
PFME: A Paradigm Functional Morphology
Engine

Raphael Finkel Gregory Stump
raphael@cs.uky.edu gstump@pop.uky.edu
Dept. of Computer Science Dept. of English
University of Kentucky University of Kentucky

January 8, 2013

1 Introduction

Gregory Stump introduced Paradigm Functional Morphology (PFM) as a way
to express the morphology of natural languages. [1]. Raphael Finkel built
PFME, a web-based engine that generate word forms from language theories
expressed in PFM. This document describes the features of PFME, which is
accessible at http://www.cs.uky.edu/˜raphael/linguistics/pfm.
cgi. This engine belongs to a suite of web-accessible tools for computa-
tional linguistics called Cats Claw: Computer-Assisted Technology Service; Compu-
tational Linguist’s Automated Workbench, accessible at http://www.cs.uky.
edu/˜raphael/linguistics/claw.html.

In the following, we distinguish “must”, “should”, and “may” to denote
whether an item is obligatory, conventional, or optional.

2 Getting started

PFME allows the user to enter a theory describing a language in three different
ways.

• Uploading from a file

• Entering into a text area (preferably by copy and paste)

• Filling in a collection of forms

The easiest way to start is to download one of the PFM theories listed in
the PFME web page and then upload it to PFME via the submit file button.
These theories are intended to display PFME’s function, not linguistic theories
of the languages represented. Not all provide correct results or even reasonable

1

http://www.cs.uky.edu/~raphael/linguistics/pfm.cgi
http://www.cs.uky.edu/~raphael/linguistics/pfm.cgi
http://www.cs.uky.edu/~raphael/linguistics/claw.html
http://www.cs.uky.edu/~raphael/linguistics/claw.html

approaches to the problems they try to solve. However, they are generally
syntactically correct input to the PFM calculator.

After receiving a PFM theory, PFME displays (1) the output generated by
the theory, a filled-in text area containing the theory, which you can modify
and re-submit with the submit text button, and (3) a filled-in form, which you
can modify and re-submit with the submit form button.

PFM theories must be encoded in Unicode UTF-8. In particular, rules use
the σ and “→” symbols (Unicode \u03c3 and Unicode \u2192). In addition,
theories may use any Unicode characters in representing lexemes and derived
forms, so it is straightforward to generate IPA or words in non-Latin alphabets.

3 Notation

We need to introduce some technical terms in order to describe the notation for
PFM theories.

3.1 Expandables

Many components of a PFM theory are expressed by a shorthand that we call
an expandable. Here is an example:

sg/pl 1/2/3 masc/fem

This example expands to a list containing the following pieces:

sg 1 masc
sg 1 fem
sg 2 masc
sg 2 fem
sg 3 masc
sg 3 fem
pl 1 masc
pl 1 fem
pl 2 masc
pl 2 fem
pl 3 masc
pl 3 fem

An expandable is a space-separated list of elements. Each element is a solidus
(“/”)-separated list of alternatives. Each alternative is either a parenthesized
expandable, an identifier (such as masc or 3 in the example above), or a super-
token. Here are some sample supertokens:

AGR(subject):{1/2/3 masc/fem}
TENSE:{past/present/future}

2

Supertokens must have a name (conventionally in upper case), a colon, and
braces surrounding an expandable; they may include a parenthesized sub-
name.

3.2 Contexts

A context is a package containing information about a particular lexeme and
a morphosyntactic property set (MPS). For instance, in English we might be
interested in forming the lexeme “eat” in the third-person singular present.
PFM theories represent a context by a pair in pointy brackets, such as <L, σ>,
where L represents the lexeme and σ represents the MPS.

3.3 Matching

PFME often needs to match components of contexts against patterns. A com-
ponent could be composed of a lexeme’s syntactic category and inflection class,
or it could be composed of an MPS. The pattern is an expandable. We say the
component matches the pattern (or, equivalently, that the pattern matches the
component) if at least one of the alternatives generated by the pattern has ele-
ments all of which appear in the component. The strength of the match is the
number of such elements that appear.

3.4 Pan. ı̄ni precedence

When PFME must choose among alternative patterns in some context, it uses
Pan. ı̄ni precedence, which follows these steps:

1. Determine which alternatives are available: those that the context
matches.

2. Of the available alternatives, select the most restrictive alternative: those
whose match has the highest strength.

For instance, in a context whose MPS is {1 sg past fem}, consider these alter-
natives:

a. 1 sg fut fem
b. 1 sg fem
c. sg fem
d. sg past

Of these four alternatives, only b, c, and d are available. Alternative a is un-
available because it requires the component fut, which is not present in the
MPS. Of the available alternatives, b is the most restrictive, matching three
of the four components of the MPS. Alternatives c and d are less restrictive,
matching only two of the four components of the MPS.

3

4 PFM components

The components of a PFM theory may be presented in any order. PFME simply
ignores any part of the PFM theory that does not correspond to a recognized
component, so the theory can include comments without specially delimiting
them. The special character “%” introduces a comment that continues to the
end of the line. Lines may be terminated in the Unix fashion (with newline),
in the Win32 fashion (carriage return, newline), or in the Macintosh fashion
(carriage return).

4.1 Language name

A PFM theory should specify the language it represents by a line like this:

Language: Name

4.2 Paradigm function

A PFM theory must specify a single paradigm function that is to apply to all
lexemes. Here is a sample paradigm function:

Paradigm Function
PF(<L,σ>) = person(tense(I(Stem(<L,σ>))))

The function must have a line saying Paradigm Function. This particular
function says that the way to generate a surface form from the context <L,σ>
is to first find the appropriate stem, then apply an appropriate rule from block
I, then a rule from block tense, then a rule from block person. Any word
may name a block, although it is conventional to name blocks either by Roman
numerals (like I) or by names of morphosyntactic properties (like person).

4.3 Lexical entries

Each lexeme must be described by a lexical entry like the following:

Lexeme: EAT
Meaning: eat
Syntactic category: V
Inflection class: n

The lexeme name should be in upper case, and one should use V, N, and A for
verbs, nouns, and adjectives. The Lexeme and Syntactic category must
be a single word. The Meaning may be several words. The inflection class is
an expandable.

4

4.4 Stem-selection rules

Each lexeme must have one or more associated stems. Stems are defined by
syntax like the following.

Stem(<EAT, S:{past}>) = <ate, S>
Stem(<EAT, S:{perfect/futPerf}>) = eaten
Stem(<EAT, S:{}>) = eat
Stem(<CLIMB, σ:{}>) = climb
Stem(PERFORM) = perform

This example demonstrates a variety of acceptable formats. The first line shows
the most general format, where both the left-hand side and the right-hand side
use full context notation. The other examples use various acceptable short-
hands. Stem formats obey these rules:

• The supertoken expandable denoting the MPS, if present, should either
use the name S or σ.

• The same supertoken name must be used on the right-hand side, if
present, as on the left-hand side.

• The lexeme component on the right-hand side must be a single word.

PFME uses Pan. ı̄ni precedence to select the stem appropriate to a context.

4.5 Paradigm Schemata

A PFM theory must have at least one paradigm schema; it may have several.
A simple paradigm schema looks like this:

ParadigmSchema(V) = {
present/past/perfect/future/futPerf sg/pl 1/2/3

}

The first line must have a parenthesized, non-empty expandable pattern that
may refer to syntactic categories and inflection classes. The bracketed right-
hand side is an expandable that generates a list of MPSs.

Given a lexeme, PFME finds all paradigm schemata whose pattern matches
the syntactic category and inflection class of the lexeme. PFME generates all
MPSs from those matching schemata.

A complex paradigm schema may expand to several paradigm schemata.
Here is an example taken from a theory of nouns and adjectives in Noon
(Niger-Congo, Senegal):

ParadigmSchema(N <\d>A) = {
CLASS:{$1}
NUM:{sg/pl}
DEF:{plus/minus}

5

LOC:{1/2/3/noLoc}
POSS:{(1 sg)/(1 pl incl/excl)/(2/3 sg/pl)/noPoss}
REL:{noRel}

The presence of an expression bracketed by < and > in the pattern indicates
expansion. The special characters \d represent any number 0 . . . 9. The later
use of $1 in the right-hand side refers back to that bracketed expression. In this
language, nouns have inflection classes 1A . . . 6A. The paradigm schema allows
each noun to gain an MPS supertoken called CLASS containing a number in
1 . . . 6.

4.6 Disallowed MPSs

The MPS list that PFME produces from the paradigm schemata may include
some unwanted combinations. For instance, in Noon nouns, possession re-
quires definiteness, so we don’t want to generate MPSs that contain a POSS
other than noPoss if we have DEF:{minus}. We indicate unacceptable com-
binations by disallow schemata, which follow the same rules as paradigm
schemata. For instance, we can have:

Disallow(N) = {
(POSS:{sg/pl} DEF:{minus}) /
(LOC:{1/2/3} DEF:{minus})

}

This particular schema enforces the rules that possession requires definiteness,
and location requires definiteness.

PFME must check every generated MPS against the list of disallowed MPSs,
so where possible, it is better to use restrictive expandables in the paradigm
schema instead of listing disallowed entries. In the example above, for in-
stance, we have chosen to indicate

POSS:{(1 sg)/(1 pl incl/excl)/(2/3 sg/pl)/noPoss}

instead of allowing

POSS:{(1/2/3 sg/pl incl/excl/nocl)/noPoss}

and disallowing

POSS:{(sg incl/excl) / (2/3 pl incl/excl)}

4.7 Rules of exponence

The paradigm function indicates at least one block of rules of exponence. In-
dividual rules can themselves refer to other blocks. A block of rules looks like
the following:

6

Block I
I, X,S:{3 sg present} → Xs
I, X[weak],S:{perfect/past/futPerf} → Xed

Every block implicitly contains the default rule:

blockName, X[],S:{} → X

The block must begin with a Block line and be followed by the rules appro-
priate to that block. Each rule must start with the block name, comma, and
the letter X. The X refers to the argument to the rule, typically a partial surface
form. Following the X is an optional bracketed expandable, which we call the
classifier. If there is no bracketed expandable, the classifier is considered to be
empty.

The left-hand side concludes with the MPS component, which is a super-
token named either S or σ. Within this supertoken is an expandable. Entire
bracketed subparts may be abbreviated by a single Greek letter. For instance,
the supertoken may look like this:

S:{transitive AGR(SUBJ):{τ} AGR(OBJ):{σ}}

The left-hand side and right-hand side are separated by→.
The right-hand side is composed of Unicode characters, which may contain

special forms:

• The letter X, standing for the argument to the rule. S is the name of the
supertoken on the left-hand side.

• An embedded expression, such as (Negator(Mood(<X,S>))), which
acts as a referral to a subordinate paradigm function, in this case, invok-
ing first the block Mood and then the block Negator. Embedded expres-
sions must be surrounded by parentheses, and references to X must be of
the form <X,S>.

• Embedded expressions may introduce a new context and may refer to
abbreviations from the left-hand side:

(II(<X, τ>)) (IV(<X, σ>))

In this example, the right-hand side invokes two blocks, each in a new
context. The block II only uses the τ part of the MPS component from
the left-hand side; the block IV only uses its σ part.

Parentheses and the letter X are not allowed in the right-hand side except as
described here.

PFME evaluates blocks in an order determined by the paradigm function
and referrals from rules. It evaluates a block with respect to a context, which
includes the lexeme and a given MPS. In evaluating a block, PFME selects the
appropriate rule as follows.

7

1. Discard those rules in the block that do not have highest Pan. ı̄ni prece-
dence based on comparing their classifiers with the syntactic category
and inflection class of the lexeme. It is permissible to retain multiple
rules.

2. Of the retained rules, select that rule with the highest Pan. ı̄ni precedence
based on MPS component. There must be exactly one such rule (possibly
the default rule) or the PFM theory is erroneous.

5 Sandhi

A PFM theory may include rules of Sandhi, including shorthands for phono-
logical classes. For example:

PhonologicalClass voiceless = f k p t

Sandhi {
z → s / [voiceless]

}

The theory may contain any number of PhonologicalClass commands;
each must by on a line by itself. There may be only one Sandhi section, which
must contain a bracketed set of rules. Each rule is of the form

original → replacement / when

Such a rule indicates that the string indicated by original is to be replaced by
the string indicated by replacement under the situation indicated by when.
The when string must have a single underscore (), which represents the orig-
inal string; to its left and right may be indicators specifying the environment
surrounding the original string in order for the rule to apply. These indicators
are enhanced strings, which are strings that may contain phonological class
shorthands, which must be enclosed in square brackets. In the example above,
the rule specifies that z converts to s if it is preceded by a voiceless letter, which
is any of f, k, p, or t.

The replacement may be ∅ (Unicode \u00d8 or Unicode \u2205) to indi-
cate that PFME should simply delete the original in the given environment.

If the Sandhi section includes multiple rules, they are applied in the order
shown; later rules can therefore further modify forms that earlier rules have
produced.

6 Truth

A PFM theory may include a section showing known forms for some lexemes
and MPSs. For instance, we can say:

8

Truth = {
EAT:{1 sg present} = I eat
EAT:{3 sg present} = he eats
EAT:{3 sg past} = he ate
EAT:{3 sg perfect} = he has eaten
EAT:{1 pl perfect} = we have eaten
EAT:{3 sg futPerf} = he will have eaten
CLIMB:{1 sg past} = I climbed
CLIMB:{3 pl perfect} = they have climbed

}

Each entry must be on a single line by itself. It contains a lexeme name, a colon,
a bracketed expandable (representing one or more MPSs), an equal sign, and
the expected output. PFME checks all results that are expected by the Truth
section and indicates if they are as expected or not.

If the theory contains the line

ShowOnlyTruth

then PFME will only run the lexemes and MPSs indicated by the Truth sec-
tion.

7 Randomization

A PFM theory may include a line like

Random 10

to indicate that PFME is not to generate all possible MPSs specified by the
paradigm schemata and not disallowed, but is rather to only randomly gener-
ate a limited number (in this case, ten) MPSs for each lexeme. This facility is
especially useful if the number of possible MPSs is very large, because PFME
operates under a time limit.

PFME ignores a randomization request if the theory also requests
ShowOnlyTruth.

8 Output control

If the PFM theory contains this line:

notInteractive

then PFME suppresses interactive features, including a text box and a form in
which the user can enter or modify the PFM theory. These features are experi-
mental and incomplete in any case.

9

9 How PFME works

PFME first accepts the given PFM theory and parses it. For each lexeme, it
consults the paradigm schemata and the disallow schemata (or, if the theory
specifies ShowOnlyTruth, the Truth set) to produce MPSs (either all possi-
ble MPSs or a random selection, if the theory specifies randomization), which
it packages with the lexeme into contexts that it calls queries. For each query,
PFME applies the paradigm function, which invokes stem-selection rules and
blocks. For each block that it applies, PFME selects the single best rule. If
the block is ambiguous, that is, there are several best rules, but they all agree
on their right-hand side, the ambiguity is innocuous and ignored; otherwise,
PFME arbitrarily picks a best rule but flags the error. After it has finished ap-
plying the paradigm function to the context, PFME applies all sandhi rules to
the result.

The output of PFME is a web page with one section per lexeme expressed
as a table. The table section contains one line per query. The line has cells in-
dicating the query, the chosen stem, and each block that is consulted. For each
block, PFME either indicates ditto if it uses the default rule or the number of
the rule it chooses. It then applies any sandhi rule to the result and displays it.
Here are the cells in one sample line of output:

present sg 1 (MPS of query)
eat [strong] (stem and inflection class)
I: ditto (result of block I)
tense: ditto (result of block tense)
person 1: ←↩ I eat (result of block person)
I eat (result of sandhi)
X(agrees with Truth)

If notInteractive is not set, PFME also displays a text box containing
the PFM theory and a form containing the PFM theory. You may modify either
the text box or the form and (re)submit it. However, not all features of PFME
are available via the form, and neither the form nor the text box is a faithful
reproduction of the PFM theory that PFME has analyzed. These features are
only to help you get started.

References

[1] G.T. Stump. Inflectional morphology: a theory of paradigm structure, volume 93.
Cambridge University Press, 2001.

10

	Introduction
	Getting started
	Notation
	Expandables
	Contexts
	Matching
	Panıni precedence

	PFM components
	Language name
	Paradigm function
	Lexical entries
	Stem-selection rules
	Paradigm Schemata
	Disallowed MPSs
	Rules of exponence

	Sandhi
	Truth
	Randomization
	Output control
	How PFME works

