,y). It follows
that (g, Q) is the least fixpoint of A or, in other words, that g4 = (¢, Q).
The proof that Q4 = (Q, q) is similar.

Next, observe that A(g,q) = (O(g),0(q)) = (Q,Q) and A(Q,Q) =
(0(Q),0(Q)) = (¢,9). Thus, ((¢g,9),(Q,Q)) is an oscillating pair for A.
Let ((z,v),(z',y')) be an oscillating pair for A. Then, (z,y) and (z',y’)
are fixpoints of A2. Consequently, x,y,z’' and 3’ are all fixpoints of O2.
It follows that ¢ < z,y,2',y" < Q and so, (¢,9) <i (2,9),(2",y) <
(Q,Q). Thus, ((¢,9),(Q,Q)) is the extreme oscillating pair for A (or,
equivalently, if e4 = (¢,¢) and E4 = (Q, Q)).

The assertions (2) and (3) follow immediately from the assertion (1)
and the fact that ¢ < Q. O

3. APPROXIMATING OPERATORS

Our paper is an attempt to identify basic algebraic principles behind
semantics of nonmonotonic reasoning formalisms. The key concept to
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our approach is that of an approximating operator. Given an operator
O on a lattice L the goal is to gain insights into its fixpoints and into
constructive techniques to find them. To this end, we will consider
operators on the bilattice L2.

Definition 10 An operator A : L? — L? extends an operator O : L —
L if for every x € L, A(z,r) = (O(x),0(z)). An operator A : L?> — L?
is extending if for every x € L, there is y € L such that A(x,z) = (y,y).

We define the diagonal of L? to be the set {(z,z) : * € L} (that
is, the set of all complete approximations). If an operator A : L? — L?
extends O : L — L then the behavior of A on the diagonal fully describes
the behavior of O. In particular, complete fixpoints of A correspond to
fixpoints of O.

Proposition 11 Let O be an operator on a lattice L and let A be an
operator on L? extending O. Then, = is a fizpoint of O if and only if
(x,z) is a fizpoint of A.

If A is symmetric then for each lattice element z, Al (x, x) = A%(z, ).
Hence A(z, ) is complete and, consequently, A is extending. This obser-
vation is stated in the following result. As we mentioned earlier, it is one
of the motivations for restricting our discussion to symmetric operators
only.

Proposition 12 If an operator A : L?> — L? is symmetric then A is
extending.

It follows directly from the definition of an extending operator that
to study fixpoints of an operator O one might construct an appropriate
extending operator A and study its fixpoints instead. Clearly, complete
fixpoints of the operator A would then provide a complete description
of the fixpoints of O.

It seems that this new problem is essentially the same as the origi-
nal one. There is, however, one difference. An extending operator A
is defined on a bilattice. Consequently, all its fixpoints are approxi-
mated by the least element (L, T) of the bilattice (referred to as the
weakest approzimation). Two natural questions arise: are there better
approximations to fixpoints of A than this trivial one, and can they be
constructed. In general the answer is negative. However, the answer is
positive if A is <;-monotone. In such case, we can iterate A starting
with the weakest approximation. In each iteration we improve the pre-
cision of the approximation. When no further improvement is possible
the process terminates and results in the <;-least fixpoint of A. This fix-
point approximates all fixpoints of A, it is often better than the weakest
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approximation (L, T) and it can be constructed! The possibility of con-
structing the least fixpoint of a <;-monotone extending operator leads
us to one of the key concepts of the paper (in view of our remarks, we
introduce it with the stronger requirement of symmetry).

Definition 13 An operator A : L? — L? approximates an operator O :
L — L if A is symmetric, extends O and is <;-monotone. An operator
A: L? — L? is approximating if it is symmetric and <;-monotone.

We say that an operator A : L? — L? is consistent if it maps consis-
tent pairs to consistent pairs, that is whenever (z,y) is consistent, then
also A(z,y) is consistent. The following two results formally state basic
properties of approximating operators.

Proposition 14 If A : L? — L? is an approzimating operator, then A
1§ consistent.

Corollary 15 Let A : L?> — L? be an approzimating operator for an
operator O : L — L. Then, A has a <;-least fizpoint. This fixpoint is
consistent and approximates every fizpoint of O.

The notion of <;-least fixpoint of an operator A approximating op-
erator O in lattice L is an important concept. The least fixpoint of A
approximates all fixpoints of O. Speaking informally, it determines in-
formation that is common to all the fixpoints of O. Next, if the <;-least
fixpoint is complete, say it is of the form (z,z), then z is the only fix-
point of O. Moreover, in such case, this unique fixpoint of O is based
on a constructive principle of building it incrementally by iterating the
approximating operator A. Since in the case of logic programming, the
concept of the <;-least fixpoint of an approximating operator can be
specialized to the Kripke-Kleene semantics, we refer to the <;-least fix-
point of an approximating operator A as the Kripke-Kleene fizpoint of
A. We denote this fixpoint by a4.

Clearly, an operator O on a lattice may have several approximating
operators. Each gives rise to its Kripke-Kleene fixpoint and the corre-
sponding approximation of all fixpoints of O. The problem of finding
an approximation operator providing the best (in some sense) approxi-
mation is, in general, a challenging one. We do have some results that
pertain to it. They will be a subject of another paper. Here we will only
mention two simple special cases when an operator O is monotone or
antimonotone.

Let O be a monotone operator on L. By Proposition 7, the operator
Ao(z,y) = (O(x),0(y)) is <;-monotone. It is also symmetric, consistent
and extends the operator O. Hence, Ao is an approximating operator
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for O. By Proposition 7, Ap is <-monotone. In fact, Proposition 7
implies that Ap is a unique approximating operator for O that is <-
monotone. The least <;-fixpoint of Ay is (Ifp(O), lfp(0)). We will call
Ao the trivial approximating operator for a monotone operator O'.

Similarly, if A is an antimonotone operator on L then, by Proposition
8, the operator Ap(z,y) = (O(y),O0(z)) is <;-monotone. In addition,
Ao is symmetric, consistent and it extends O. Hence, it is an approxi-
mating operator for O. By Proposition 8, Ap is <-antimonotone and, in
fact, it is a unique approximating operator for O that is <-antimonotone.
We will call Ap the trivial approximating operator for an antimonotone
operator O. Theorem 9 characterizes the fixpoints and the extreme os-
cillating pair of the trivial approximating operator for an antimonotone
operator O.

4. STABLE OPERATOR AND
WELL-FOUNDED FIXPOINT

In the case of logic programming, fixpoints of the van Emden-Kowalski
operator Tp determine (2-valued) supported models of a program P.
Supported model semantics (also known as Clark completion semantics)
is often too weak for knowledge representation applications. The class
of stable models was proposed in (Gelfond and Lifschitz, 1988) as the
basis of an alternative semantics for programs with negation.

It is well-known that stable models form a subclass of the class of
supported models. Our goal in this section is to study abstract princi-
ples relating supported and stable models. More generally, we search for
principles that might allow us to identify interesting special subclasses
in the class of all fixpoints of an operator O defined on a complete lattice
L. Since, as argued in the previous section, fixpoints of O can be stud-
ied by considering approximating operators, our approach is to search
for principles that allow us to narrow down the class of fixpoints of
approximating operators. Approximating operators are symmetric and
<;-monotone. The results in this section rely only on these two assump-
tions (however, as mentioned earlier, the assumption of symmetry is not
essential for our theory).

The fact that bilattices are also ordered by the (generalization of)
lattice ordering suggests a possible approach. Minimizing truth is the
key idea underlying commonsense reasoning and the process of jumping

I This algebraic property of monotone operators explains why all major nonmonotonic seman-
tics coincide on the class of Horn theories (or programs) and are given by the least fixpoint
construction.
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to conclusions. In our abstract setting, it boils down to minimization
with respect to < and we focus our attention on those fixpoints of A
which are <-minimal. However, the principle of <-minimality is in itself
not sufficient. For instance, it is well known that not every minimal
supported model of a logic program P is stable.

In this section we describe an algebraic construction that assigns to
every <;-monotone operator A on a bilattice L? its stable operator C4 de-
fined also on L?. We demonstrate that every fixpoint of the operator C4
is a <-minimal fixpoint of A. Later in the paper we argue that fixpoints
of stable operators appear naturally in several nonmonotonic reasoning
formalisms such as logic programming, default logic and autoepistemic
logics, thus validating our construction.

Definition 16 Let L be a complete lattice. Let an operator A : L? — L?
on a bilattice L? be symmetric and <;-monotone.

1. The complete stable operator for A, Cy : L — L, is defined by
Caly) = Ufp(A'(y)) (or, equivalently, by, Ca(y) = ifp(A*(y,-)))-

2. The stable operator for A, C4 : L? — L? is defined by Ca(x,y) =
(Caly), Ca(z)).

Since for every y € L the operators A'(-,y) and A%(y,-) are monotone
(Proposition 5), the operators C4 and C4 are well-defined.

The intuition behind the stable operator is as follows. We are given
an operator A : L? — L?. This operator can be viewed as a description
of a way to revise approximations (z,y). Our goal is to derive from A
a different (but related) way to "revise” approximations. We proceed
as follows. Given an approximation (z,y), to construct the lower bound
of a new approximation we use y — our current upper estimate. We
consider the operator A'(-,y) which models revisions of the lower bounds
of those approximations with the upper bound fixed to y. Since A'(-,y)
is a monotone operator, there is a natural candidate for the intended
new lower bound — the least fixpoint of A'(-,y). To construct the new
upper bound, we proceed similarly. We use the current lower bound z
and consider the operator A%(z,-). This operator is monotone and its
least fixpoint is selected as the new intended upper bound. Since A is
symmetric, the same operator, C'4, can be used to determine both the
lower and the upper bound.

Let us consider an operator A that is both <;- and <-monotone. Such
operators are described in Proposition 7. They are of the form A(z,y) =
(O(x),0(y)), where O is monotone. It follows that C4(y) = Ifp(O) and
does not depend on y. Thus, we get the following result.
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Proposition 17 Let L be a complete lattice. Let A : L? — L? be an
operator monotone with respect to <; and <. Then C4 1is constant.

If an operator A is <;-monotone and <-antimonotone then, by Propo-
sition 8, there is an antimonotone operator O such that A(z,y) =
(O(y),O(x)). Consequently, A(-,y) = O(y). It follows that Cx(y) =
O(y), that is, the stable operator for the operator A is A itself.

Proposition 18 Let L be a complete lattice. Let A : L? — L? be an
operator monotone with respect to <; and antimonotone with respect to
<. Then C4 = A.

We will now study properties of the stable operator C4 and its fix-
points. Our first result shows that fixpoints of C4 are <-minimal fix-
points of A (the converse statement in general does not hold).

Theorem 19 Let L be a complete lattice. Let an operator A : L? — L?
on a bilattice L? be <;-monotone. Euvery fizpoint of the stable operator
Ca is a <-minimal fizpoint of A.

Proof: In this proof we will use some additional basic properties of
operators on lattices. An element x of a lattice L is a pre-fizpoint of an
operator O : L — L if O(z) < x. The argument of Tarski and Knaster
shows that if L is a complete lattice and O is a monotone operator on
L then for every pre-fixpoint z of O, Ifp(O) < z.

Let (x,y) be a fixpoint of C4. It follows that (x,y) = (Ca(y), Ca(z)).
By the definition of C4, = Ifp(A'(-,y)), and hence A'(z,y) = z.
Similarly, y = Ifp(A'(-,z)) = Ifp(A%(x,-)). Thus, A%(z,y) = y. Conse-
quently, (z,y) is a fixpoint of A.

Next, assume that (z',y’) is a fixpoint of A such that (z',¢') < (z,y).
It follows that 2’ < 2 and hence, by antimonotonicity of A%(-,3') (Propo-
sition 5), we have that A%(z,y’) < A%(«2',y') = ¢/'. Thus, ¢’ is a pre-
fixpoint of the operator A%(z,-). Since A%(z,-) is monotone, and y is
its least fixpoint, it follows that y < y'. Since (z',¢') < (z,v), y = ¢'.
Similarly, one can derive that z = z’. Thus, (z',y') = (z,y) which, in
turn, implies that (x,y) is a <-minimal fixpoint of A. O

Theorem 19 shows, in particular, that if A is <;-monotone, a fixpoint
of C4 is also a fixpoint of A. We will call every fixpoint of the stable
operator C4 a stable fixpoint of A.

Directly from the definition of the operators C'4 and from Proposition
5 it follows that C4 is antimonotone. Consequently, by Proposition 8§,
C4 is <;-monotone and <-antimonotone.
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Proposition 20 Let L be a complete lattice. Let A be o symmetric <;-
monotone operator on L2 Then, C4 is an antimonotone operator on L
and C4 is a <;-monotone and <-antimonotone operator on L?.

Propositions 18 and 20 imply the following corollary that states that
applying the stability construction to a stable operator does not lead to
a new operator anymore.

Corollary 21 Let L be a complete lattice. Let A be a symmetric <;-
monotone operator on L. Then Cc, = Ca.

It is also easy to see that C4 is symmetric and extends the operator
C4. Thus, we obtain the following corollary to Proposition 20.

Corollary 22 Let L be a complete lattice. Let A be a <;-monotone
operator on L?. Then, the stable operator Cy4 is a trivial approzimation
of the complete stable operator C4.

Since C4 is <;-monotone and <-antimonotone, it has a <;-least fix-
point, a <;-greatest fixpoint and also a <-extreme oscillating pair. As
explained in Theorem 9, these concepts are interrelated and can be ex-
pressed in terms of the fixpoints of the operator C% = C4 0 Ca.

The <;-least fixpoint of C4 is of particular interest as it provides an
approximation to every stable fixpoint of A. We call the <;-least fixpoint
of C4 the well-founded fixpoint of a <;-monotone operator A and denote
it by Ba. The choice of the term is dictated by the fact that in the
case of logic programming, the least fixpoint of the stable operator for
the 4-valued van Emden-Kowalski operator Tp yields the well-founded
semantics.

The following result gathers several properties of the well-founded
fixpoint of an operator that generalize properties of the well-founded
model of a logic program.

Theorem 23 Let L be a complete lattice. Let A : L? — L? be a <;-
monotone symmetric operator.

1. The Kripke-Kleene fizpoint aq and the well-founded fizpoint B4
satisfy aa <i fBa

2. For every stable fizxpoint © of A, s <; x
3. If B4 is complete then it is the only consistent stable fixpoint of A.

4. The operator C4 is consistent and, consequently, B4 is consistent,
too.
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Proof: The assertion (1) follows from the fact that a4 is the <;-least
fixpoint of A and fixpoints of C4 are fixpoints of A (Theorem 19).

Stable fixpoints of A are precisely the fixpoints of C4. Since G4 is the
least fixpoint of C4, the assertion (2) follows.

To prove (3), we first observe that since 4 is complete, it is a con-
sistent stable fixpoint of A. Let us consider a consistent stable fixpoint
of A, say x. Then zx is a fixpoint of C4. Thus, B4 <; z. Since (4 is
complete, it is a maximal consistent element of L?. Thus, z = B4 and
(3) follows.

Finally, C4 is an approximating operator (it approximates operator
Cs. Thus, the assertion (4) follows from Proposition 14 and Corollary
15. O

We will now assume that A is an approximating operator for an op-
erator O : L — L and discuss the relationship between the fixpoints of
C 4 and fixpoints of O.

Proposition 24 Let L be a complete lattice. Let A:L? — L? be an
approzimating operator for an operator O: L — L. If (x,x) is a fizpoint
of Ca then x is a <-minimal fixpoint of O.

Proof: The proposition follows immediately from theorem 19. a
It follows from Proposition 24 that if A is an approximating operator
for an operator O then fixpoints of O corresponding to complete fixpoints
of the stable operator C4 form an antichain.
We will next consider the case when O is monotone. In this case we
can use the trivial approximation of O, Ap. Using Proposition 17 and
the discussion that precedes it, we obtain the following result.

Proposition 25 Let L be a complete lattice. If O : L — L is a mono-
tone operator, then for every x € L, Ca,(z,y) = (Ifp(O),Ilfp(O)) (that
is, Ca,, is constant).

If O is monotone, its trivial approximation Ap may have many fix-
points in general and many complete fixpoints, in particular. However,
by Proposition 25, the stable operator for Ap has only one fixpoint and
it corresponds precisely to the least fixpoint of O. In the context of logic
programming, this result says that a Horn logic program P has a unique
stable model and that it coincides with the least Herbrand model of P.

Consider an operator O defined on a complete lattice L. How can
we associate with this operator its well-founded fixpoint? In order to
do so, we need to construct an approximation A of O and use the well
founded fixpoint of A as the well-founded fixpoint of O. There may be
several approximating operators and the well-founded fixpoints of these
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operators may have different properties. As mentioned earlier, a study
of best approximations will be presented in another paper.

5. APPLICATIONS IN KNOWLEDGE
REPRESENTATION

The results presented here provide us with a uniform framework for
semantic studies of major knowledge representation formalisms: logic
programming, autoepistemic logic and default logic. Namely, all major
semantics for each of these formalisms can be derived from a single
operator.

In the case of logic programming, our results extend an algebraic ap-
proach proposed in (Fitting, 1999). The lattice of interest here is that
of 2-valued interpretations of the Herbrand base of a given program P.
We will denote it by A,. The corresponding bilattice Ay X A9 is isomor-
phic with the bilattice A4 of 4-valued interpretations (in 4-valued Belnap
logic). Our results imply that the central role in logic programming is
played by the 4-valued van Emden-Kowalski operator 7Tp defined on the
bilattice Ao x Ay (or, equivalently, on bilattice A4). First, the oper-
ator Tp approximates the 2-valued van Emden-Kowalski operator Tp.
Second, fixpoints of Tp represent 4-valued supported models, consistent
fixpoints of Tp represent partial (3-valued) supported models and com-
plete fixpoints of Tp describe supported models of P. The <;-least fix-
point of Tp (it exists as Tp is approximating) defines the Kripke-Kleene
semantics of P.

Perhaps most importantly, it turns out that our general construction
assigning the stable operator to every approximating operator when ap-
plied to Tp yields the 4-valued Przymusinski operator ¥/, and the 2-
valued Gelfond-Lifschitz operator GLp. That is, the stable operator
for Tp coincides with U, and the complete stable operator for Tp co-
incides with GLp. Thus, the semantics of 4-valued, partial (3-valued)
and 2-valued stable models can also be derived from the operator 7p.
The same is true for the well-founded semantics since it is determined
by the <;-least fixpoint of the stable operator of 7p. The structure of
the family of operators and semantics for logic programming that can
be derived from the operator 7p is presented in Figure 1.1.

In (Denecker et al., 1998; Denecker et al., 2000) we developed an
algebraic approach to semantics for autoepistemic and default logics.
In both cases, our approach can be regarded as a special case of the
general approach presented here. In the investigations of autoepistemic
and default logics we consider the lattice W of possible-world structures
(sets of 2-valued interpretations) and the corresponding bilattice B of
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4- and 3-valued supported models
Kripke-Kleene semantics

— Tp
2-val 1 —_— / \
valued supported models TP CTP = GLP <«—— stable models

CTP — \I}’P <« 4- and 3-valued stable models
well-founded semantics

Figure 1.1 Operators and semantics associated with logic programming

belief pairs (Denecker et al., 1998). In the case of autoepistemic logic, the
central place is occupied by the operator Dy (T is a given modal theory)
defined on the bilattice of belief pairs and introduced in (Denecker et al.,
1998). It turns out to be an approximating operator for the operator
Dy used by Moore to define the notion of an expansion (Moore, 1984).
Thus, the concepts of partial expansions and expansions can be derived
from Dp. Similarly, the Kripke-Kleene semantics can be obtained from
Dr as its least fixpoint. The stable operator for Dy and its complete
counterpart lead to semantics for autoepistemic logic that to the best of
our knowledge have not been studied in the literature: the semantics of
extensions, partial extensions and the well-founded semantics, that are
closely related to the corresponding semantics for default logic (Denecker
et al., 2000). The emerging structure of operators and semantics for
autoepistemic logic is depicted in Figure 1.2.

SN

C’DT ~<«—— expansions

partial expansions
Kripke-Kleene semantics

expansions by Moore =~ ——»

CDT — partial expansions
well-founded semantics

Figure 1.2 Operators and semantics associated with autoepistemic logic

A very similar picture emerges in the case of default logic, too. In
(Denecker et al., 2000) we described an operator €a on the bilattice of
belief pairs and argued that all major semantics for default logic can
be derived from it. Among them are the semantics of weak extensions
(Marek and Truszczynski, 1989a), partial weak extensions and the cor-
responding Kripke-Kleene semantics for default logic. In addition, the
complete stable operator for o coincides with the Guerreiro-Casanova
operator characterizing extensions (Guerreiro and Casanova, 1990) and
the <;-least fixpoint of the stable operator Cg, for £a yields the well-
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founded semantics for default logic described by Baral and Subrahma-
nian in (Baral and Subrahmanian, 1991). The semantics landscape of
default logic is depicted in Figure 1.3.

partial weak extensions

Kripke-Kleene semantics EA
weak extensions . /
EA EsAt <+—— extensions by Reiter
E/'Zt — partial extensions

well-founded semantics
Figure 1.8 Operators and semantics associated with default logic

The similarity between the families of the semantics for logic pro-
gramming, default logic and autoepistemic logic is striking. It has been
long known that logic program clauses can be interpreted as default rules
(Marek and Truszczynski, 1989b; Bidoit and Froidevaux, 1991). Namely,
a logic program clause

a<by,...,by,not(cy),...,not(c,)
can be interpreted as a default

bi A...ANby:—cy,. .., e,

a

It turns out that under this translation the operators 7p and &a(p)
are very closely related (A(P) stands for the default theory obtained
from the logic program P by means of the translation given above).
Namely, let us observe that each interpretation I can be associated with
the possible-world structure consisting of all interpretations J such that
I(p) = t implies J(p) = t. Thus, the lattice Ay can be viewed as a sub-
lattice of W and the restriction of the operator o(p) to this sublattice
essentially coincides with Tp. It follows that all the derived operators are
similarly related, and we obtain a perfect match between the semantics
for logic programming and the semantics for default logic.
Similarly, in (Konolige, 1988) it was proposed to interpret a default

BL Ao AP,y Y
«

as a modal formula
KGiN...KBpn AN-K-71 A...\N=K—y, D a.

It turns out that under this translations the operators €A and Dp(a)
coincide (here T'(A) is the modal image of a default theory A under
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Konolige’s translation). As before, all corresponding pairs of derived
operators also coincide. Thus, we obtain a perfect match between the

semantics for default and autoepistemic theories?.

6. CONCLUSIONS

In the paper we presented an algebraic theory of fixpoints of non-
monotone operators. We argued that essentially all major semantics
for logic programming, autoepistemic logic and default logic can be de-
scribed in an elegant and uniform way by applying our algebraic fixpoint
theory to a particular operator: Tp in logic programming, Dy in au-
toepistemic logic, and €A in default logic. When, as our study appears
to indicate, a number of different logics, developed from different per-
spectives, can be derived from a uniform principle, the question must be
raised of the knowledge theoretic role and meaning of this principle.

We hypothesize that our theory provides a generalized algebraic ac-
count of non-monotone constructions and non-monotone induction in
mathematics. Tarski’s fixpoint theory can be considered as a general
method for modeling monotone constructions and positive inductive def-
initions. It seems that the theory presented here extends this theory to
the general case of non-monotone inductive definitions. The investiga-
tion of this hypothesis amounts to an empirical study of constructive
techniques in mathematics and of logical formalizations of such tech-
niques, including existing formalizations of non-monotone induction such
as iterated inductive definitions and inflationary fixpoint logic. Early re-
sults in this direction are presented in (Denecker, 1998).

If we can validate our hypothesis, then the theory presented here
elucidates new fundamental relationships between different scientific do-
mains, including nonmonotonic reasoning, logic programming, database
theory and inductive definitions. It may also shed more light on the role
of different logics for knowledge representation. The discussion of these
issues will be the subject of another publication.
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