
Algebraic Feedback Shift Registers

Andrew Klapper a Jinzhong Xu b

a Dept. of Computer Science, 763H Anderson Hall, University of Kentucky,
Lexington, KY, 40506-0046, klapper@cs.uky.edu. Project sponsored by the National

Science Foundation under grant number NCR-9400762.
b Dept. of Computer Science, 763H Anderson Hall, University of Kentucky,

Lexington, KY, 40506-0046, abc@ms.uky.edu.

Abstract

A general framework for the design of feedback registers based on algebra over
complete rings is described. These registers generalize linear feedback shift registers
and feedback with carry shift registers. Basic properties of the output sequences
are studied: relations to the algebra of the underlying ring; synthesis of the register
from the sequence (which has implications for cryptanalysis); and basic statisti-
cal properties. These considerations lead to security measures for stream ciphers,
analogous to the notion of linear complexity that arises from linear feedback shift
registers. We also show that when the underlying ring is a polynomial ring over a
finite field, the new registers can be simulated by linear feedback shift registers with
small nonlinear filters.

Key words: cryptography; feedback shift register; complete ring; stream cipher;
pseudo-random number generator.

1 Introduction

Linear Feedback Shift Registers (LFSRs) [3] have long been the basis of most
research on stream ciphers. Their theory is used both for cryptanalysis [14,7]
and for the design of (hopefully) secure keystream generators [15,16]. The
importance of LFSRs comes from two facts. They are extremely fast and
simple from an engineering point of view, and they have associated with them
a number of algebraic structures that make the analysis of their properties
tractable. These structures are based on the algebra of power series in one
indeterminate over the field with two elements.

Recently, a new class of feedback registers, called Feedback with Carry Shift
Registers (FCSRs) has been discovered [9,13]. These registers are nearly as
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fast as LFSRs. They have an algebraic theory that parallels that of LFSRs,
in this case based on the 2-adic numbers. In a series of papers, Mark Goresky
and the first author considered the basic algebraic and statistical properties of
FCSR sequences, as well as their use in cryptanalysis [9–13]. This construction
was then extended to registers defined over certain extensions of the 2-adic
numbers (purely ramified and purely unramified extensions), and some of the
basic properties were outlined [8,9].

In this paper we extend FCSRs to a much more general setting, resulting
in sequences over an arbitrary finite field. The registers we construct, called
Algebraic Feedback Shift Registers (AFSRs), can be based in the abstract on
any ring R with a principal prime ideal (π). These rings have analogues of
power series, and this provides a setting for an algebraic theory that parallels
the theory of LFSRs. An outline of the theory of such rings is given in Section
2, and the definitions of AFSRs are given in Section 3.

There are two principal cases of interest to us: the number field or characteris-
tic zero case, when R is a subring of a finite extension of the rational numbers,
and the function field case, when R is a polynomial ring over a finite field.
In these cases the residue field R/(π) is finite so the registers we construct
generate sequences over a finite alphabet. We concentrate on the former case
since, as shown in Section 9, the registers that arise in the function field case
can be replaced by ordinary LFSRs with output filters that depend only on
the ring R.

In Sections 4, 5, and 6 we derive the basic algebraic properties of AFSR se-
quences. We show that for a reasonable ring R, AFSR sequences correspond
to elements α of the completion of the underlying ring (analogous to the gen-
erating function associated with an LFSR sequence); that these elements have
rational representations; and that the structure of the AFSR can be deter-
mined from the denominator in the rational representation. More specifically,
associated with each AFSR is an element q in R, called the connection ele-
ment, that corresponds to the taps in the feedback function in the AFSR in a
manner analogous to the connection polynomial associated with a LFSR. We
show that the element α is rational with denominator q, α = u/q. The numer-
ator determines the initial state of the AFSR. We give explicit conditions on
R and π under which the memory in every AFSR is bounded throughout its
infinite execution. We further show that there is often an exponential repre-
sentation of strictly periodic AFSR sequences. Such a sequence is of the form
ai = (δγi mod q) mod π for some δ, where γ is the inverse of π modulo q.
This is similar to the trace of a power of a primitive element representation of
LFSR sequences.

As in the case of FCSRs and LFSRs, one can ask whether there is an algo-
rithm which, given part of a binary sequence A, synthesizes a (minimal length)
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AFSR that generates A. In the case of FCSRs, it was shown that the existence
of such an algorithm implies that it is possible to crack Massey and Ruepell’s
summation combiner [11,13]. It was further argued that the 2-adic span, the
length of the smallest FCSR that generates a given sequence, is thus an im-
portant measure of security. A sequence must have large 2-adic span in order
to be secure (though this of course does not guarantee security). In this paper
we discuss two approaches to generalizing this attack to AFSRs. One gener-
alizes the 2-adic rational approximation algorithm presented previously. This
generalization only works for registers defined over rings with particularly nice
structure (Euclidean domains). The second approach involves considering an
AFSR sequence over R as an interleaving of sequences over a subring and
using a rational approximation algorithm over this smaller ring. In general,
however, this approach does not find the minimal size AFSR over R.

Many of the results in this paper parallel the theory of FCSRs as developed
by the first author and Mark Goresky. We have endeavored to point out where
these parallels occur.

2 Algebraic Background

In this section we recall the basics of algebra over completions of rings. We
assume a basic knowledge of the theory of rings and fields [1,5,6]. To make the
ideas clearer, we describe three examples in parenthetical comments through-
out this section. A summary of the 2-adic numbers can be found in [13].

LetR be a commutative ring which is an integral domain (no zero divisors). Let
F be its field of fractions. Let π ∈ R be a prime element. The principal ideal
generated by π is denoted I = (π). (Example 1: given a finite field L, R = L[x],
the polynomial ring in one variable over L; π = x; I = {f(x) : f(0) = 0};
F = L((x)), the field of Laurent series. Example 2: R = Z, the integers; π = p,
a prime integer; I = {n : p|n}; F = Q, the rational numbers. Example 3: Let
π2 + 2π = 2. R = Z[π] = Z + πZ; I = πZ + 2Z; F = Q[π] = Q[

√
3], a

quadratic number field. Note that R is a Euclidean domain in this case.)

We are principally interested in the case when the quotientK = R/(π) is finite.
In this case K is a field called the residue field of (R, π). More generally, K is
a field if (π) is a maximal ideal, and we assume this throughout. (Example 1:
K = L. Example 2: K = Z/(p) = Fp, the finite field with p elements. Example
3: K = (Z + πZ)/(π) = Z/(2) = {0, 1}.)

Any such π defines a topology on R with respect to which the operations of
addition and multiplication are continuous. The set {(πi)} forms a basic set
of neighborhoods of zero. This topology is known as the π-adic topology on R
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and extends to F with the same basic set of neighborhoods of zero. (Example
1: Two polynomials f(x) =

∑
aix

i and g(x) =
∑
bix

i are close in the x-adic
topology if ai = bi for all but large values of i. Example 2: Integers f and g
are close if they are congruent modulo a large power of p. Example 3: f0 +πf1

and g0 +πg1 are close if f0 is congruent to g0 and f1 is congruent to g1 modulo
a large power of 2.)

A completion of the π-adic topology on R is a topological ring R̂ contain-
ing R that is complete (every Cauchy sequence converges) and is a minimal
completion containing R. The same notion of completion applies to F .

The set of power series

∞∑
i=0

aiπ
i, ai ∈ R, (1)

is a completion of R with the π-adic topology if ∩n(π)n = (0) (e.g. if R is
Noetherian). Two such power series

∑
aiπ

i and
∑
biπ

i are identified if for
every n,

n−1∑
i=0

(ai − bi)π
i ∈ (π)n.

Addition and multiplication can be defined naturally. The resulting ring is
called the completion of R and is denoted by R̂. The ring R̂ has a unique
prime ideal Î, the set of such power series with a0 = 0. We have (π) = Î ∩R.

It is often convenient to have a standard representation for R̂. Let S be a
set of elements which is mapped one-to-one and onto the residue field K by
reduction modulo π. Such a set is called a complete set of residues. (More
generally, if J is any ideal in R, then a complete set of residues modulo J is a
subset of R that maps one-to-one and onto R/J .) It can be shown that every
element of R̂ can be written uniquely in the form of equation (1) with every
ai in S. A critical observation here is that this representation identifies an
element of R̂ with a sequence of elements of S. This in turn can be identified
with a sequence of elements of K by reduction modulo π. (Example 1: We can
let the complete set of residues be L. Then the x-adic completion of L[x] is
L[[x]], the set of power series in x over L. Addition is term by term addition.
Multiplication is defined by: if f(x) =

∑
aix

i and g(x) =
∑
bix

i, then

f(x)g(x) =
∞∑
i=0

(
i∑

j=0

ajbi−j)x
i.

Example 2: The p-adic completion of R is the set of so-called p-adic numbers
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Zp. We can let the complete set of residues be {0, 1, · · · , p − 1}. Then Zp is
the set of expressions of the form

∞∑
i=0

aip
i,

with ai ∈ {0, 1, · · · , p − 1}. Addition and multiplication are with carry. Thus
for example if p = 3, then

(1 + 0 · 31 + 0 · 32 + 2 · 33 + 34 + 2 · 35 + · · ·)
+ (2 + 31 + 0 · 32 + 0 · 33 + 2 · 34 + 35 · · ·)
= (0 + 2 · 3 + 0 · 32 + 2 · 33 + 0 · 34 + 35).

Also, −1 = (p − 1) + (p − 1)p + (p − 1)p2 + · · ·. Example 3: We can let the
complete set of residues be {0, 1}. Thus R̂ is the set of expressions of he form

∞∑
i=0

aiπ
i,

with ai ∈ {0, 1}. Note that 2 = π2 + 2π implies

2 =
π2

1− π
= π2 + π3 + π4 + · · · .

Thus, for example,

(1 + π + π4 + · · ·) + (1 + π3 + π4) = π + π2 + π4 + · · ·

while

(1 + π + π4 + · · ·) · (1 + π3 + π4) = 1 + π + π3 + π4 + · · · .)

Any element of R̂ with a0 not divisible by π is invertible in R̂. Hence any
element of R− (π) is invertible in R̂. It also follows that the field of fractions
F̂ of R̂ can be identified with the set of Laurent series

∞∑
i=t

aiπ
i (2)

with t ∈ Z and ai ∈ S.
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The following result, well known to number theorists [1, p. 100, Lemma 1], is
used later to find conditions under which the memory of an AFSR is finite.
Let ||(x1, · · · , xk)|| = (

∑
i x

2
i )

1/2 be the Euclidean norm on Rk.

Theorem 1 If L ⊆ Rk is an integer lattice of rank at most k, and U is a
subset of L contained in {x : ||x|| < c}, then U is finite.

3 Definitions

The ingredients we use to define algebraic feedback shift registers are as fol-
lows:

(1) A domain R with fraction field F , principal maximal prime ideal I gen-
erated by an element π, and finite residue field K = R/I.

(2) A pair of complete sets of residues S, T ⊆ R.

There is a well defined notion of the reduction of an element α ∈ R̂ modulo π
relative to a particular complete set of residues. If the expansion of α is

α =
∞∑
i=0

aiπ
i,

then the reduction of α modulo π is a0. We also refer to

∞∑
i=0

ai+1π
i

as the integral quotient of α by π, denoted quo(α, π). Thus in general

α = (α mod π) + πquo(α, π).

Note that if α ∈ R, then quo(α, π) ∈ R.

Linear feedback shift registers can be interpreted as outputting the power se-
ries (or x-adic) expansion of a rational function u(x)/q(x). Generalizing this,
we want a class of registers that outputs the π-adic expansion with coefficients
in S of every R-rational element u/q of R̂. The structure of the register should
depend on the π-adic expansion of q with coefficients in T . A similar construc-
tion was used by Klapper and Goresky to define FCSRs [13, Definition 3.1,
p. 118].

Definition 2 An algebraic feedback shift register (or AFSR) over (R, π, S, T )
of length r is specified by r+1 elements q0, q1, · · · , qr ∈ T called the taps, with
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Fig. 1. Diagram of an AFSR after n− r iterations, n ≥ r.

q0 6≡ 0 mod π. It is an automaton each of whose states consists of r elements
a0, a1, · · · , ar−1 ∈ S and an element m ∈ R. The state is updated by the
following steps.

(1) Compute

τ =
r∑
i=1

qiar−i +m.

(2) Find ar ∈ S such that q0ar ≡ τ mod π.
(3) Replace (a0, · · · , ar−1) by (a1, · · · , ar) and replace m by quo(τ − q0ar, π).

Note that ar in step (2) can be computed efficiently by reducing q0 and τ
modulo π, dividing in K, and lifting the result to S.

The element −q0 +
∑r
i=1 qiπ

i plays a central role in the analysis of AFSRs and
is referred to as the connection element. A diagram of an AFSR is given in
Figure 1.

Such a register outputs an infinite sequence over S. By reduction modulo π,
this can be identified with an infinite sequence A over K. On the other hand,
it can be identified with a power series α in π with coefficients in S, i.e.,
an element of R̂. We generally reserve upper case letters near the beginning
of the alphabet for sequences over K and Greek letters near the beginning
of the alphabet for elements of R̂. At times we move freely between these
representations.

Treating the output of an AFSR as a sequence overK, one may ask what effect
the choice of the complete sets of residues S and T has. There are several ways
to ask this. First, consider the choice of T . We might fix a particular choice
of the reductions modulo π of the coefficients qi, then ask how the choice of
T affects the output. Note that the connection element q will depend on the
choice of T . It will follow from Theorem 3 that even the period of the output
is strongly affected by the choice of T in this case.
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Alternatively, we might choose a particular connection element q and construct
an AFSR with that connection element. The structure of the resulting AFSR
will be strongly affected by the choice of T . Even the length of the AFSR may
be affected. However, it also will follow from Theorem 3 that the output is
largely unaffected by the choice of T .

Finally, we can consider the effect of the choice of S. In Subsection 7.4 we see
that the choice of S can have a strong effect on the output. In particular, it
can even affect the period of the output.

We can realize LFSRs over a field K by this construction as follows. We let
(R, π, S, T ) = (K[x], x,K,K). If we initialize the memory of an AFSR in this
setting to zero, then it remains zero throughout the infinite execution (there is
no carry when multiplying and adding elements ofK). The connection element
is just the classical connection polynomial which has been used widely in the
analysis of LFSRs [3].

We can also realize FCSRs by letting (R, π, S, T ) = (Z, 2, {0, 1}, {0, 1}). In this
case, if the carry m starts out as a finite sum of powers of π with coefficients
in S, then this remains true forever [13].

Two other special cases have been considered. The case where R = Z[p1/d]
was described in [4]. The case where R is the ring of integers in a number field
and π is unramified over Z was considered in [8].

4 Properties of AFSRs

Throughout this section we assume R is a ring, π ∈ R is prime, and S and T
are complete sets of residues modulo π. We show that the sequences that are
the outputs of AFSRs over (R, π, S, T ) are precisely the coefficient sequences
of elements of R̂ of the form u/v with u, v ∈ R and π not dividing v.

Theorem 3 (Generalizes [13, Theorem 4.2, p. 121]) The output, A, of an
AFSR with connection element q, initial memory value mr−1, and initial load-
ing a0, a1, · · · , ar−1, is the coefficient sequence of the π-adic representation of
an element of F

α =

∑r−1
n=0

∑n
i=1 qian−iπ

n − q0
∑r
n=0 anπ

n −mr−1π
r

q
=
u

q
.
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PROOF. Let

α =
∞∑
i=0

aiπ
i, (3)

with ai ∈ S. Let us consider the transition from one state of the shift reg-
ister to the next. Suppose that, for some given state, the value of the mem-
ory is mn−1 and that the state of the register is given by the r elements
an−r, an−r+1, · · · , an−1 ∈ S, with an−r the leftmost and an−1 the rightmost,
and where the register shifts towards the left. The next state is determined by
calculating

τn =mn−1 +
r∑
i=1

qian−i

q0an = τn mod π,

writing the new memory contents as

mn = quo(τn − q0an, π),

and using an as the new contents of the rightmost cell. (The remaining terms
are shifted once to the left.) These equations may be combined into the ex-
pression

τn = πmn + q0an,

with an ∈ S. It follows that

q0an =
r∑
i=1

qian−i + (mn−1 − πmn), (4)

provided that n ≥ r. Suppose the initial loading of the register consists of
memory mr−1 and with register values a0, a1, · · · , ar−1. Now substitute (4)
into the expression (3) for α to obtain

q0α= q0(a0 + a1π + · · ·+ ar−1π
r−1 +

∞∑
n=r

anπ
n)

= q0x+
∞∑
n=r

(
r∑
i=1

qian−i

)
πn +

∞∑
n=r

(mn−1 − πmn)π
n, (5)

where

x = a0 + a1π + · · ·+ ar−1π
r−1
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is the element represented by the initial loading of the register. The second
summation in equation (5) cancels except for the first term, mr−1, leaving

q0α= q0x+mr−1π
r +

∞∑
n=r

r∑
i=1

qiπ
ian−iπ

n−i

= q0x+mr−1π
r +

r∑
i=1

qiπ
i

( ∞∑
n=r

an−iπ
n−i
)

= q0x+mr−1π
r +

r∑
i=1

qiπ
i(α− (a0π

0 + a1π
1 + · · ·+ ar−i−1π

r−i−1))

= q0x+mr−1π
r + α

r∑
i=1

qiπ
i −

r−1∑
i=1

r−i−1∑
j=0

qiπ
iajπ

j

(where the inner sum is empty, hence zero, when i = r in the third line). These
equations give

α=
q0x+mr−1π

r −∑r−1
i=1

∑r−i−1
j=0 qiπ

iajπ
j

q0 −
∑r
i=1 qiπ

i

=

∑r−1
n=0(

∑n
i=1 qian−i)π

n − q0
∑r−1
n=0 anπ

n −mr−1π
r

q
. (6)

2

Thus the denominator of α is equal to the connection element q of the shift
register.

Corollary 4 (Generalizes [13, Corollary 4.3, p. 122]) Adding b to the memory
adds

−bπr

q

to the output.

Corollary 5 For any u, q ∈ R, with q 6≡ 0 mod π, there is at most one AFSR
over R, π, and S with connection element q, whose output corresponds to u/q.

PROOF. Suppose that both m, (a0, · · · , ar−1) and m′, (a′0, · · · , a′r−1) give rise
to the sequence corresponding to u/q. Then a0, · · · , ar−1 and a′0 · · · , a′r−1 are
the first r elements of this sequence. Hence ai = a′i, i = 0, · · · r − 1. It follows
from Theorem 3 that

(m−m′)πr

q
= 0.
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Hence m = m′. 2

The converse of Theorem 3, that an element u/q of F can be realized as the
output of an AFSR, is true as well. To see this, we show how to construct the
initial loading of an AFSR for certain u, and then use Corollary 4 to obtain
initial loadings for other AFSRs. Let

u =
r−1∑
i=0

uiπ
i

with ui ∈ S. Every element of R differs from some such element u by a multiple
of πr. This follows directly from the fact that every element of R̂ can be written
as a power series in π with coefficients in S. Thus if we can construct initial
loadings for u/q with u of this type, then we can construct initial loadings for
all u/q.

Theorem 6 (Generalizes [13, Section 5, p. 123]) Given a connection element

q = −q0 +
r∑
i=1

qiπ
i (7)

with q0, · · · , qr ∈ T , and

u =
r−1∑
i=0

uiπ
i

with ui ∈ S, define a0, · · · , ar−1 and mr−1 by the following procedure:

1. Set m−1 = 0 and σ0 = 0.
2. For each i = 0, 1, . . . , r − 1 compute the following elements:

τi =
i−1∑
k=0

qi−kak +mi−1 − ui ∈ R.

The empty sum in τ0 is interpreted as zero.
3. Find ai ∈ S and mi ∈ R such that

τi = q0ai + πmi.

If (a0, a1, . . . , ar−1) is used as the initial loading and mr−1 is used as the initial
memory in an AFSR with connection element q, then the output sequence will
correspond to the element u/q ∈ F .

Note that for some choices of T not every element q can be written in the
form in equation (7).
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5 Finite Memory

In order to implement an AFSR it is necessary that the memory remain
bounded throughout an infinite execution. There are two quite general types
of ring for which we have been able to determine when this happens. The first
case is when the field of fractions F is a number field (a finite extension of the
rational numbers). In this case we can use well known results from number
theory to determine those R for which the memory always remains bounded.
The second case is when R is a polynomial ring over a finite field – a function
field. In this case there is no carry from lower degree terms to higher degree
terms when addition and multiplication are carried out, so the degree of the
memory always remains bounded.

5.1 The Number Field Case

We first assume that the fraction field F is a number field. Such a field can be
embedded in the complex numbers. In general there are several embeddings
of F in the real numbers (real embeddings), and several that are not in the
real numbers (complex embeddings). The complex embeddings always occur
in conjugate pairs. If we let r1 denote the number of real embeddings, and
2r2 denote the number of complex embeddings, then r1 + 2r2 = [F : Q], the
degree of the extension F/Q [1, p. 95].

Having fixed an embedding, we denote by |x| the complex norm of a com-
plex number x. If m is the memory of an AFSR, we want to consider the
growth of |m| over an infinite execution. Suppose a0, a1, · · · is the output se-
quence, and mn is the memory at the nth state (i.e., when the register contains
(an+r−1, · · · , an)). Then

πmn+1 + q0an+r = mn +
r∑
i=1

qian+r−i.

It follows that

|mn+1| ≥
|mn| −

∑r
i=0 |qian+r−i|
|π|

≥ |mn| − (r + 1)BC

|π|

where B = max{|t| : t ∈ T} and C = max{|s| : s ∈ S}. Suppose |π| < 1.
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Then for

|mn| ≥
(r + 1)BC + 1

1− |π|

we have |mn+1| > |mn| + 1. Thus the memory increases unboundedly, and in
particular takes infinitely many values in an infinite execution. We have shown
the following.

Proposition 7 If there is an embedding of F in the complex numbers such
that |π| < 1, then there is an AFSR whose memory grows unboundedly from
some initial state.

Now suppose that for a given embedding of F we have |π| > 1. By similar
reasoning we see that

|mn+1| <
|mn|+ (r + 1)BC

|π|
.

If

|mn| ≤
(r + 1)BC

|π| − 1
, (8)

then the same inequality holds for |mn+1|. If equation (8) does not hold, then
|mn+1| < |mn|. In either case, the complex norm of the memory is bounded
throughout the infinite execution of the AFSR. To guarantee that it only takes
on finitely many values, however, we need a stronger condition.

Proposition 8 If for every embedding of F in the complex numbers we have
|π| > 1, then the memory in the infinite execution of any AFSR over F takes
on only finitely many values. The output is therefore eventually periodic.

PROOF. Let k = r1 + 2r2. Suppose σ1, · · · , σr1+r2 is a set of embeddings
of F in the complex numbers that includes all the real embeddings and one
complex embedding from each conjugate pair. Consider the map ψ : F → Rk

defined by

ψ(x) = (σ1(x), · · · , σr1+r2(x)).

The image of R under ψ is an integer lattice of rank k, and ψ is injective [1,
p. 95-99]. By Theorem 1, any set of points in ψ(R) is finite if it is bounded in
Euclidean norm.
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Let U be the image under ψ of the set of memory values in one infinite of an
AFSR. By the preceding argument, for each i, we have that the set of |σi(m)|
is bounded. It follows that ||(σ1(m), · · · , σk(m))|| is bounded. The proposition
follows. 2

5.2 The Function Field Case

Suppose R is a polynomial ring over K. Then the degree of the memory is
always bounded.

Proposition 9 Let U = max{deg(u) : u ∈ S}, V = max{deg(u) : u ∈ T}.
Suppose that at some state the AFSR has memory m, and let m′ be the memory
at the next state. Then

deg(m′) ≤ max(U + V, deg(m))− d.

PROOF. If the state of the AFSR is (a0, · · · , ar−1), ai ∈ S, then we have

σ =
r−1∑
i=0

aiqr−i +m = m′π + ar

with qi ∈ T . Thus

deg(m′) + d ≤ max(U + V, deg(m), deg(ar)).

The proposition follows. 2

It follows that the memory eventually has degree at most U+V −d. Since there
are finitely many states with this property, the output is eventually periodic.
Also, any strictly periodic sequence can be generated by an AFSR where the
degree of the memory is bounded by U+V −d throughout its execution. Note
that this bound is independent of the length of the AFSR.

6 Exponential Representation and Period of AFSR Sequences

One of the most powerful techniques for the analysis of a shift register sequence
is its exponential representation. Suppose A = a0, a1, a2, · · · is a periodic se-
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quence over K = GF (pn) obtained from a LFSR of length r, with connection
polynomial q(X). If q(X) is irreducible and if

γ ∈ GF (pnr)

is a root of q(X) in the finite field with pnr elements, then for i = 0, 1, 2, · · ·
we have

ai = Tr(cγi)

for some c ∈ GF (pnr) (which corresponds to the choice of initial loading of
the shift register). Here,

Tr : GF (pnr) → GF (pn)

denotes the trace function. In this section we derive a similar representation
for periodic sequences obtained from an AFSR.

We concern ourselves only with strictly periodic sequences A = a0, a1, a2, · · ·
that are generated by AFSRs with a given connection element q. We have
seen that the element of R̂ associated with such a sequence is in F , and can
be written in the form u/q, with u ∈ R.

Theorem 10 (Generalizes [13, Theorem 6.1, p. 125]) Let q = −q0+
∑r
i=1 qiπ

i,
qi ∈ T , q0 6≡ 0 mod π. Let Vq be the set of elements u ∈ R such that u/q
has a strictly periodic expansion u/q =

∑∞
i=0 aiπ

i with ai ∈ S and u and q
relatively prime. Suppose that no two elements of Vq are congruent modulo
π, and let Uq be a complete set of residues modulo q that contains Vq. Let
A = a0, a1, a2, · · · be a periodic sequence generated by an AFSR with connection
element q. Suppose α =

∑
aiπ

i = u/q with u and q relatively prime. Let

γ = π−1 ∈ R/(q)

be the (multiplicative) inverse of π in the ring R/(q). Then for all i = 0, 1, 2, · · ·
we have,

ai =
(
uγi ( mod q)

)
( mod π).

Here the notation ( mod q)( mod π) means that first the element δγi should
be reduced modulo q to give an element of Uq, and then that element should
be reduced modulo π to give an element of K.
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PROOF. Suppose the AFSR is in a state X, meaning the memory has some
value m and the register is loaded with a0, a1, · · · , ar−1. Let

T = ordq(π)

denote the period of this sequence (which may be less than the order of the
multiplicative group of R/(q)). Let α(X) ∈ R̂ denote the element associated
with the output sequence from the state X. By Theorem 3, α(X) is an element
of F of the form

α(X) =
u

q
=

∞∑
i=0

aiπ
i,

with 0 ≤ p ≤ q − 1. Now let Y denote the next state of the FCSR, so

α(Y ) =
v

q
=

∞∑
i=0

ai+1π
i.

Thus, u, v ∈ Uq and

π
v

q
+ a0 =

u

q
,

or u = πv + a0q ∈ R. If we read this equation modulo π, we see

u ≡ a0 ( mod π).

Reading this equation modulo q we obtain

v ≡ γu( mod q).

This shows that the sequence of numerators (u, v, · · ·) is obtained by multi-
plying by γ and reducing mod q, and that the sequence (a0, a1, · · ·) over K
is obtained by reducing the numerators modulo π. Finally, the initial state is
arbitrary and given by the choice of some A ∈ R/(q). 2

Corollary 11 Under the hypotheses of Theorem 10, the period of A is the
order of π modulo q.

PROOF. The period of A equals the period of the sequence of numerators
(u, v, · · ·) as in the proof of Theorem 10. The ith element in the sequence of
numerators is uγi mod q. The period of this sequence is the least i such that

16



u ≡ uγi mod q. Since u is relatively prime to q, this period is exactly the order
of γ modulo q, which is the same as the order of π modulo q. 2

The hypotheses of Theorem 10 do not always hold. For example, suppose
π2 = 2, R = Z[π], and S = {0, 1}. Then the periodic sequence 11101110 · · ·
has the corresponding π-adic number

u

q
= −1 + π + π2

π4 − 1
= −3 + π

3

while the periodic sequence 01000100 · · · has the corresponding π-adic number

v

q
= − π

π4 − 1
= −π

3
=
u

q
+ 1.

That is, we have q = 3 and u ≡ v mod q both give rise to periodic sequences.
The congruence class modulo q does not uniquely determine a periodic se-
quence.

Suppose the hypotheses of Theorem 10 indeed do not hold. We can still give
a bound on the period. For any u ∈ R, the coset of u modulo q is the finite
set {uπi}.

Proposition 12 Suppose A = a0, a1, a2, · · · is a sequence generated by an
AFSR with connection element q and associated element

α =
∑

aiπ
i =

u

q
.

Then the eventual period of A is a multiple of the order of the coset of u
modulo q.

PROOF. We can write α = b + πkβ with b =
∑k−1
i=0 aiπ

i ∈ R and the coeffi-
cient sequence of β strictly periodic with period t equal to the eventual period
of A. Then β can also be generated by an AFSR with connection element q,
so β = u′/q for some u′ ∈ R. It follows that u = qb + πku′, so that u and
u′ have the same coset modulo q. Thus we may assume α is strictly periodic
with period t.

We can write

α =
u

q
=

v

πt − 1
,

17



for some u, v ∈ R. Thus u(πt− 1) = vq, and it follows immediately that t is a
multiple of the order of the coset of u. 2

In particular, if u and q are relatively prime, then the period is a multiple of
the order of π modulo q.

Now suppose we are given u/q and are free to choose S. How close can we
come to the bound given in Proposition 12?

Proposition 13 Let u/q be an R-rational element, with q relatively prime to
π. There is a complete set of representatives S modulo π such that u/q has
a strictly periodic π-adic expansion with coefficients in S and period equal to
the order t of the coset of u modulo q.

PROOF. We have u − πtu = bq for some b ∈ R. Let b = πkc, with c not
divisible by π. If t = 1, let S contain b and enough other elements to make a
complete set of representatives modulo π.

If k < t and t > 1, let S contain 0, c, and enough other elements to make a
complete set of representatives modulo π. Then

b = 0 + 0 · π + · · ·+ 0 · πk−1 + cπk + 0 · πk+1 + · · ·+ 0 · πt−1.

If k ≥ t > 1, let S contain π, v = cπk−1 − 1− π− π2 − · · · − πt−1, and enough
other elements to make a complete set of representatives modulo π. Then

b = π + vπ + π · π2 + · · ·+ π · πt−1.

In each case we can write

u− πtu =

(
t−1∑
i=0

aiπ
i

)
q

with ai ∈ S. It follows that the π-adic expansion of u/q with coefficients in S
is

u

q
=

∑t−1
i=0 aiπ

i

1− πt

= a0 + a1π + · · · at−1π
t−1 + a0π

t + · · · ,

which is strictly periodic with period t. 2

In particular, if u is relatively prime to q, then the period of the π-adic expan-
sion of u/q with coefficients in the set S found in Proposition 13 is precisely
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register mem i

111 0 0

110 1 1

100 1 2

000 1 3

001 0 4

011 0 5
Table 1
The states of an AFSR with R = Z, p = π = 2, and q = 9.

the order of π modulo q. Examples where this fails (and the hypotheses of
Theorem 10 fail) are given in Subsection 7.4.

7 Examples

In this section we illustrate the behavior of AFSRs by several examples.

7.1 R = Z, p = π = 2

Suppose that R = Z so F = Q. Let π = p = 2, so K = GF (2), and S = T =
{0, 1}. This is precisely the setting that gives rise to FCSRs [13]. Suppose

q = π2 + π − 1 = 9.

Then an AFSR with connection element q has three stages, with coefficients
1, 0, and 1. If we start the register in the initial state (1, 1, 1), and with initial
memory 0, then the sequence of states of the register is given in Table 1 (where
we shift toward the left at each state transition). The output sequence thus
has period 6, and one period is

A = 111000 · · · .

Note that the memory size never exceeds one bit, so in effect we have a four
stage binary feedback register with period 6. Also note that

ordq(2) = 6,
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and 2−1 mod q = 5. The exponential representation of this sequence is

ai = (5i mod 9) mod 2.

Finally, since the period is 6 and one period gives the binary representation
of 7, the rational representation of the sequence is

7

1− 26
=

7

−63
=
−1

9
.

7.2 R = Z[π] with π = 21/2

Suppose that R = Z[π] with π2 = p = 2, so F = Q[π] is a real quadratic
number field and K = GF (2). Let S = T = {0, 1}. This is an example of
what was previously called a d-FCSR, d = 2 [4]. Every element in R can be
written in the form a+ bπ with a and b integers. Let

q = π3 + π − 1 = 3π − 1.

Then an AFSR with connection element q again has three stages, with coeffi-
cients 1, 0, and 1. If we start the register in the initial state (1, 1, 1), and with
initial memory 0, then the sequence of states of the register is given in Table 2
(where we shift toward the left at each state transition). The output sequence
thus has period 16, and one period is

A = 1110111100010000 · · · .

Note that the memory size never exceeds two bits, so in effect we have a five
stage binary feedback register with period 16. Also note that

π−1 mod q = 3

and

ordq(π) = 16.

One way to see this is to note that if a and b are integers then

a+ bπ ≡ (3a+ b)π mod q.

Moreover, 17π = (3π− 1)(π+ 6). Since 17 is prime, 17π must be the smallest
integral multiple of π that is congruent to 0 modulo q. It follows that R/(q)

20



register mem i

111 0 0

110 π 1

101 1 2

011 π 3

111 1 4

111 π 5

110 π + 1 6

100 π + 1 7

000 π + 1 8

001 1 9

010 π 10

100 1 11

000 π 12

000 1 13

001 0 14

011 0 15
Table 2
The states of an AFSR with R = Z[π], π = 21/2 and q = 3π − 1.

is isomorphic to the integers modulo 17, and every element has multiplicative
order dividing 16. Then one checks that π8 = 16 is not congruent to one
modulo q.

The exponential representation of this sequence is thus

ai = (3i mod (3π − 1)) mod 2.

Finally, since the period is 16 and one period gives the π-adic representation
of 15 + 45π, the rational representation of the sequence is

15 + 45π

1− π16
=

15 + 45π

−255

=
−1

−1 + 3π
.
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7.3 R = Z[π, γ] with π2 = 2 and, γ2 = γ + 1

Suppose that R = Z[π, γ] with γ2 = γ + 1 and π2 = p = 2. Here F = Q[π, γ]
is a degree 4 extension of Q. Also, γ reduces modulo π to a primitive cube
root of 1, so K = GF (4). Let S = T = {0, 1, γ, 1 + γ}. Every element in R
can be written in the form (a+ bγ)+ (c+dγ)π with a, b, c, and d integers. Let

q = (γ + 1)π3 + π − 1 = (2γ + 3)π − 1.

Then an AFSR with connection element q again has three stages, with co-
efficients 1 + γ, 0, and 1. If we start the register in the initial state (1, 1, 1),
and with initial memory (1 + 2γ)π, then the output sequence has period 400.
Each output symbol has 2 bits, so this register outputs 800 bits. Furthermore,
it can be shown that each integer in the memory never exceeds 3. Hence this
register is, in effect, a 14 stage binary feedback register with period 800. The
first few states are shown in Table 3 (where we shift toward the left at each
state transition). Each output symbol is of the form a+ bγ, with a, b ∈ {0, 1}.
In one period, the sequence of as is

111000011010010001000101111100100000101000110001011001101101

000010101101001111110011110110110001001101110000000001000001

111011110000011100010101011001011101101011111101000110101011

110011001110011010110001111001011011101110100000110111110101

110011101001100100101111010100101100000011000010010011101100

100011111111101111100001000011111000111010101001101000100101

0000001011100101010000110011000110010100.

The sequence of bs is

000101111100100000101000110001011001101101000010101101001111

110011110110110001001101110000000001000001111011110000011100

010101011001011101101011111101000110101011110011001110011010

110001111001011011101110100000110111110101110011101001100100

101111010100101100000011000010010011101100100011111111101111

100001000011111000111010101001101000100101000000101110010101

0000110011000110010100111000011010010001.
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register mem i

1 1 1 (1 + 2γ)π 0

1 1 γ (1 + 2γ) + π 1

1 γ 0 1 + (1 + 2γ)π 2

γ 0 γ (1 + 2γ) + π 3

0 γ γ 1 + (1 + 2γ)π 4

γ γ 1 + γ (1 + 2γ) 5

γ 1 + γ 1 + γ (1 + 2γ)π 6

1 + γ 1 + γ γ (1 + 2γ) + (1 + γ)π 7

1 + γ γ 1 (1 + γ) + (1 + 3γ)π 8

γ 1 0 (1 + 3γ) + (2 + 2γ)π 9

1 0 γ (2 + 2γ) + (1 + 2γ)π 10

0 γ 1 (1 + 2γ) + (1 + 2γ)π 11

γ 1 0 (1 + 2γ) + (1 + γ)π 12

1 0 0 (1 + γ) + (1 + 2γ)π 13

0 0 0 (1 + 2γ) + (1 + γ)π 14

0 0 1 (1 + γ) + γπ 15
Table 3
The first 15 states of an AFSR over Z[π, γ] with π2 = 2, γ2 = γ + 1, and q =
(2γ + 3)π − 1.

Note that

π−1 mod q = 2γ + 3.

It can be shown that

ordq(π) = 400.

One way to see this is to note that if a and b are integers then

a+ bπ ≡ ((2γ + 3)a+ b)π mod q.

Moreover, 401π = N(q)π. Since 401 is prime, 401π must be the smallest
integral multiple of π that is congruent to 0 modulo q. It follows that R/(q) is
isomorphic to the integers modulo 401, and every element has multiplicative
order dividing 400 = 24 · 52. Then one checks that neither π200 = 2100 nor
π80 = 240 is congruent to one modulo q.
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The exponential representation of this sequence is thus

ai = (3i mod (3π − 1)) mod 2.

Finally, by Theorem 3, the rational representation of the sequence is

α =
−γπ3 − 1

(γ + 1)π3 + π − 1
.

7.4 Dependence of the Period on S

It is not the case that for every choice of S the period is the order of the
coset of u modulo q. For example, let R = Z and π = 2. Let u = −1 and
q = 3. Consider the two complete sets of residues S1 = {0, 1} and S2 = {4, 1}.
With respect to S1, −1/3 has the coefficient sequence 101010 · · ·, with period
2. With respect to S2, −1/3 has the coefficient sequence 40440004440004 · · ·,
with (eventual) period 6. Now suppose u and q are arbitrary relatively prime
integers. It has been shown that the choice of S1 as complete set of residues
always gives rise to a coefficient sequence with eventual period equal to the
order of 2 modulo q [13]. Consider the set of residues S3 = {0, k} for k odd
and relatively prime to u. Suppose

u

q
=

∞∑
i=0

ai2
i = k

∞∑
i=0

bi2
i,

where ai ∈ S3 and bi = 1 if ai = 4 and bi = 0 if ai = 0. If the period of
a0, a1, · · · is t, then

u

qk
=

c

2t − 1

for some integer c. Thus t is the least integer such that qk divides 2t − 1, so t
is the least common multiple of the orders of 2 modulo q and k. In particular,
the period can be arbitrarily large (but the requirements for the memory grow
as the size of the elements in S3 grow).

One can also consider a fixed T , q, and initial state of an AFSR with connection
element q. We can then vary the set S and ask what effect there is on the
output. To make sense of this, we consider the contents of the register and the
output as consisting of elements of the residue field K.

For example, let π be a root of the quadratic equation x2 − 2x + 2 = 0.
Then the ring R = Z[π] equals the Gaussian domain Z[

√
−1] and π is prime.
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register mem i register mem i

3 3 3 1− π 0 3 0 3 1− 2π 12

3 3 3 3− 2π 1 3 3 0 −π 13

3 3 3 4− 3π 2 3 3 3 −1 14

0 3 3 7− 5π 3 3 3 3 2− π 15

0 0 3 5− 5π 4 0 3 3 7− 4π 16

0 0 0 3− 4π 5 0 0 3 6− 5π 17

3 0 0 −4 6 3 0 0 1− 3π 18

3 3 0 −4 + 2π 7 0 3 0 1− 2π 19

3 3 3 −2 + 2π 8 3 0 3 −4 + π 20

0 3 3 6− 2π 9 0 3 0 3− π 21

3 0 3 4− 3π 10 3 0 3 −1 22

0 3 0 7− 5π 11 3 3 0 2− π 23

3 3 3 1− π 24
Table 4
The states of an AFSR over the Gaussian domain.

We have that R/(π) ∼= Z/(2), and so may choose complete sets of residues
T = S1 = {0, 1} and S2 = {0, 3}. Consider an AFSR over (R, π, S1, T ) with
connection element q = π3+π−1 (so the length r = 3), initial register contents
(a2, a1, a0) = (1, 1, 1) and initial memory m = 1 − π. Since π2 = 2π − 2 and
2 = π(2−π), we have σ = a0q3 +a1q2 +a2q1 +m = 2+(1−π) = 1+(2−π) =
1+π(1−π). Therefore the feedback element is a3 = 1 and the updated memory
is m = 1− π, hence unchanged. This shows that the output sequence consists
of all 1s and its rational representation is 1/(1− π) = π − 1.

We now keep everything the same but replace S1 by S2. We then have an AFSR
over (R, π, S2, T ). In terms of S2, the initial register contents are (3, 3, 3). The
first 25 iterations are displayed in Table 4. The output sequence has period
24. In terms of K, one period is

A = 111110001110101111001010 · · · .

By Theorem 3, the rational representation for the output is (π4 − π3 − 3)/q,
which is a reduced rational representation.
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8 Rational Approximation and Security Measures

In this section we consider the register synthesis problem for AFSRs when R
is a subring of a number field. Given a prefix of a sequence A = a0, a1, · · ·,
we want to find a short AFSR over a given (R, π, S, T ) that generates A.
As we have seen, the output from such an AFSR corresponds to an element
α =

∑
aiπ

i = u/q for some u, q ∈ R. The elements u and q determine the
structure and initial state of the AFSR that generates A. Thus the problem
of finding an AFSR that generates A amounts to the problem of finding a
rational representation for α. The construction of the AFSR from u and q is a
straightforward generalization of the same construction for FCSRs [13, Section
5, p. 123] and is not treated here. In this section we describe conditions on R
under which a rational approximation algorithm exists. Note that if u and q
are relatively prime, then any other AFSR that outputs S corresponds to a
pair uv and qv. The problem of choosing v to minimize the size of the AFSR
is also not treated here.

The algorithm we describe here is based on one due to de Weger in the p-adic
case [17, p. 77]. Our algorithm is more general in that it works over many
number fields. It is also an improvement in two regards. First, it is adaptive.
That is, the number of bits of the sequence A need not be predetermined.
Second, if the input sequence is, in fact, the coefficient sequence of an R-
rational element, then we can bound the number of elements of the sequence
that are needed for the algorithm to converge.

A similar modification to de Weger’s algorithm was described by Klapper and
Goresky in the case of FCSRs with p = 2 [13]. The situation here, however, is
somewhat more complicated. In Klapper and Goresky’s version, the updating
was able to be performed with a single iteration of algorithm Improve. In our
more general setting we must allow several iterations and take into account
the number of iterations in the complexity analysis.

We assume R has a norm function N : K − {0} → N (N denotes the natural
numbers) that makes it a Euclidean domain. That is,

a. For all a, b ∈ K, N(ab) = N(a)N(b).
b. For all a, b ∈ R, N(a+ b) ≤ N(a) +N(b).
c. For all a, b ∈ R, there exist q, r ∈ R so that a = qb + r and either r = 0 or
N(r) < N(b).

In addition, in order to ensure the algorithm converges rapidly, we need

d. There is a function ψ : N → N such that if a ≡ b mod πψ(k), N(a) < k,
and N(b) < k, then a = b.
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Conditions (a), (b), and (d) hold, for example, if R is an imaginary quadratic
extension of the rationals and N is the square root of the usual norm function
on field extensions. Condition (c) holds as well if R = Q[

√
D] with D ∈

{−1,−2,−3,−7,−11} [1, Chapter 3, Section 2, p. 164-169].

For any pair of elements u and q of R, define

Φ(u, q) = max(N(u), N(q)).

Assume we have consecutive terms a0, a1, · · · of the sequence A. In the algo-
rithm Rational Approximation, given in Figure 2, the symbols f = (f1, f2)
and g = (g1, g2) denote pairs of elements of R. These two pairs form a basis for
the set of rational approximations to α =

∑∞
i=0 aiπ

i that are accurate modulo
πk.

Algorithm Improve, given in Figure 3, is used to find a basis for Lk whose
Φ-values are as small as possible.

Theorem 14 Suppose the output from Rational Approximation is h =
(h1, h2) when T bits ai are used. Then π 6 |h2, α·h2−h1 ≡ 0 ( mod πT ), and any
other pair h′ = (h′1, h

′
2) which satisfies these two conditions has Φ(h′) ≥ Φ(h).

Theorem 15 Suppose A = a0, a1, a2, · · · is an eventually periodic sequence
with associated π-adic number α =

∑
aiπ

i = u/q, with u, q ∈ R. If T ≥
ψ(Φ(u, q)2) bits ai are used, then Rational Approximation outputs (h1, h2)
with h1/h2 = u/q.

For example, consider the case of an imaginary quadratic number field. F =
Q[
√
D], D ∈ {−1,−2,−3,−7,−11}. If D ≡ 3 mod 4, then R = Z[(1 +√

D)/2]. Otherwise R = Z[
√
D] [1, Chapter 3, Section 2, p. 164-169]. If p

is a prime integer, then either p is prime in R or is the product of two primes.
In the former case we can take ψ(x) =

⌈
logp(x) + c

⌉
and in the latter case

we can take ψ(x) =
⌈
2 logp(x) + c

⌉
for some constant c. In either case the

number of bits required for convergence is linear in log(Φ(u, q)). The quantity
log(Φ(u, q)) is thus a measure of the cryptographic security of the sequence
corresponding to u/q.

The proofs of these two optimality results occupy the remainder of this section,

and utilize the methods of [17]. Consider the kth approximation lattice for the
2-adic number α,

Lk = {h ∈ R×R : α · h2 − h1 ≡ 0 ( mod πk)}.

Then Lk ⊃ Lk+1 ⊃ · · · . If f = (f1, f2) ∈ Lk then πf = (πf1, πf2) ∈ Lk+1.
The elements (f1, f2) ∈ Lk with π 6 |f2 represent fractions f1/f2 whose π-adic
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Rational Approximation()
begin
Input ais until the first ak−1 6= 0
Let b ∈ S satisfy bak−1 ≡ 1 ( mod π)
Let d minimize N(b+ dπk−1)
α = ak−1π

k−1

f = (0, π)
g = (πk−1, b+ dπk−1)
while more input do

input ak
α = α+ akπ

k

if α · g2 − g1 ≡ 0 ( mod πk+1) then
f = πf
if N(g) < N(f) then

swap f and g
fi
Improve(〈f, g〉)

else
let f + dg ∈ Lk+1 with d ∈ S
〈f, g〉 = 〈πg, f + dg〉
if N(g) < N(f) then

swap f and g
fi
Improve(〈f, g〉)

fi
k = k + 1

od
if π|f2 then

return g
else return f
fi
end

Fig. 2. Algorithm Rational Approximation.

expansion agrees with that of α in the first k places. Two pairs of elements
f, g ∈ Lk form a basis for Lk if every element h ∈ Lk can be written h =
cf + dg for some c, d ∈ R. Such bases exist and are described in the following
lemma, which is a key observation of [17, Lemma 2.1, p. 72]. Its proof is
straightforward:

Lemma 16 Two pairs of integers f, g ∈ Lk form a basis for Lk if and only if
f1g2 − f2g1 = uπk for some unit u.

It follows that at every stage of the algorithm the pair 〈f, g〉 is a basis for Lk.
A basis 〈f, g〉 for a lattice L is Φ-minimal if Φ(f) is minimal in L and Φ(g) is
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Improve(〈f, g〉)
begin
while mind(Φ(g + df)) < Φ(f) do

Let d minimize Φ(g + df)
〈f, g〉 = 〈g + df, f〉

od
Let d minimize Φ(g + df)
g = g + df
return 〈f, g〉
end

Fig. 3. Algorithm Improve.

minimal for elements of Lk that are independent of f .

Lemma 17 If L is a lattice with basis 〈f, g〉, then algorithm Improve outputs
a Φ-minimal basis for L.

PROOF. Algorithm Improve halts eventually because in two steps it always
reduces max(Φ(f),Φ(g)) by at least one. So suppose 〈f, g〉 is a basis for L such
that Φ(f) ≤ Φ(g) and for all d ∈ R, Φ(g) ≤ Φ(g + df). Suppose that Φ(f) is
not minimal in L. Then there exist a, b ∈ R such that Φ(af + bg) < Φ(f). It
is immediate that a 6= 0 and b 6= 0. Let a = cb+ r, with N(r) < N(b). Then

Φ(cbf + bg) ≤ Φ(af + bg) + Φ(rf)

so

Φ(cf + g)<
1

N(b)
(Φ(f) + (N(b)− 1)Φ(f))

= Φ(f),

which is impossible.

If Φ(g) is not minimal among elements of L that are independent of f , then
there exist a, b ∈ R such that Φ(af+bg) < Φ(g) and b 6= 0. A similar argument
also leads to a contradiction. 2

Thus at the end of the main loop of Rational Approximation we have
a Φ-minimal basis for Lk. If both π|f2 and π|g2, then π divides the second
coordinate of every element of Lk, which is false. Thus Theorem 14 holds.

Proof of Theorem 15. By assumption, α = u/q with π not dividing q and
(u, q) ∈ Lk for all k. The output from the algorithm is a pair h = (h1, h2) ∈ LT
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with π not dividing h2. There is a Φ-minimal basis 〈f, g〉 with Φ(f) ≤ Φ(g),
and either π|f and h = g or h = f . In the former case, any element of LT whose
second component is not divisible by π is independent of f . Thus in either
case h is the Φ-minimal element with π not dividing h2. Thus Φ(h1, h2) ≤
Φ(u, q). HenceN(h1q) = N(h1)N(q) ≤ Φ(h1, h2)·Φ(u, q) ≤ Φ(u, q)2. Similarly,
N(h2) ≤ Φ(u, q)2. However, αh2−h1 ≡ 0 ( mod πT ) so h1q ≡ uh2 ( mod πT ),
which implies that h1q = uh2. Therefore h1/h2 = u/q. 2

Now let us consider the time complexity. The outer loop is iterated T times
if T symbols of A are used. Algorithm Improve is called at most 2N(π) + 1
times for each iteration of the outer loop. Thus the elements f and g are built
up from at most cT operations in R. Let 〈f, g〉 be a Φ-minimal basis for the
lattice L = {(u, v) : α = u/v}, and λ = max(Φ(f),Φ(g)). Then all the inputs
and results of the operations in R involve elements h with Φ(h) ≤ λ. Suppose
we have a function µ(k) such that every operation in R whose inputs and
result are elements bounded by Φ(h) ≤ t takes time at most µ(t). Let σ(t)
be the time required for the minimization step in Improve. Then the overall
time complexity of the algorithm is bounded by O(T (µ(λ) + σ(λ))).

The minimization step is left unspecified and depends on the particular ring
R and norm N . For example, suppose R is the ring of integers in an imaginary
quadratic number field Q[

√
D] with D ≡ 1 mod 4. Thus R = Z + Z

√
D and

N(a + b
√
D) = a2 +Db2. If d = x + y

√
D, then N(fi + dgi)

2 can be written
in the form

Fi(x, y) = (ai + bix+ ciy)
2 +D(di + eix+ hiy)

2

with integer coefficients. Note that in the minimization we may work with the
square of the norm.

The minimum of max(F1, F2) must occur either at a critical point of F1 or F2

or at a critical point of the intersection of F1 and F2. The minimum must exist
because the surface is bounded below. By an affine change of coordinates Fi
is equivalent to x2 +Dy2, so it has a single critical point which can be found
by solving ai + bix + ciy = 0 and di + eix + hiy = 0. (these linear equations
are always independent).

The critical points of the intersection can be found by equating the deriva-
tive of F1(x, y) with respect to x to zero, and differentiating the constraint
F1(x, y) = F2(x, y). This leads to a pair of (inhomogeneous) quadratic equa-
tions in x and y, which can be solved. There are at most four solutions.

The value of d can then be found by considering the (at most six) critical points
we have found and checking the nearest integer points. The entire procedure
takes a constant number of operations in R. Thus in this case the complexity
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of the entire algorithm is O(Tµ(λ)).

8.1 Rational Approximation by Interleaving

Even when there is no such rational approximation algorithm for AFSRs over
a ring R, it may be possible to synthesize an AFSR for a given sequence A
by thinking of it as an interleaving of several sequences over subrings. In this
subsection we assume that S0 is a subset of R such that R = Z[S0, π], with
|S0| = f and πe = p, and that

S =

∑
σ∈S0

bσσ : b∈Z, 0 ≤ bσ < p



is a complete set of residues for R modulo π. For the AFSRs in this subsection
we assume T = S. We also assume that

Q = Z[V0, ρ]

is a subring of R, with |V0| = h and ρg = p, and that

V =

∑
τ∈V0

cττ : c∈Z, 0 ≤ cτ < p



is a complete set of residues for Q modulo π. We assume further that g divides
e, h divides f , πe/g = ρ, and that there is a set U ⊆ R such that |U | = f/h
and

S0 = {τφ : τ ∈ V0, φ ∈ U} .

The simplest example of such a subring is Q = Z, where g = h = 1.

The idea is to decompose a sequence of elements of S into several sequences
of elements of V , find rational approximations for these sequences, and then
combine them into a rational approximation for the original sequence. Let
A = a0, a1, · · ·, with ai ∈ S and

ai =
∑
σ∈S0

ai,σσ, ai,σ ∈ Z, 0 ≤ ai,σ < p,
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and let

α =
∞∑
i=0

aiπ
i

be the associated element of R̂. Then we can write∑
σ

ai,σσ =
∑
τ∈V0

∑
φ∈U

bi,τ,φτφ,

where bi,τ,φ = ai,σ if σ = τφ. It follows that

α =
e/g−1∑
j=0

∑
φ∈U

 ∞∑
k=0

∑
τ∈V0

bj+ke/g,τ,φτ

 ρk
φπj.

For each j and φ, we let

Bj,φ =
∑
τ∈V0

bj,τ,φ,
∑
τ∈V0

bj+e/g,τ,φ,
∑
τ∈V0

bj+2e/g,τ,φ, · · · ,

and let

βj,φ =
∞∑
k=0

∑
τ∈V0

bj+ke/g,τ,φτ

 ρk ∈ Q̂.

Then

α =
e/g−1∑
j=0

∑
φ∈U

βj,φφπ
j.

Thus if we can find rational representations βj,φ = uj,φ/qj,φ, then we can write

α=
e/g−1∑
j=0

∑
φ∈U

uj,φ
qj,φ

=

∑e/g−1
j=0

∑
φ∈U

(∏
(ψ,`) 6=(φ,j) qψ,`

)
∏

(φ,k) qφ,k
φπj,

which is a rational representation of α. If Q is a UFD, then we can improve
this by using a denominator which is the least common multiple of the qφ,k.
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This representation is, in general, not minimal. It is, however, close to minimal.
To see this, let α = v/q be the best rational representation of α in the sense
that q is the connection element of an AFSR of minimal length that outputs
the sequence of coefficients in the π-adic expansion of α. Also let F and E be
the fraction fields of R and Q, respectively, and let N be the norm function
from F to E.

Lemma 18 The element q divides N(q).

PROOF. Recall that if R1 ⊆ R2 are commutative rings without zero divisors,
then an element u of R2 is integral over R1 if u is a root of a monic polynomial
with coefficients in R1. It is known that if R2 = R1[u] for some u that is integral
over R1, then every element of R2 is integral over R1 [5, p. 270]. It follows that
the characteristic polynomial of every element u of R2 has coefficients in R1

[6, p. 611]. The constant term of the characteristic polynomial is precisely the
norm. By taking a series of such integral extensions, this is the situation we
are in with Q and R. Hence we have a relation

qk + a1q
k−1 + · · ·+ ak−1q +N(q),

where each ai is inQ and k is the degree of the extension of F over E. Therefore

N(q) = q(−qk−1 − a1q
k−2 − · · · − ak−1),

and the theorem is proved. 2

It follows that for some z ∈ R and {zj,φ} ⊆ Q, we can write

α=
z

N(q)

=

∑e/g−1
j=0

∑
φ∈U zj,φ

N(q)
φπj.

Therefore, for each j, φ,

zj,φ
N(q)

=
uj,φ
qj,φ

.

If the latter is a minimal rational representation in the sense that the numer-
ator and denominator are relatively prime, then qj,φ divides N(q). Therefore
the least common multiple of the qj,φ also divides N(q).

Proposition 19 Suppose a rational representation for α is found as described
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above, and combined over a common denominator r which is the least common
multiple of the denominators of the subsequences used. If v/q is any other
rational representation for α, then r divides N(q).

The importance of this fact is that the π-adic log of N(q) (the largest power
of π appearing in a π-adic expansion of N(q) with coefficients in S) can be
bounded in terms of the π-adic log of q.

Proposition 20 There is a constant d, depending only on R and Q, such that
for every q

logπ(N(q)) ≤ d+
ef

gh
logπ(q).

PROOF. One way to compute N(q) is as the determinant of the E-linear
transformation x→ qx from F to itself. Let us write

q =
∑
φ∈U

e/g−1∑
j=0

∑
τ∈V0

g−1∑
i=0

vτ,i,φ,jτρ
i

φπj,

with vτ,i,φ,j ∈ Z. Then N(q) is a linear combination of {τρi : τ ∈ V0, 0 ≤ i < g}
whose coefficients are polynomials in {vτ,i,φ,j : τ ∈ V0, 0 ≤ i < g} with integer
coefficients and degree ef/(gh). Thus each polynomial is bounded by

c · (max{|vτ,i,φ,j| : τ ∈ V0, 0 ≤ i < g})
ef
gh ,

where c is an integer constant (at worst the maximum over all the polynomials
of the sum of the absolute values of the coefficients in the polynomial). It
follows that

logπ(N(q))≤ ef

gh
max{logπ(vτ,i,φ,j) +

ie

g
}

≤ d+
ef

gh
logπ(q)

for some d, as desired. 2

We would like to conclude that logπ(r) is not too large. Unfortunately, we
cannot in general bound the π-adic log of a divisor of a number in terms of
the log of the number. For example, if we let π2 = 2, and R = Z[π], then for
any i, 2(1 + π)i is a divisor of 2, and the π-adic log of 2(1 + π)i is unbounded
as i ranges over all positive integers.
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However, the situation is much simpler over the ordinary integers. In this case
we have g = h = 1, ρ = p, V0 = {0, 1}, and U = S0. From the fact that r
divides N(q), it follows that

logπ(r) = e logp(r) ≤ e logp(N(q)) = logπ(N(q)).

Also, we can assume that r is a positive integer, and hence is the connection
element of an AFSR over R. We have shown the following.

Proposition 21 Suppose A is an eventually periodic sequence over R, and
k is the length of the smallest AFSR over R that outputs A. Then there is
a constant d depending only on R such that an AFSR of length d + efk that
outputs A can be found by decomposing A into ef interleaved binary sequences,
and finding minimal length AFSRs over Z for each of these sequences.

9 The Function Field Case

Suppose R = GF (pn)[x], π ∈ R is irreducible, and S, T ⊆ R are complete sets
of representatives for K = R/(π). Then K is an extension of L = GF (pn) of
degree d = deg(π), hence is GF (pnd). It follows that the cardinality of S and
T is pnd. Furthermore, if we choose a basis for K over L, then every element
of K can be treated as a d-tuple of elements of L. Thus a sequence of period
t over K can be treated as a sequence of period dt over L.

Let A be the output from an AFSR of length r over (R, π, S, T ) with initial
memory of degree e. In this section we show that there is an LFSR sequence B
over L whose linear span is at most rd plus the maximum of e and a constant
that depends only on R, π, S, and T such that A can be transformed into B
(and vice versa) by a finite state “filter” that also depends only on R, π, S,
and T . First we treat a special case.

Proposition 22 If S is closed under addition and under multiplication by
elements of L, then the state transition function of an AFSR over (R, π, S, T )
is linear over L. Thus if the length of the AFSR is r, then the linear span
over L of the output is at most rd plus the maximum degree of the memory
throughout its infinite execution.

PROOF. We can take {1, x, · · · , xd−1} as a basis for K over L. Addition and
multiplication by fixed elements (the qi) in L[x] are always L-linear operations.
By the closure properties of S, if m1,m2,m

′
1,m

′
2 ∈ L[x], a1, a2 ∈ S, and

u, v ∈ L satisfy mi = ai+πm′
i, then um1 +vm2 = (ua1 +va2)+π(um′

1 +vm′
2)

with ua1 + va2 ∈ S. Thus the entire state change operation is linear.
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It follows that such an AFSR is equivalent to a linear feedback (not necessarily
shift) register. It has been shown, however, that the linear span of the output
from such a register is at most its length [2]. The second conclusion of the
proposition follows. 2

An example of a set of representatives satisfying the closure property is S0 =
{t(x) : deg(t) < d}.

Now suppose we have an AFSR defined over (R, π, S, T ) with S, T arbitrary
and with length r and connection element q. In general such an AFSR does
not have a linear state change function. Let A = a0, a1, · · · be the output from
this AFSR, and α =

∑∞
i=0 aiπ

i the associated π-adic number with coefficients
in S. In the ring R̂ of π-adic numbers, α can also be represented by a series∑∞
i=0 biπ

i with the bi in S0. We show two things. First, there is a finite state
device that depends only on R, π, and S that takes B = b0, b1, · · · as input
and outputs A. Second, the sequence B can be generated by an AFSR defined
over (R, π, S0, T ) whose length is at most r and whose memory is small. Let
U = max{deg(u) : u ∈ S}, V = max{deg(u) : u ∈ T}.

Consider the following finite state device. Its state at any time is an element
t of R. At each step it inputs an element b ∈ S0 and finds a ∈ S and t′ ∈ R
such that b+ t = a+ πt′. The device outputs a and changes state to t′. If the
state is initially t = 0 and the input sequence is B, then the output will be A.
Furthermore,

d+ deg(t′) ≤ max(deg(a), deg(b), deg(t)) ≤ max(deg(a), d, deg(t)),

so the degree of the state is bounded by U−d during an infinite execution and
this is indeed a finite state device. Furthermore, the inverse transformation can
be realized by a finite state device constructed in the same way with the roles
of S0 and S reversed. The same bound on the degree of the state holds.

By Theorem 3, if α = u/q, then

deg(u) ≤ max((r − 1)d+ U + V, rd+ deg(m)),

where m is the initial memory. Also, we have equality if deg(m) > U + V −
1. Now consider the AFSR over (R, π, S0, T ) that generates B. Since T is
unchanged, the length of this AFSR is r. If m′ is the initial memory of this
AFSR, then

u =
r−1∑
i=0

r−i−1∑
j=0

qibjπ
i+j −m′πr.
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Thus deg(m′)+rd ≤ max(V +d−1+(r−1)d, (r−1)d+U+V, rd+deg(m)) so
deg(m′) ≤ max(V + 1, U + V − d, deg(m)). Combining this with Proposition
22 we have proved the following.

Theorem 23 If A can be generated by an AFSR over (R, π, S, T ) of length r
with initial memory of degree e, then there is a sequence B that has linear span
at most rd+ max(V + 1, U + V − d, e) over L such that B can be transformed
into A by a finite state device depending only on R, π, and S with pn(U−d)

states.

10 Conclusions

We have described a general method for constructing algebraic feedback shift
registers over certain rings, R. These registers are analogous to linear feedback
shift registers. They can be thought of as generating sequences by carrying out
division in the completion R̂ of the ring at a principal prime ideal (π). Asso-
ciated with them are algebraic structures that are similar to those associated
with LFSRs.

The cryptographic importance of these registers is twofold. First, they are a
potential source of cryptographically secure sequences for stream ciphers. As
with LFSR sequences, there are many possible (as yet unexplored) ways to
modify these sequences that may make them secure. Second, these registers
can be used for cryptanalysis in the cases where we have a rational approxi-
mation algorithm. Such an algorithm exists if R is a Euclidean domain with
an extra condition on its norm. For a few rings R we have shown that these
conditions occur. It remains to be seen whether other rings have these proper-
ties and, if not, whether there is a different rational approximation algorithm
that works.

We have also shown that the generators that arise when R is a polynomial
ring over a finite field are equivalent to certain “filtered” LFSRs and thus give
nothing of new cryptographic interest.

We have considered only the case when π is prime. This affects primarily the
analysis of the boundedness of the memory (which is critical if AFSRs are to
be implemented) and the correctness of the rational approximation algorithm.
It can be shown, however, that rational approximation algorithms (using quite
different techniques) exist when R = Z and π is a composite integer. The case
when π = 4 gives rise to sequences over Z/(4), which have generated a great
deal of interest in coding theory recently. The case when π is not prime is the
subject of a future paper.
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