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Abstract

In this paper, we describe a solution to the register synthesis problem for a
class of sequence generators known as Algebraic Feedback Shift Registers. These
registers are based on the algebra of π-adic numbers, where π is an element in a ring
R, and produce sequences of elements in R/(π). We give several cases where the
register synthesis problem can be solved by an efficient algorithm. Consequently,
any keystreams over R/(π) used in stream ciphers must be unable to be generated
by a small register in these classes. This paper extends the analyses of feedback
with carry shift registers and algebraic feedback shift registers by Goresky, Klapper,
and Xu.

Key words: Feedback shift register, pseudorandom generator, stream cipher,
register synthesis, N -adic numbers.

1 Introduction

In the design of stream ciphers, finite state devices for the generation of infinite se-
quences play two roles. First, they are used in the design of keystream generators. In
this capacity, they must be shown to yield sequences that are unpredictable from short
prefixes. Second, they are used in cryptanalysis. If it is possible to synthesize an efficient
generator of a given sequence from a short prefix, then a cryptanalytic attack can be
launched against the given sequence. This is what we call the register synthesis problem.
More specifically, for a sequence A and a class F of sequence generators, we want to find
the smallest generator in F that outputs A. If this can be done by an efficient algorithm
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whose input is a short prefix of A (where “short” is measured in terms of the size of
the smallest generator in F that outputs A), then we have solved the register synthesis
problem for F . It follows that in order for a sequence A to be used in a secure stream
cipher, the size of the smallest generator in F that outputs A must be large. Various
types of registers – such as linear feedback shift registers (LFSRs) [6] and feedback with
carry shift registers (FCSRs) [11] (described below) – have been used in such analysis.

LFSRs are the most widely studied pseudorandom sequence generators. They have
been used as generators of statistically random sequences for a variety of applications,
including radar, spread spectrum communication, Monte Carlo simulation, and cryp-
tography. From a cryptographic point of view, LFSR sequences are weak because the
register synthesis problem is solved by the Berlekamp-Massey algorithm [15]. They are
often used, however, as building blocks for generators that are secure against this attack
[5, 16, 18].

The study of pseudorandom sequences most commonly deals with binary sequences,
or perhaps with sequences over prime fields Z/(p). However, there has been a recent
surge of interest in sequences over more general modular rings and Galois rings, especially
sequences over Z/(4) [1, 3, 4, 8, 19]. This interest was triggered by the realization that
the apparently linearly dual relationship between Kerdock and Preparata codes was
explainable by linear codes over Z/(4) [8]. A variety of subjects concerning sequences
over Galois rings have subsequently been studied.

It is natural, therefore, to study the register synthesis problem for sequences over
Galois rings. Indeed, just this problem was considered for LFSRs over modular rings
Z/(n) (n not prime) by Reeds and Sloane [17]. They presented a generalization of the
Berlekamp-Massey algorithms (although their algorithm is considerably more complex
than the Berlekamp-Massey algorithm over a field).

The register synthesis problem for FCSRs (over prime fields) was solved by Klapper
and Goresky [11]. In later work, Klapper and Xu defined a generalization of both LFSRs
and FCSRs called algebraic feedback shift registers (AFSRs) [12], described in detail in
Section 2. An AFSR depends in part on a choice of an algebraic ring R and a principal
ideal I = (π) in R. It produces sequences whose elements can be thought of elements of
the quotient ring R/I. LFSRs over a field F are AFSRs with R equal to the polynomial
ring F [x] and π = x. (More generally, F can be an arbitrary ring, usually finite). FCSRs
with elements in Z/(p) are AFSRs with R equal to the ordinary integers and π = p.
Thus the register synthesis problem for AFSRs has been solved when R is a polynomial
ring over a field, when R is a polynomial ring over a modular ring Z/(n), and when R
is the ordinary integers and π is prime. But other types of AFSRs are possible. For
example, if R = Z and π = 4, then AFSRs produces sequences in {0, 1, 2, 3}, which can
be thought of as sequences of pairs of bits. Or if R = Z and π = 256, then AFSRs
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produces sequences of 32 bit words.
The current paper is concerned with the register synthesis problem for AFSRs over

finite extensions of the ordinary integers, with π not necessarily prime. The main result
of the paper is a framework that will give rise to an efficient algorithm for solving the
register synthesis problem when the pair (R, π) has certain algebraic properties. This
includes the case R = Z and π = 4 which gives sequences over Z/(4). The algorithm we
present is based on the Berlekamp-Massey algorithm, and is very different from that used
by Klapper and Goresky for FCSRs. The case when R is the ring of ordinary integers
was considered previously in an extended abstract by the authors [21] and the current
paper is an extension of those results.

In Section 2 the definitions and some of the basic properties of AFSRs are reviewed.
In Section 3 an algorithm is described that solves the register synthesis problem when
the ring R has certain properties. In Sections 4, 6, and 7 we describe several classes of
rings where these properties hold.

2 Algebraic Feedback Shift Registers

In this section we recall the construction of algebraic feedback shift registers (AFSRs)
and the algebraic basis for their design and analysis [12]. The algebraic notions used
here can be found in many texts on modern algebra [9, 10]. Let R be a commutative
ring which is an integral domain (no zero divisors). Let F be its field of fractions. Let
π ∈ R. The principal ideal generated by π is denoted I = (π). We assume throughout
that the quotient K = R/(π) is finite, called the residue ring of (R, π).

Let S be a complete set of representatives for K in R. That is, for every element
a ∈ K there is a unique element s ∈ S that reduces to a modulo π. For simplicity, we
may assume that 0 and 1 are always contained in the representative sets. From time to
time we may find it convenient to identify S and K. The set of power series

∞∑
i=0

aiπ
i, ai ∈ S, (1)

forms a ring, R̂. Addition and multiplication are defined as for power series, but there
may be carry.

For example, we can take R = Z and π = n, an integer greater than one, giving rise
to the n-adic numbers. We can take S = {0, 1, · · · , n−1} in this case. We add two n-adic
numbers

∑
i ain

i and
∑

i bin
i coefficient by coefficient, but when we add corresponding

coefficients the result must be represented in terms of S: ai + bi = (ai + bi mod n) +
b(ai + bi)/ncn. As with the ordinary integers, the term b(ai + bi)/nc is saved as a carry
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to the next term. In particular, notice that −1 =
∑∞

i=0(n− 1)ni. Indeed, if we add 1 to
the n-adic number on the right we get zero due to the infinite carry.

The example R = K[x], with K a field, is also instructive. We let π = x (so the
quotient field is K as above) and S = K. Then R̂ is just the ring of ordinary power
series (so there is no carry). When this example is used to define AFSRs (see below) we
obtain ordinary LFSRs.

In general we assume that ∩∞i=0I
i = (0) holds1 Then there is an embedding of R in

R̂. To see this, solve the infinite system of equations

ai ≡ a−
i−1∑
j=0

ajπ
j, ai ∈ S, i = 0, 1, · · · .

The condition on I says that this element of R̂ is uniquely defined, and it follows that
this defines a ring homomorphism R→ R̂.

Furthermore, if a ∈ R is invertible modulo π (that is, its reduction modulo (π) in K is
a unit), then a is invertible in R̂. Again, this can be seen by solving an infinite system of
equations. In fact if a =

∑∞
i=0 aiπ

i is any element of R̂ with ai invertible modulo π, then
we want to find b =

∑∞
i=0 biπ

i so that ab = 1. Suppose that we have found b0, · · · , bj−1

so that (
∑∞

i=0 aiπ
i)(b =

∑i−1
i=0 biπ

i) ≡ 1 mod πj. Then we have only to solve a0bj+(terms
involving already defined bis) ≡ 0, with bj ∈ S, to obtain the next coefficient. Thus we
can speak of the π-adic expansion of an element c/a ∈ F with a invertible modulo π. As
we shall see, the coefficient sequences of these π-adic expansions are precisely the output
sequences from AFSRs.

There is a well defined notion of the reduction of an element α ∈ R̂ modulo π. If α is

α =
∞∑
i=0

aiπ
i,

then the reduction of α modulo π is a0. We also refer to

∞∑
i=0

ai+1π
i

as the integral quotient of α by π, denoted quo(α, π). Thus in general

α = (α mod π) + πquo(α, π).

1This says that R is separable with respect to the I-adic topology, and in this case R̂ is the completion
of R.
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Figure 1: An AFSR Architecture

Note that if α ∈ R, then quo(α, π) ∈ R.
Now let T be a second (possibly the same) complete set of representatives for K in

R.

Definition 2.1 An algebraic feedback shift register (or AFSR) over (R, π, S, T ) of length
r is specified by r+1 elements q0, q1, · · · , qr ∈ T called the taps, with q0 invertible modulo
π. It is an automaton each of whose states consists of r elements a0, a1, · · · , ar−1 ∈ S and
an element m ∈ R (the extra memory or carry). The state is updated by the following
steps.

1. Compute

τ =
r∑

i=1

qiar−i + m.

2. Find ar ∈ S such that q0ar ≡ τ mod π.

3. Replace (a0, · · · , ar−1) by (a1, · · · , ar) and replace m by quo(τ − q0ar, π).

A diagram of an AFSR is given in Figure 1. Such a device outputs an infinite sequence
by repeatedly outputting the last element a0 and changing states. It is not immediate
that such a device can be implemented in hardware. This is the case if and only if it
enters only finitely many distinct states during an infinite execution. This is equivalent to
saying that the extra memory takes on only finitely many values throughout an infinite
execution. When R is a finite extension of the integers, it is equivalent to the extra
memory being bounded. This is not the case in general, but conditions can be given
under which it is the case.
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Proposition 2.2 [12] Suppose the fraction field F of R is a finite extension of the
rational numbers. If for every embedding of F in the complex numbers we have |π| > 1,
then the memory in the infinite execution of any AFSR over F takes on only finitely
many values. If there is an embedding of F in the complex numbers such that |π| < 1,
then there is an AFSR whose memory grows unboundedly from some initial state.

In some cases explicit bounds on the size of memory can be given. For example, if
R = Z, b = max{|a| : a ∈ S}, and c =

∑r
i=0 |qi|, then the extra memory needed by a

strictly periodic sequence is bounded |m| ≤ bc/(|π| − 1).
We conclude this section by summarizing some of the properties of AFSRs. For an

AFSR with taps q0, · · · , qr, we call the element

q = q0 + q1π + q2π
2 + · · ·+ qrπ

r

in R the connection element. We associate with any infinite sequence A = (a0, a1, · · ·)
over S the π-adic number

α = α(A, π) =
∞∑
i=0

aiπ
i.

1. Suppose A is the output from an AFSR with connection element q = q0 + q1π +
· · ·+ qrπ

r and initial extra memory m. Then the associated π-adic number is

α =

∑r−1
n=0(

∑n
i=0 qian−i)π

n −mπr

q
. (2)

2. For any u, q ∈ R, with q 6≡ 0 mod π, there is at most one AFSR over R, π, and S
with connection element q, whose output corresponds to u/q.

3. Given a connection element

q = −q0 +
r∑

i=1

qiπ
i

with q0, · · · , qr ∈ T , and u ∈ R, there is an AFSR over R with output sequence
A such that α(A, π) = u/q. Furthermore, there is an efficient algorithm for con-
structing this AFSR.

In order to measure the computational complexity of algorithms it is desirable to
associate a size measure with an AFSR. But this is problematic in general. Roughly
speaking the size should be the number of symbols of S needed to store the state. That
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is, r plus the size of the additional memory needed. This depends on the representation
chosen for elements of R, but in most cases of interest the size of the additional memory
for periodic sequences is logarithmic in r. More generally, for a nonperiodic output
corresponding to a fraction u/q, the size is approximately the maximum of the sizes of
u and q. We use such a measure below in our analysis and show for particular Rs how
it relates to the size in elements of S of the associated AFSR.

3 Rational Approximation

It follows from the preceding section that the register synthesis problem for AFSRs can
be solved if the following (loosely defined) problem can be solved.

Rational Approximation
Instance: A prefix of a sequence A.
Problem: Find elements q0, q1, · · · , qr ∈ T and u ∈ R such that

α(A, π) =
u

−q0 +
∑r

i=1 qiπi
=

u

q
. (3)

We say this problem is loosely defined because there are many pairs u, q that satisfy
this equation, and it is not stated what condition they should satisfy so that the resulting
AFSR is minimal. For example, if v is a unit in R, then vu, vq could be used. Thus
even if we have a way to choose u and q relatively prime and satisfying equation (3), we
would need too find the unit v so that vu, vq give rise to to the smallest AFSR.

In this section we give a set of conditions on R under which a rational approximation
algorithm exists. The conditions include a size measure Φ(u, q). The algorithm finds a
pair u, q satisfying equation (3) given O(t) symbols of A, where t is the minimal Φ(u, q)
for such a pair. We also have Φ(u, q) ∈ O(t). First some background.

3.1 Previous Rational Approximation Algorithms

The algorithm we present here is a modification of the Berlekamp-Massey algorithm [15],
which solves the register synthesis problem for LFSRs. By identifying sequences over a
field F with ordinary power series over F , the register synthesis problem for LFSRs over
F reduces to the problem of finding a representation for a power series f(x) =

∑
i aix

i as
a quotient of polynomials – a rational function – given a prefix of its coefficient sequence.
The idea of the Berlekamp-Massey algorithm is to maintain at stage j a best rational
approximation for f modulo xj. When a new symbol is processed, if the current best
approximation no longer works (i.e., a “discrepancy” occurs), a linear combination of
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the current best approximation and a previous one results in a new best approximation.
More specifically, f(x) is approximated by hj(x)/rj(x) modulo xj, but not modulo xj+1,
if and only if hj(x)− f(x)rj(x) ≡ cxj for some c 6= 0 ∈ F . We let

(hj+1, rj+1) = (hj, rj) + dxj−m(hm, rm),

where d ∈ F is chosen so that de + c = 0 if hm(x) − f(x)rm(x) ≡ exm, and m is the
most recent iteration when max{deg(hm), deg(rm)} changed. The proof that this works
is quite involved. It was shown in particular that if the given sequence can be generated
by a LFSR of length k (or equivalently, f(x) can be written as a quotient of polynomials
whose degrees are at most k), then f = hj/rj for j ≥ 2k. The proof of this fact depends
on bounds on the degrees of the polynomials that occur. In particular, it uses the facts
that (1) the degree of the sum of two polynomials is at most the maximum of the degrees
of the two polynomials and (2) the degree of a polynomial multiplied by a constant equals
the degree of the polynomial.

There are two difficulties with this approach to the register synthesis problem for more
general AFSRs. First, suppose we are considering sequences over Z/(4). For example,
we may want to solve the register synthesis problem for LFSRs over Z/(4), or for AFSRs
with R = Z and π = 4. In either case, we may find that the integer e equals 2 while c is
1 or 3. It is then impossible to solve for d. Second, if R is a ring (such as Z) such that
there is carry in the addition operation on R̂, then the “size” (that is, some reasonable
analog of degree) of the elements hj and rj may grow too quickly for their quotient to
converge to f .

The latter problem was avoided in the case of FCSRs (AFSRs with R = Z) with
π prime by using an somewhat different approach [11]. A register synthesis algorithm
was designed based on a lattice theoretic approach to π-adic numbers due to Mahler [14]
and de Weger [20]. We can think of a pair (hj, rj) as above as belonging to a lattice of
pairs that approximate f up to the jth coefficient. In the lattice theoretic approach, an
optimal basis for this lattice is maintained and updated iteratively. Unfortunately, this
approach does not work when π is not prime. Furthermore, it can only be adapted to
extensions of Z that are Euclidean domains, and such rings are quite rare.

3.2 Rational Approximation for AFSRs

Despite the objections of the preceding subsection, in this subsection we describe a
modification of the Berlekamp-Massey algorithm that works for many AFSRs over (R, π)
such that addition in R̂ has carry and π is not prime. This is accomplished with two
main modifications. First, the linear combination (hj, rj)+dπj−m(hm, rm) is replaced by
a more general linear combination d1(hj, rj) + d2π

j−m(hm, rm), with d1, d2 chosen from
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a fixed small set. Second, we control the growth of the approximations by producing a
new approximation that works for several new terms at once, thus compensating for the
increase in size due to carry when we form these linear combinations.

To make this effective we need two structures: (1) a measure of the size of elements
of R that increases in a controlled way when we perform various algebraic operations
and (2) a small subset of R from which we can select the coefficients d1 and d2. We next
describe the properties these structures must have. In later sections we describe various
rings that have these structures.

For measuring the size of elements, we assume we have a function φR,π : R →
Z ∪ {−∞} satisfying the following properties.

Property 1: There are non-negative integers b and c such that

1. φR,π(0) = −∞ and φR,π(x) ≥ 0 if x 6= 0;

2. for all x, y ∈ R we have φR,π(xy) ≤ φR,π(x) + φR,π(y) + b;

3. for all x, y ∈ R, we have φR,π(x± y) ≤ max{φR,π(x), φR,π(y)}+ c;

4. for all x ∈ R and k ≥ 0 ∈ Z, we have φR,π(πkx) = k + φR,π(x).

Here we use the convention that −∞+a = −∞ for every integer a. Such a function φR,π

is called an index function. From it we define a function ΦR,π on R×R by ΦR,π(x, y) =
max{φR,π(x), φR,π(y)} for any x, y ∈ R. The next proposition follows immediately from
the definition.

Proposition 3.1 For any two pairs (h1, r1), (h2, r2) ∈ R×R and integer k ≥ 0,

1. ΦR,π(h1 + h2, r1 + r2) ≤ max{ΦR,π(h1, r1), ΦR,π(h2, r2)}+ c;

2. ΦR,π(h1r2 − r1h2, r1r2) ≤ ΦR,π(h1, r1) + ΦR,π(h2, r2) + b + c;

3. ΦR,π(πk(h1, r1)) = k + ΦR,π(h1, r1).

Here b and c are the integers appearing in Property 1.

Suppose some AFSR over R and π has connection element q =
∑r

i=0 qiπ
r with qi ∈ T ,

and produces an output sequence whose associated π-adic number is α = u/q, where u
is given by equation (2). Then it follows from Property 1 that

φ(q) ≤ r + c dlog(r + 1)e+ e
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and
φ(u) ≤ r + c + max{2c dlog(r)e+ e + f + b, φ(m)},

where e = max{φ(x) : x ∈ T}, f = max{φ(x) : x ∈ S}, and m is the initial memory. In
most cases φ(m) is a measure of the amount of memory required to store the memory.
If this is the case, then Φ(u, q) is at most linear in the size of the AFSR. Thus if we
can bound the execution time of a rational approximation algorithm in terms of Φ(u, q),
then we will have also bounded the execution time in terms of the size of the AFSR.

To control the growth of the size of a new approximation which is a combination of
previous ones, we restrict the elements that are used to multiply the previous approx-
imations and make the combination. To do so, we assume we have a subset PR,π of R
such that the following properties hold.

Property 2 There are integers B > C ≥ 0 such that

1. if s ∈ PR,π, then πB does not divide s;

2. for every h1, h2 ∈ R, there exist s, t ∈ PR,π such that πB|sh1 + th2;

3. for every h1, h2 ∈ R and s, t ∈ PR,π, or s ∈ PR,π and t = 0, we have

φR,π(sh1 + th2) ≤ max{φR,π(h1), φR,π(h2)}+ C.

It follows that for any two pairs (h1, r1), (h2, r2) and any s, t ∈ PR,π, we have

ΦR,π(s(h1, r1) + t(h2, r2)) ≤ max{ΦR,π(h1, r1), ΦR,π(h2, r2)}+ C.

Such a set PR,π is called an interpolation set. When there is no risk of ambiguity
we drop the subscripts and simply write φ = φR,π, etc. With these definitions and
properties, the rational approximation algorithm is given in Figure 2.

The algorithm maintains a rational element hi/ri that is an approximation to α,
correct for the first i symbols of the π-adic expansion of α. At each stage we check
whether this approximation is correct for the next symbol. If not, we make a correction
using an earlier approximation. The new approximation is guaranteed to be correct not
only for the new symbol but for at least B additional symbols.

At the start of the algorithm, we set α← 1 + πα. The purpose is to guarantee that
(h0 − αr0) ≡ 0 modulo π0 but not modulo π1, and that there is no element s ∈ R with
s ∈ P such that πB|s(h0 − αr0).

At the end of the algorithm we have a pair of elements u, q ∈ R such that, if k is large
enough, u/q =

∑∞
i=0 aiπ

i (this is proved later in the paper). Thus q is the connection
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Rational Approximation
begin
input A = {ai ∈ S, 0 ≤ i ≤ k}
α←− 1 + π

∑k
i=0 aiπ

i

(h0, r0)←− (0, 1)
(h1, r1)←− (1 + a0π + · · ·+ aB−2π

B−1, 1 + πB)
m←− 0
for (i = m + 1 to k − 1)

if ((hi − riα) 6≡ 0 mod(πi+1)) {
if ( ∃s 6= 0 ∈ P with (πi+B | s(hi − riα)))

(hi+1, ri+1)←− s(hi, ri)
else {

Find s, t ∈ P , not both zero, with
πi+B | s(hi − riα) + tπi−m(hm − rmα)

(hi+1, ri+1)←− s(hi, ri) + tπi−m(hm, rm)
}
if (Φ(hi+1, ri+1) > Φ(hi, ri) and

Φ(hi, ri) ≤ i−m + Φ(hm, rm) and t 6= 0)
m←− i

}
Let 1 + π(u/q) = hk/rk

Find the largest power t of π that divides both u and q
output (u/πt, q/πt)
end

Figure 2: Rational Approximation Algorithm.
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element for an AFSR over R that outputs A = a0, a1, · · ·. As explained above, this might
not be the smallest such AFSR. If, however, R is a Euclidean domain (as is the case when
R = Z, or when R is among a small finite set of quadratic extensions of Z [2]), then we
can find the greatest common divisor of u and q using the Euclidean algorithm and thus
find the smallest such u and q with respect to the Euclidean size function. However we
may still not have the smallest AFSR that outputs A – R might have an infinite group
of units, so there might be infinitely many connection elements equivalent to q (in the
sense that their AFSRs output the same sequences). This does not happen in Z, and
we may still be able to find the minimal q in other rings. Furthermore, even if R is not
a Euclidean domain, we see below that the size of the AFSR produced is bounded by a
constant (depending only on R, π, S, T , and the index function and interpolating set)
times the size of the smallest such an AFSR.

4 Rational Approximation in Z

In this section we consider the case when R = Z, the ordinary integers, treated previously
by the authors [21]. We give an example of the execution of the algorithm that may
help in understanding it. If R = Z, then π is an integer (possibly composite). Let
S = {a : 0 ≤ a ≤ π− 1}. If x 6= 0 and |x| = a0 + a1π + · · ·+ atπ

t with ai ∈ S and at 6= 0,
then we define φZ,π(x) = t. Equivalently, φZ,π(x) = t if πt ≤ |x| < πt+1. Then Property
1 holds with b = 1 and c = 0. We also define

x ∈ PZ,π if |x| ≤
{
bπ2/2c if π ≥ 4
5 if π = 3.

Then Property 2 holds with B = 3 and C = 2.
Let π = 10. The sequence A = { 2 7 9 8 5 4 9 9 3 3 7 4 5 7 7 0 6 4 1 2 8 1 2 2 6 0

9 5 5 0 2 8 0 1 0 2 3 5 0 9 4 4 8 7 0 7 5 3 6 5 5 7 8 1 8 8 8 5 3 8 7 9 5 3 9 8 1 0 1 3 4
8 5 8 2 7 8 8 4 2 6 3 2 2 8 2 3 4 0 8 2 1 2 6 9 7 3 1 3 8 2 4 5 2 2 0 5 7 2 5 · · ·} is the
10-adic expansion of the fraction −52/1109 with period 1108. For simplicity, we skip the
shift step A→ 1 + 10A. The following steps show how the algorithm is initialized, how
approximations are updated, and the simplification at convergence.

Initialization: m = 0, (h0, r0) = (0, 1), (h1, r1) = (972, 1001). The rational number
972/1001 approximates A to at least the first 3 symbols.

First updating: Since 972/1001 only approximates A to the first 3 symbols, at index
i = 4 a new approximation is needed. We have s = −44 and t = −39. Then we have the
new pair (h4, r4) = (−42768,−434044), and now (hm, rm) = (972, 1001). The rational
number 42768/434044 approximates A to at least the first 6 symbols.
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Second updating: Since 42768/434044 only approximates A to the first 6 symbols, at
index i = 7 a new approximation is needed. We have s = −50 and t = 50. Then we have
the new pair (h7, r7) = (50738400, 71752200), and now (hm, rm) = (−42768,−434044).
The rational number 50738400/71752200 approximates A to at least the first 9 symbols.

Third updating: Since 50738400/71752200 only approximates A to the first 9 symbols,
at index i = 10 a new approximation is needed. We have s = −49 and t = −42.
Then we have the new pair (h10, r10) = (−689925600, 14713990200), and now (hm, rm) =
(50738400, 71752200). The rational number −689925600/14713990200 approximates A
to at least the first 12 symbols.

Convergence: The rational number u/q = h10/r10 = −689925600/14713990200 gives A
exactly.

Reduction: gcd(−689925600, 14713990200) = 13267800. After factoring out the gcd, we
have the reduced rational number u/q = −52/1109, as desired.

5 Proof of Correctness

In this section we show that the algorithm outputs a correct rational representation of α
when enough bits are given. We first show that the output is meaningful. The algorithm
computes pairs (hi, ri) satisfying hi − αri ≡ 0 mod πi. We want to interpret (hi, ri) as a
fraction hi/ri ∈ F , and hence as defining an AFSR whose output is a0, a1, · · ·. But this
only makes sense if ri is not zero. The proof of this fact is essentially the same as in the
case R = Z given previously [21], so it is omitted here.

Theorem 5.1 For every j, rj 6= 0.

It remains to prove that if A = a0, a1, · · · can be generated by an AFSR, then after
some finite number of steps the algorithm outputs a description of such an AFSR. We
say the algorithm is convergent at index i if hi/ri = α.

Definition 5.2 The minimum value of Φ(u, q) such that u/q = α(A) is denoted by
λ(A) = λ.

Theorem 5.3 Let i be any index and α(A) = u/q with Φ(u, q) minimal. Then when

i >
B(2(b + c) + B + c dlog(B)e+ d)

B − C
+ 1 +

2B

B − C
λ(A),

13



where d = max{φ(a) : a ∈ S} ∪ {φ(1)}, the algorithm is convergent at i. That is,

hi

ri

=
u

q
.

The proof of Theorem 5.3 requires a series of lemmas that bound the φ values of the
various quantities involved. We start with definitions that make the explanation simpler.
For any i ≥ 0, let µ(i) = i− Φ(hi, ri).

Definition 5.4 We define an index to be a turning point as follows:

1. The initial index m = 0 is a turning point.

2. If m1 is a turning point, then m2 is the turning point following m1 if it is the
smallest integer greater than m1 satisfying

(a) (hm2 − αrm2) ≡ 0 (mod πi)(i ≤ m2), 6≡ 0 (mod πm2+1);

(b) there is no s 6= 0 such that s ∈ P and πm2+B|s(hm2 − αrm2);

(c) Φ(hm2+1, rm2+1) > Φ(hm2 , rm2);

(d) µ(m1) ≤ µ(m2).

Conditions 5.4.2.a and 5.4.2.b hold with m2 = 0. An index m is a turning point if it
is either zero or it is one where the assignment m←− i occurs.

At an index i, if hi − αri ≡ 0 (modπi) but hi − αri 6≡ mod πi+1, then (hi+1, ri+1)
is obtained either by multiplying (hi, ri) an element s ∈ R or as a linear combination
s(hi, ri) + t(hm, rm). We call either such an i an updating index, with the former a
type 1 updating, and the latter a type 2 updating. If a type 2 updating occurs under
the condition Φ(hi, ri) ≤ i −m + Φ(hm, rm) and Φ(hi+1, ri+1) > Φ(hi, ri), it is called a
turn-updating. That is, i is the least turning point greater than m.

Next we determine a number of iterations that guarantees convergence. We start
with a lower bound on this number in terms of the sizes of the approximations. We
then show that the sizes of the approximations grow slowly enough that convergence is
guaranteed.

Lemma 5.5 Suppose α = u/q with Φ(u, q) minimal in the set of Φ(h, r) with α = h/r.
If µ(i) > Φ(u, q) + b + c, then hi/ri = u/q.

14



Proof: We have hi/ri − u/q = xπi/qri for some x ∈ R. If x 6= 0, then by Property
1 we have Φ(xπi, qri) ≥ i. On the other hand, by Property 2 we have Φ(xπi, qri) =
Φ(hiq − riu, riq) ≤ Φ(r, q) + Φ(hi, ri) + b + c. Thus i ≤ Φ(r, q) + Φ(hi, ri) + b + c, which
is a contradiction. Hence x = 0 and hi/ri = u/q = α. 2

Thus if we show that Φ(hi, ri) grows more slowly than i, then we can show the
algorithm converges. Let m and m1 be consecutive turning points. Let

βm1 = Φ(hm1 , rm1)− Φ(hm+1, rm+1)

and β0 = 0. Let km be the number of turning points less than m. Let d = max{φ(a) :
a ∈ S} ∪ {φ(1)} here and in what follows.

Lemma 5.6 At any turning point m

Φ(hm+1, rm+1) ≤ (m + B + c dlog(B)e+ d) + Ckm +
∑
j≤m

βj − Φ(hm, rm),

and

Ckm +
∑
j≤m

βj ≤
Cm

B
.

Proof: The proof is by induction. For the base case, m = 0, we have k0 = 0, β0 = 0,
Φ(h1, r1) = B + c dlog(B)e+ d, and Φ(h0, r0) = φ(1) ≤ d. Thus the lemma is true at the
first turning point.

Suppose the lemma is true at a turning point m and m1 is the next turning point.
Let w + 1 be the total number of updatings occurring up to m1. Then we have

m1 = m + u0 + u1 + · · ·+ uw,

with ui ≥ B the difference between the i-th and (i + 1)-st updatings. Since m1 is a
turning point, there exist s and t such that

(hm1+1, rm1+1) = s(hm1 , rm1) + tπm1−m(hm, rm).

By induction and the fact that −Φ(hm+1, rm+1) = βm1 − Φ(hm1 , rm1), we have

Φ(hm1+1, rm1+1) ≤ (m1 −m) + C + Φ(hm, rm)

≤ (m1 −m) + C + (m + B + c dlog(B)e+ d) + Ckm +
∑
j≤m

βj

−Φ(hm+1, rm+1)

= (m1 + B + c dlog(B)e+ d) + C(km + 1) +
∑
j≤m

βj + βm1

−Φ(hm1 , rm1)

= (m1 + B + c dlog(B)e+ d) + Ckm1 +
∑

j≤m1

βj − Φ(hm1 , rm1).

15



It remains to show the second inequality. It is true at the initial turning point. We
assume that at a turning point m

BCkm + B(
∑
j≤m

βj) ≤ Cm .

We have βm1 = Φ(hm1 , rm1)− Φ(hm+1, rm+1) ≤ Cw and

Cm1 = Cm + C(u0 + u1 + · · ·+ uw)

≥ BCkm + B(
∑
j≤m

βj) + C(u0 + u1 + · · ·+ uw)

≥ BCkm + B(
∑
j≤m

βj) + BC(w + 1)

≥ BCkm + B(
∑
j≤m

βj) + BC + Bβm1

= BCkm1 + B(
∑

j≤m1

βj).

Equivalently, we have the desired result

Ckm1 +
∑

j≤m1

βj ≤
Cm1

B
,

which completes the proof. 2

Let λm be the smallest Φ(h, r) with h− αr = 0 mod πm.

Lemma 5.7 If m is a turning point, then λm+1 + b + c ≥ µ(m).

Proof: Let h − αr ≡ 0 mod πm+1 and λm+1 = Φ(h, r). Then (h, r) 6= (hm, rm). We
have

h

r
− hm

rm

=
hrm − rhm

rrm

=
xπm

rrm

for some x 6= 0 ∈ R. Therefore Φ(hrm − rhm, rrm) ≥ m. On the other hand, we have

Φ(hrm − rhm, rrm) ≤ Φ(h, r) + Φ(hm, rm) + b + c.

Consequently, λm+1 + b + c = Φ(h, r) + b + c ≥ µ(m). 2
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We now can complete the proof of Theorem 5.3.
Proof of Theorem 5.3: By Lemma 5.5 it suffices to show that µ(i) > b + c + λ. Let
m be the last turning point before i, let t = i − m − 1, and let w be the number of
updatings between m and i. Thus w ≤ t/B. Then

b + c + λ + Φ(hi, ri) ≤ b + c + λ + Φ(hm+1, rm+1) + Cw

≤ b + c + λ + m + B + c dlog(B)e+ d +
Cm

B
− Φ(hm, rm) + Cw

≤ b + c + λ + B + c dlog(B)e+ d +
Cm

B
+ λm+1 + b + c + Cw

≤ 2(b + c) + B + c dlog(B)e+ d + 2λ +
Cm

B
+

Ct

B

= 2(b + c) + B + c dlog(B)e+ d + 2λ +
C

B
(i− 1),

where the second line follows from Lemma 5.6 and the third line follows from Lemma
5.7. It follows that b + c + λ < µ(i) if

2(b + c) + B + c dlog(B)e+ d + 2λ ≤ B − C

B
(i− 1).

This is equivalent to the hypotheses on i in the statement of the theorem. 2

5.1 Complexity

In this subsection we analyze the computational complexity of the algorithm. At each
updating index i we have Φ(hi+1, ri+1) ≤ max{Φ(hi, ri), Φ(hm, rm)} + C by Property
2, where m is the most recent turning point. Furthermore, at most one out of every
B consecutive indices can be an updating index. If i is a non-updating index, then
Φ(hi+1, ri+1) = Φ(hi, ri). Therefore Φ(hi, ri) ≤ C di/Be, so Φ(hi, ri) ≤ i if i ≥ B − 1.
Also, note that we do not have to save all the intermediate values (hi, ri), just the current
value and the value for the most recent turning point.

Suppose we have a bound σ(m) on the time required to add two elements a, b ∈ R
with φ(a), φ(b) ≤ m. Then we have the following.

Corollary 5.8 The Rational Approximation Algorithm has worst case time complexity
in O(

∑λ
m=1 σ(m)). The space required is O(λ log(|S|)).
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6 Rational Approximation in Ramified Extensions

Let Q be a ring, τ ∈ Q, S a complete set of residues modulo τ , and suppose we have an
index function φQ,τ and interpolation set PQ,τ with respect to τ . Let b, c, B, and C be
the constants in Properties 1 and 2 with respect to φQ,τ and PQ,τ .

Let d be a positive integer and ε = ±1. Assume that the polynomial Xd − ετ is
irreducible over Q, and π is a root of this polynomial. In this section we consider the
case when

R = Q[π] =

{
d−1∑
i=0

aiπ
i : ai ∈ Q

}
.

We have R/(π) = Q/(τ), so S is a complete set of representatives for R modulo π as
well.

For any x =
∑d−1

i=0 aiπ
i, ai ∈ Q, we define

φR,π(x) = max{dφQ,τ (ai) + i : 0 ≤ i ≤ d− 1}.

This is well defined because, by the irreducibility of Xd − ετ , this representation of x
is unique. Let c′ = cd and b′ = cd dlog(d)e + bd. Then for any x, y ∈ R and non-zero
integer k,

1. φR,π(πkx) = k + φR,π(x);

2. φR,π(x± y) ≤ max{φR,π(x), φR,π(y)}+ cd;

3. φR,π(xy) ≤ φR,π(x) + φR,π(y) + b′.

Let e = max{φQ,τ (x) : x ∈ S} and let k satisfy

k − c dlog(k)e ≥ e +
b′ + c′

d
+ 1. (4)

Let B′ = 2d(k + 1) and C ′ = d(k + c dlog(k)e + e) + d − 1 + b′ + c′. Then it follows
from equation (4) that B′ > C ′. For any x =

∑d−1
i=0 aiπ

i ∈ R, let x ∈ P0 if φQ,τ (ai) ≤
k + c dlog(k)e + e for every i. Let PR,π = {u − v : u, v ∈ P0}. Then Properties 1 and 2
hold with constants b′, c′, B′, C ′.

It follows that there is a Rational Approximation Algorithm for R, π. Suppose any
element x of Q can be represented using at most pφQ,τ (x) bits for some p. Then any
element m of R can be represented using at most pφR,π(x) bits. Thus, by the discussion
following Proposition 3.1, the number of symbols of the output sequence of an AFSR
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over R, π needed to synthesize an equivalent AFSR is at most linear in the size of the
smallest AFSR that generates the sequence.

While the algorithm is guaranteed to find a rational representation for the given
sequence, its Φ value may not be minimal. In fact it may be that multiplying both
elements in a pair by the same element (thus leaving the corresponding rational element
unchanged) decreases Φ. For example, suppose τ = 3 and d = 2 so π2 = 3. Let
x = 27 − 14π, y = 28 − 15π, and z = 1 + π. Then φR,π(x) = φR,π(y) = 6. However,
zx = −15 + 13π and zy = −17 + 13π so φR,π(zx) = φR,π(zy) = 5.

The constants b′, c′, B′, and C ′ can sometimes be improved upon, giving an im-
provement in the estimate of the number of iterations sufficient for convergence of the
algorithm. If Q = Z and τ > 0, then we can take b′ = d(3 + f)− 1 where f = blogτ (d)c.
That is, f is the smallest integer satisfying d < τ f+1. This allows us to take B′ = 2(f+4)d
and C ′ = B′ − 2. Sometimes we can further improve these constants. For example, if
d = 2 and τ ≥ 4, then in our original version we have b′ = 6, c′ = 2, B′ = 30, and
C ′ = 29. The general bounds for Q = Z give b′ = 5, c′ = 2, B′ = 16, and C ′ = 14. It is
possible to improve the last two to B′ = 10 and C ′ = 9 by a different choice of the set
P .

7 Rational Approximation in Quadratic Extensions

In this section we consider the case of a quadratic extension of a ring Q. Again let Q
be a domain, τ ∈ Q, S a complete set of residues modulo τ with N = |S|, and suppose
we have an index function φQ,τ and interpolation set PQ,τ with respect to τ . Let b, c, B,
and C be the constants in Properties 1 and 2 with respect to φQ,τ and PQ,τ .

Let m, g ∈ Q with ma = τ for some a ≥ 1. Let π be a root of the polynomial
X2 − 2gmX + ma, and assume π 6∈ Q. In this section we consider whether there is
a rational approximation algorithm for R = Q[π]. If we let ∆ = ma − g2m2, then
π = gm +

√
−∆ and we also have R = Q[

√
−∆]. The norm from the field of fractions

of R to the field of fractions of Q is given by Γ(u + v
√
−∆) = u2 + ∆v2. In particular,

Γ(π) = τ . Let
φR,π(x) = φQ,τ (Γ(x)).

It follows immediately that

φR,π(xy) ≤ φR,π(x) + φR,π(y) + b,

and
φR,π(πkx) = k + φR,π(x).
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However, the additivity condition for an index function does not in general hold. There-
fore, we assume at this point that it does hold. That is, we assume that there is a c′

such that for any x0, x1, y0, y1 ∈ Q

φQ,τ ((x0 + y0)
2 + ∆(x1 + y1)

2) ≤ max{φQ,τ (x
2
0 + ∆x2

1), φQ,τ (y
2
0 + ∆y2

1)}+ c′. (5)

At the end of this section we give examples of rings Q for which this condition holds. For
now we show that if it holds, then the remaining conditions – the existence of a set PR,π

satisfying Property 2 – for the existence of a rational approximation algorithm hold.
First we consider the case when a ≥ 2. Let e = max{φQ,τ (x) : x ∈ S} and let

z = 2e + 3b + 3c + c′ + φQ,τ (∆). Choose r ∈ Z large enough that 4r ≥ 2a2 − 5a + 2(a−
1)z + 4(a− 1)b dlog(r)e. Then we can choose k ∈ Z so that

z + 2r + 2b dlog(r)e − a

a
≤ k ≤ 4r − 2a + 5

2(a− 1)
(6)

(since the gap between the upper and lower bounds is at least one). It follows from
equation (6) that

z + 2r + 2b dlog(r)e < (k + 1)a + 1 (7)

and
2a + 2k(a− 1)− 1 ≤ 4(r + 1). (8)

Let C ′ = 2r + 2b dlog(r)e+ z. Let P0 = {s = s0 + s1

√
−∆ : s0, s1 ∈ Q and φQ,τ (si) ≤

r+b dlog(r)e+e}, and PR,π = {s−s′ : s, s′ ∈ P0}. It is immediate that φR,π(sh1 + th2) ≤
max{φR,π(h1), φR,π(h2)}+C ′ for any h1, h2 ∈ R and s, t ∈ PR,π. Also, let B′ = (k+1)a+1.
Then B′ > C ′ by equation (7).

As in the Section 6,

|{(s, t) : s, t ∈ P0}| ≥ (N r+1 + 1)4.

To bound the number of residue classes modulo πB′
, we need a lemma.

Lemma 7.1 For any k ≥ 0, π(k+1)a+1 divides τa+k(t−1).

Proof: Let d, e ∈ Q. Then (2gm−π)(md+πe) = m(m(2gd+ma−2e)−dπ) = m(mf−πd),
for some f ∈ Q.

We iterate this a times: For any d, e ∈ Q there are f, h ∈ Q such that (2gm−π)a(md+
πe) = ma(mf +πh) = π(2gm−π)(mf +πh). Thus (2gm−π)a−1(md+πe) = π(mf +πh).
It follows that

(2gm− π)a+k(a−1) = (2gm− π)(k+1)(a−1)(2gm− π) = πk+1(mf + πh),
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for some f, h ∈ Q. Now we have

τa+k(a−1) = ±πa+k(a−1)(π − 2gm)a+k(a−1)

= ±πa+k(a−1)πk+1(mf + πh)

= ±π(k+1)a+1(mf + πh).

This proves the lemma. 2

Now let x + πy ∈ R, with x, y ∈ Q. We can write x = x0 + x1τ
a+1+k(a−1) and

y = y0 + y1τ
a+k(a−1). It follows from Lemma 7.1 that πB′

= π(k+1)a+1 divides both
τa+k(a−1) and πτa+k(a−1)−1. The number of distinct choices modulo πB′

of the pair x0, y0

is N2a+2k(a−1)−1. It follows from equation (8) that for any u, v ∈ R there are s, t, s′, t′ ∈ P0

such that su + tv ≡ s′u + t′v mod πB′
. Therefore s− s′, t− t′ is a pair in PR,π satisfying

the requirements of the second part of Property 2.
Now consider the case when a = 1. Then τ = π(2τ − π) = π2(4τ − 2π − 1) so π2

divides τ . In this case we can choose r so that z + 2b dlog(r)e ≤ 2r + 4, B′ = 4r + 5,
and C ′ = z + 2b dlog(r)e and a similar argument works. We have proved the following
theorem.

Theorem 7.2 If equation (5) holds, then there is a rational approximation algorithm
for R with respect to π.

Remarks:
(1) We have shown the existence of constants b, c, B, C, but have not attempted to
optimize them. We know the algorithm converges after a linear number of iterations. In
many cases the convergence may be more rapid than indicated by the results here.
(2) Rational approximation algorithms exist for extensions by roots of other quadratic
polynomials. For instance, π = 3 +

√
−3 is a root of the equation X2 − 6X + 12 =

0. Let N = 12. Then N4 = π7(π − 6). In this case we can choose b′ = 1. Since
this is an imaginary quadratic extension, the additivity condition on the index function
holds, in this case with c′ = 1. We can also take B′ = 7, and C ′ = 6 to establish a
rational approximation algorithm. The task of completely characterizing those quadratic
extensions for which there is a rational approximation algorithm remains.

7.1 Imaginary Quadratic Extensions of Z

In this subsection we assume R = Z[π] is an imaginary quadratic extension of the
integers, with π2 − 2gmπ + N = 0 and N = ma.

In this case ∆ is a positive integer. We carry out the above construction with Q = Z,
τ = N , and index function and interpolation set as in Section 4. It suffices to show
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equation (5) holds. Let x = x0 + x1

√
−∆ and y = y0 + y1

√
−∆ with x0, x1, y0, y1 ∈ Z.

We then have Γ(x + y) = (x0 + y0)
2 + ∆(x1 + y1)

2. Notice that (c + d)2 ≤ 2(c2 + d2) for
any real numbers c and d. This implies that

Γ(x + y) ≤ 2(x2
1 + y2

1) + 2∆(x2
2 + y2

2)

= 2Γ(x) + 2Γ(y).

Let w1 = φR,π(x) = φZ,N(Γ(x)) and w2 = φR,π(y) = φZ,N(Γ(y)). Then we have

Γ(x) ≤ Nw1+1 − 1,

Γ(y) ≤ Nw2+1 − 1,

and
Γ(x + y) ≤ 4(Nmax(w1,w2)+1 − 1).

Since N ≥ 2, we have φR,π(x+ y) = φZ,N(Γ(x+ y)) ≤ max{w1, w2}+2. We have proven
the following corollary.

Corollary 7.3 If R = Z[π] is an imaginary quadratic extension of the integers, with
π2 − 2gmπ + N = 0 and N = ma, then R has a rational approximation algorithm with
respect to π.

Any element m = x0 + x1

√
−∆ can be represented using φZ,N(x0) + φZ,N(x1) ≤

φZ,N(x2
0+∆x2

1) = φR,π(m) elements of {0, 1, · · · , N−1}. Thus, by the discussion following
Proposition 3.1, the number of symbols of the output sequence of an AFSR over R, π
needed to synthesize an equivalent AFSR is at most linear in the size of the smallest
AFSR that generates the sequence.

7.2 Quadratic Extensions of Z[
√

N ]

In this subsection we let N be a positive integer which is not a perfect square, let τ 2 = N ,
and let Q = Z[τ ]. Let π2 − 2gmπ + τ = 0 with τ = ma and g,m ∈ Q, and let R = Q[π].
Thus Q = Z + τZ and R = Q + πQ. Let ∆ = ma − g2m2 = ∆0 + ∆1τ with ∆0 > 0,
∆1 6= 0 in Z, and ∆2

0 > N∆2
1. That is, we assume the norm from the fraction field of Q

to the rational numbers of ∆ is positive.
We use the index function and interpolation set defined in Section 6, with constants

b, c, B, and C for Properties 1 and 2.

Lemma 7.4 If u ∈ Q, then 2φQ,τ (u)− 2 ≤ φQ,τ (u
2).
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Proof: Straightforward. 2

Lemma 7.5 Let ∆ = ∆0 + ∆1τ with ∆0, ∆1 ∈ Z, ∆0 > 0, ∆1 6= 0, and ∆2
0 > N∆2

1. If
u, v ∈ Q, then 2φQ,τ (u) ≤ φQ,τ (u

2 + ∆v2) + 2 and 2φQ,τ (v) ≤ φQ,τ (u
2 + ∆v2) + 2.

Proof: Let u = u0 + τu1 and v = v0 + τv1 with u0, u1, v0, v1 ∈ Z. Then

u2 + ∆v2 = u2
0 + Nu2

1 + ∆0v
2
0 + ∆0Nv2

1 + 2∆1Nv0v1

+(2u0u1 + 2∆0v0v1 + ∆1v
2
0 + ∆1Nv2

1)τ. (9)

We have

∆0v
2
0 + ∆0Nv2

1 + 2∆1Nv0v1 = ∆0(v0 +
√

Nv1)
2 + 2v0v1

√
N(∆1

√
N −∆0) (10)

= ∆0(v0 −
√

Nv1)
2 + 2v0v1

√
N(∆1

√
N + ∆0). (11)

Suppose that ∆1

√
N −∆0 and ∆1

√
N + ∆0 have the same sign. Then ∆2

1N −∆2
0 > 0,

which is false by hypothesis. Thus one of is positive and one is negative. Whatever the
sign of v0v1 is, either expression (10) or expression (11) is nonnegative. It follows from
equation (9) that

φQ,τ (u
2 + ∆v2) ≥ 2φZ,N(u2

0 + Nu2
1)

≥ max{4φZ,N(u0)− 2, 4φZ,N(u1)}
= 2φQ,τ (u)− 2.

It also follows that

φQ,τ (u
2 + ∆v2) ≥ 2φZ,N(∆0v

2
0 + ∆0Nv2

1 + 2∆1Nv0v1)

≥ 2 max{φZ,N((v0 ±
√

Nv1)
2), φZ,N(2

√
Nv0v1)}.

Let m = φZ,N(v0) and l = φZ,N(v1). If l ≥ m + 1, then φZ,N((v0 ±
√

Nv1)
2) ≥ N2l.

If m ≥ l ≥ m − 1, then φZ,N(2
√

Nv0v1) ≥ max{2m, 2l + 1} − 1. If m − 2 ≥ l, then
φZ,N((v0 ±

√
Nv1)

2) ≥ N2m−1. In every case it follows that

φQ,τ (u
2 + ∆v2) ≥ 2(max{2φZ,N(v0), 2φZ,N(v1) + 1} − 1)

= 2φQ,τ (v)− 2.

The lemma follows. 2
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Let x = x0 + πx1 and y = y0 + πy1. We have

φR,π(x + y) = φQ,τ ((x0 + y0)
2 + ∆(x1 + y1)

2)

≤ max{φQ,τ ((x0 + y0)
2), φQ,τ ((x1 + y1)

2) + φQ,τ (∆) + b}+ c

≤ max{2φQ,τ (x0 + y0), 2φQ,τ (x1 + y1) + φQ,τ (∆) + b}+ c + 4

≤ max{2φQ,τ (x0), 2φQ,τ (y0), 2φQ,τ (x1) + φQ,τ (∆) + b,

2φQ,τ (y1) + φQ,τ (∆) + b}+ 3c + 4.

By Lemma 7.5, both 2φQ,τ (x0) and 2φQ,τ (x1) are bounded by φQ,τ (x
2
0 + ∆x2

1) + 2, and
similarly for y. It follows that

φR,π(x + y) ≤ max{φQ,τ (x
2
0 + ∆x2

1), φQ,τ (y
2
0 + ∆y2

1)}+ b + 3c + 6

= max{φR,π(x), φR,π(y)}+ b + 3c + 6.

We have proved the following.

Corollary 7.6 Let N be a positive integer which is not a perfect square, let τ 2 = N ,
and let Q = Z[τ ]. Let π2 − 2gmπ + τ = 0 with τ = ma and g,m ∈ Q, and let R = Q[π].
If tma − g2m2 = ∆0 + ∆1τ with ∆0 > 0, ∆1 6= 0, and ∆2

0 > N∆2
1, then R has a rational

approximation algorithm with respect to π.

Any element m = x0+x1τ +x2

√
−∆+x3τ

√
−∆ ∈ R, with xi ∈ Z, can be represented

using
∑3

i=0 φZ,N(xi) elements, plus four sign bits. We have

3∑
i=0

φZ,N(xi) ≤ 4 max{φZ,N(xi) : i = 0, · · · , 3}

≤ 2 max{φQ,τ (x0 + x1τ), φQ,τ (x2 + x3τ)}
≤ φQ,τ ((x0 + x1τ)2 + ∆(x2 + x3τ)2) + 2

= φR,π(m) + 2.

Thus, by the discussion following Proposition 3.1, the number of symbols of the output
sequence of an AFSR over R, π needed to synthesize an equivalent AFSR is at most
linear in the size of the smallest AFSR that generates the sequence.

8 Conclusion

For rational π-adic numbers over a domain R, a general rational approximation algorithm
has been developed. This algorithm can be used to cryptanalyze eventually periodic
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sequences over R/(π). There are several ways to represent any such sequence as a
π-adic number: by different choices of the complete set of representatives S; or by
different choices of the ring R with given residue ring R/(π). For each representation
a cryptographic complexity is associated with the sequence. For secure use of such
a sequence in stream ciphers, these complexities must be large to guarantee security
against the rational approximation algorithms.
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