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Abstract

An arithmetic or with-carry analog of Blahut’s theorem is presented. This
relates the length of the smallest feedback with carry shift register to the number
of nonzero classical Fourier coefficients of a periodic binary sequence.
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1 Introduction

The purpose of this paper is to develop an arithmetic analog of Blahut’s theorem [1,
3], which relates the linear span of a sequence to its discrete Fourier transform. For
comparison, let us recall this theorem. Let S = a0, a1, · · · be a periodic binary sequence
with period L. The linear span of S, denoted λ(S), is the length of the shortest linear
recurrence satisfied by S or, equivalently, the size of the smallest linear feedback shift
register that generates S. It is an important measure of the complexity of a sequence,
and it is used in a number of engineering applications. For example, suppose that S is
to be used as the key in a stream cipher. The Berlekamp-Massey algorithm can be used
by a cryptanalyst to recover the sequence once 2λ(S) bits of S are known. Thus S is
secure only if λ(S) is large.
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Let τ be a primitive L-th root of unity in some field extension F of GF (2). (Such a
τ exists if and only if L is odd. Various work has been done to extend Blahut’s theorem
to the case when L is even, [4].) The k-th discrete Fourier coefficient of S is

āk =
L−1∑
i=0

aiτ
ki ∈ F.

Blahut’s theorem remarkably says that the linear span of S is equal to the number of
nonzero discrete Fourier coefficients of S. It makes precise the common observation that
a “complex” signal is one with many nonzero Fourier components.

Recently two of the authors have developed an approach to pseudorandom sequences
which is based on feedback with carry shift registers (or FCSRs) [2]. It is in many ways
analogous to the usual theory which is based on linear feedback shift registers. We
include here just enough detail of the theory of FCSR’s for our current purposes. An
FCSR consists of a shift register and a small amount of auxiliary memory. For any
periodic sequence S, the size of the smallest FCSR that generates S is called the 2-adic
span and is denoted by λ2(S). There is an algorithm which is an analog of the Berlekamp-
Massey algorithm. Given approximately 2λ2(S) bits of S, it outputs the smallest FCSR
that generates S. FCSRs can be thought of as arithmetic or with-carry analogs of linear
feedback shift registers, and are related to arithmetic codes in much the same way that
linear feedback shift registers are related to error correcting codes.

The discrete Fourier transform (described above) does not appear to be the “correct”
transform for the study of sequences generated by FCSR’s, and it is not immediately
obvious what the best replacement should be. In this paper, we show that the usual
(complex) Fourier transform is an appropriate vehicle for the study of FCSR sequences,
and we use it to describe an analog of Blahut’s theorem for the 2-adic span of a sequence.
Not only does this give a “shift register” interpretation for the usual (complex) Fourier
transform of a periodic binary sequence, but it also adds another entry to the long and
growing list of parallels between the theory of LFSR sequences and the theory of FCSR
sequences.

2 Statement of the Result

In what follows we let S = a0, a1, · · · be a periodic binary sequence with period L and
let ζ ∈ C be a complex primitive L-th root of unity.

Definition 2.1 For k = 0, 1, · · · , L − 1, the k-th Fourier coefficient is

âk =
L−1∑
i=0

aiζ
ki ∈ C.
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The set of Fourier coefficients is the Fourier transform of S. We denote by σ(S) the
number of nonzero Fourier coefficients of S.

The sequence S can be interpreted as the coefficients of a 2-adic integer,

α =
∞∑
i=0

ai2
i.

Such a series does not converge in the usual sense. Nevertheless, the set of such 2-adic
integers forms a ring Z2. (An elementary review of the 2-adic integers is presented in
[2].) The ring Z2 of 2-adic integers contains all the (usual) rational numbers with odd
denominator. It turns out that, since S is periodic, the 2-adic integer α is in fact a
rational number, which we may write in lowest terms as

α =
−p

q
,

with p and q relatively prime, and 0 ≤ p < q. The 2-adic complexity is Φ2(S) = log2(q).
It differs from the 2-adic span by the number of memory bits in the FCSR which is, in
any case, no more than log2(Φ2(S)) and is completely analyzed in [2]. Our main result
is:

Theorem 2.2 Let S be a periodic binary sequence of period L. Then the 2-adic com-
plexity Φ2(S) is bounded as follows,

Φ2(S) < σ(S) + 2ω(L)−1

where ω(L) denotes the number of distinct positive prime divisors of L.

The “error” term 2ω(L)−1 is sharp, as the following result shows. The obstacle to ob-
taining a corresponding lower bound is that it is very difficult to estimate the cancelation
between the numerator and denominator in the expression α = −h(2)/u(2) in Section
3 below. However, in Section 5 we derive a lower bound for Φ2(S) based on the upper
bound.

Proposition 2.3 Let ε > 0. Then there exist periodic binary sequences S with ω(L)
arbitrarily large such that

Φ2(S) > σ(S) + (1 − ε)2ω(L)−1.

Also, there exist periodic binary sequences S with ω(L) arbitrarily large such that

Φ2(S) < σ(S) − (1 − ε)2ω(L)−1.

The proof is given in Section 4.
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3 Preliminaries to the Proof

There is a useful polynomial that connects the 2-adic interpretation of a sequence with
the definition of the Fourier coefficients:

f(x) =
L−1∑
i=0

aix
i.

Here we think of f(x) as a polynomial with complex coefficients. Thus the nth Fourier
coefficient is f(ζn) and the associated 2-adic integer is

α = f(2)20 + f(2)2L + f(2)22L + . . . =
−f(2)

2L − 1
. (1)

Now reduce α to lowest terms, say α = −p/q so that Φ2(S) = log2(q).
We need to find a relation between gcd(f(2), 2L − 1) (the greatest common divisor)

and the number of vanishing Fourier coefficients f(ζk). In fact, we will relate both of these
to the polynomial gcd(f(x), xL − 1) (which by Galois theory has integer coefficients).

Let g(x) = gcd(f(x), xL−1), f(x) = g(x)h(x), and xL−1 = u(x)g(x). First we claim
that σ(S) = deg(u). Note that ân 6= 0 if and only if f(ζn) 6= 0 if and only if g(ζn) 6= 0 if
and only if u(ζn) = 0. The last equivalence follows from the fact that u(x)g(x) = xL−1,
and so each L-th root of unity ζn appears as a root of exactly one of u(x) and g(x). Note
also that u(x) has exactly deg(u) complex roots, and all are of the form ζn. Hence the
number of nonzero Fourier coefficients satisfies

σ(S) = deg(u). (2)

Next we bound Φ2(S). Factoring g(2) out of the numerator and denominator in
equation (1) we obtain

α =
−h(2)

u(2)
.

If h(2) and u(2) were relatively prime then we would have Φ2(S) = log2(u(2)). However
this is not always the case (even though the polynomials h(x) and u(x) are relatively
prime, as polynomials with rational coefficients.) The best we can say is that

Φ2(S) ≤ log2(u(2)). (3)

It remains then to bound log2(u(2)).
Recall that the n-th cyclotomic polynomial cn(x) is the minimal polynomial (with

integer coefficients) of the primitive n-th roots of unity (that is, the monic polynomial
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of smallest degree that vanishes on the complex number e2πi/n). Its degree is Euler’s
phi function, φ(n), the number of positive integers j ≤ n that are relatively prime to n.
Recall also ([5] prop. 13.2.2) that

xL − 1 =
∏
n|L

cn(x)

(where n|L means that n is a divisor of L).
Since u(x) divides xL − 1, it must be a product of distinct cyclotomic polynomials,

u(x) =
t∏

j=1

cnj
(x), (4)

with nj dividing L. Thus a bound for cnj
(2) leads to a bound for Φ2(S).

Proposition 3.1 Let n be a positive integer and let

m =
∏
p|n

p = s(n)

(the product taken over all positive prime divisors p of n) denote the largest squarefree
integer dividing n. Let q = n/m. Then

1 − 2−q <
cn(2)

2φ(n)
< 1

if n has an even number of distinct positive prime divisors, and

1 <
cn(2)

2φ(n)
< (1 − 2−q)−1

if n has an odd number of distinct positive prime divisors.

Proof: Recall the Möbius function µ, which is defined for positive integers n by

µ(n) = (−1)k if n is squarefree and has k distinct positive prime factors, and

= 0 otherwise.

Following are four basic properties of µ (see [5]§2.2).

1.

∑
j|n

µ(j) =

{
0 if n > 1,
1 if n = 1.
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2. µ(ab) = µ(a)µ(b) if a and b are relatively prime.

3.
∑

j|n jµ(n/j) = φ(n).

4. cn(x) =
∏

j|n(xj − 1)µ(n/j).

The fourth property is obtained by applying the Möbius inversion formula ([5], §2.2) to
the relation xn − 1 =

∏
d|n cd(x).

The fourth and third properties imply that

cn(2) =
∏
j|n

(2j − 1)µ(n/j) = 2φ(n)
∏
j|n

(1 − 2−j)µ(n/j),

so it remains to estimate the latter product. We first need the following.

Lemma 3.2 Let d ≥ 1 and let 0 < x ≤ 1
2
. Then

∞∏
j=d+1

(1 − xj) > 1 − xd.

Proof: The logarithm of the left-hand side can be expanded as

∞∑
j=d+1

ln(1 − xj) = −
∞∑
i=1

∞∑
j=d+1

xij

i
.

Since

∞∑
j=d+1

xij ≤
∞∑

k=id+1

xk ≤ xid,

with both inequalities being equalities only when i = 1 and x = 1
2
, we obtain

∞∑
j=d+1

ln(1 − xj+1) > −
∞∑
i=1

xid

i
= ln(1 − xd).

This yields the lemma. 2

Returning to the proof of Proposition 3.1, assume m has an even number of distinct
positive prime factors, so µ(m) = 1. Let q = n/m. Recall that µ(n/j) 6= 0 only when

6



n/j is squarefree, which is equivalent to q dividing j. Write j = qk. The condition j|n
becomes k|m, and we have∏

j|n
(1 − 2−j)µ(n/j) =

∏
k|m

(1 − 2−qk)µ(m/k).

The first factor in this product is (1 − 2−q)µ(m) = 1 − 2−q. The remaining product is
bounded above by

∞∏
k=2

(1 − 2−qk)−1 < (1 − 2−q)−1,

by Lemma 3.2. This yields

cn(2)

2φ(n)
=
∏
j|n

(1 − 2−j)µ(n/j) < 1.

To get a lower bound, note that the first nontrivial factor in∏
k|m

(1 − 2−qk)µ(m/k)

is when k = 1 and the second is when k is the smallest positive prime factor p of m.
Since m has an even number of positive prime factors, m/p has an odd number of positive
prime factors, so µ(m/p) = −1. The product for the remaining values of k is bounded
below by ∏

k>p

(1 − 2−qk) > (1 − 2−qp).

This yields
cn(2)

2φ(n)
> (1 − 2−q)(1 − 2−qp)−1(1 − 2−qp),

which yields the result.
The case when m has an odd number of positive prime factors is similar. 2

Proposition 3.3 Fix a positive squarefree integer m ≥ 1. Then

∑
s(n)=m

log2

(
cn(2)

2φ(n)

)
= −µ(m),

and all terms in the sum have the same sign.
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Proof: The fact that all terms have the same sign follows immediately from Proposition
3.1.

Observe that two integers m and n have exactly the same prime factors if and only if
each divides a power of the other. For simplicity, we write m|n∞ to mean that m divides
some power of n. For a squarefree integer m, this is equivalent to m|n.

Now fix a positive squarefree integer m. We have s(n) = m if and only if m|n and
n|m∞. Moreover, a positive integer q occurs as n/m for some n with s(n) = m if and
only if q|m∞.

As in the proof of Proposition 3.1,

cn(2)

2φ(n)
=
∏
j|m

(1 − 2−jq)µ(m/j),

where q = n/m. Therefore

∏
s(n)=m

cn(2)

2φ(n)
=

∏
q|m∞

∏
j|m

(1 − 2−jq)µ(m/j).

We want to rewrite this product as a product of factors (1 − 2−k), each occuring to
some power. No such factor occurs more than m (actually, no more than the number
of positive divisors of m) since each occurence corresponds to a distinct divisor j of
k. Moreover,

∏∞
k=1(1 − 2−k)m converges to a nonzero number. Therefore the above

products converge “absolutely” (i.e., their logarithms are absolutely convergent series),
so the rearrangement of the factors in the above infinite products is justified.

Next we determine the exponent with which a factor (1 − 2−k) occurs. The integer
k occurs as a product jq, with q|m∞ and j|m, exactly when k|m∞. Fix such a k. The
condition k = jq automatically implies q|m∞. The values of j that yield k (i.e., k = jq
for some q) are therefore exactly those that satisfy both j|m and j|k. This is equivalent
to j| gcd(m, k). Therefore the factor (1− 2−k) occurs in the last product with exponent∑

j| gcd(m,k)

µ(m/j).

Write m = gcd(m, k)m′. Since m is squarefree, gcd(m, k) and m′ are relatively prime,
so µ(m/j) = µ(gcd(m, k)/j)µ(m′), by Property 2 of µ. Therefore we obtain

µ(m′)
∑

j| gcd(m,k)

µ(gcd(m, k)/j) = 0 when gcd(m, k) 6= 1,
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by Property 3 of µ, since gcd(m, k)/j runs though all the positive divisors of gcd(m, k).
Since k|m∞, we have gcd(m, k) = 1 if and only if k = 1, which corresponds to q = j = 1.
Therefore the product reduces to

(1 − 2−1)µ(m) = 2−µ(m).

This completes the proof of Proposition 3.3. 2

Lemma 3.4 Any integer L > 1 has 2ω(s(L))−1 positive squarefree divisors with an odd
number of positive prime factors.

Proof: The positive square free divisors of L are in one to one correspondence with the
subsets of the set of positive prime divisors of L. There are 2ω(L) such subsets in all, half
of which have even cardinality. 2

4 Proofs

Proof of Theorem 2.2: It follows from equation (2) that

log2(u(2)) =
t∑

j=1

log2(cnj
(2))

=
t∑

j=1

(
φ(nj) + log2

(
cnj

(2)

2φ(nj)

))

= deg(u) +
t∑

j=1

log2

(
cnj

(2)

2φ(nj)

)
.

Let s(nj) = mj. Let E and O denote the sets of positive squarefree divisors of L with
µ(mj) = 1 and µ(mj) = −1, respectively. We obtain

log2(u(2)) ≤ deg(u) +
∑

mj∈O

log2

(
cnj

(2)

2φ(nj)

)
,

since the terms with mj ∈ E are negative by Proposition 3.1. If there are two or more
nj with the same mj, then group them together. We obtain a subsum of the sum in
Proposition 3.3. Since all the terms in the sum of Proposition 3.3 are positive, the
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proposition gives the upper bound of 1 for our subsum. By Lemma 3.4, there are at
most 2s(L)−1 distinct values of mj ∈ O. Therefore

log2(u(2)) < deg(u) + 2ω(L)−1.

Theorem 2.2 then follows from (2) and (3). 2

Proof of Proposition 2.3:
We finish by proving Proposition 2.3. Let N be a natural number and let p1 < p2 <

. . . < pN be primes such that 1− 21−p1 > 2−ε. Let L = p1p2 · · · pN and let n1, . . . , nt run
through all positive divisors of L such that µ(ni) = −1. Then t = 2N−1 by Lemma 3.4.
Let

α =
−1

cn1(2) · · · cnt(2)
=

−p

q

in the notation of Section 2, and let S be the corresponding periodic binary sequence.
Then

σ(S) =
∑

i

deg cni
(X) =

∑
i

φ(ni)

and
Φ2(S) =

∑
i

log2(cni
(2)).

We have

cni
(2)

2φ(ni)
=

∏
j|ni

(1 − 2−j)µ(ni/j)

> (1 − 2−1)−1
∏

j≥p1

(1 − 2−j)

> 2(1 − 21−p1) by Lemma 3.2

> 21−ε.

Therefore

Φ2(S) >
t∑

i=1

(φ(ni) + (1 − ε)) = σ(S) + (1 − ε)2N−1.

Since N = ω(L), we are done. The proof of the second half of Proposition 2.3 is obtained
in a similar way by using ni with µ(ni) = 1. 2
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5 Lower Bounds

In this section we derive a lower bound for Φ(S) using the upper bound in Theorem 2.2.
Let T = b0, b1, · · · be the sequence derived from S by complementing the first bit in every
period. That is,

bi =

{
1 − ai if L|i
ai else.

We let

β =
∞∑
i+0

bi2
i

be the 2-adic integer associated with T . We have β = −x/y = −xw/(2L − 1) for some
integers x, y, and z with wy = 2L − 1. T is periodic so, by Theorem 2.2,

Φ2(T ) < σ(T ) + 2ω(L)−1.

For the Fourier coefficients of T we have b̂k = 1− 2a0 + âk. For any integer c, we let

σc(S) = |{k : âk 6= c}|.

Then we have
σ(T ) = σ1−2a0(S).

To estimate the 2-adic complexity of T , note that

β = α − 1 − 2a0

2L − 1
= −1 − 2a0 + pz

2L − 1
.

Thus 1− 2a0 + pz = xw. Since 1− 2a0 is plus or minus one, it follows that z is relatively
prime to w. However z divides 2L − 1 = yw, so z divides y. Hence

Φ2(T ) = log2(y) ≥ log2(z) = log2((2
L − 1)/q) = log2(2

L − 1) − log2(q).

We have proved the following lower bound.

Theorem 5.1 Let S be a periodic binary sequence of period L. Then

Φ2(S) > log2(2
L − 1) − σ1−2a0(S) − 2ω(L)−1.
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